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Abstract 
The present paper consists of Theory and classification of 𝑠𝑙(2, ℂ) modules in that sense 𝑠𝑙(2, ℂ) is considered 

as guide example for the study of different other Lie algebras. This work provides all that is fundamental, 

definitions,  examples, propositions, lemma and related proofs to a better understanding of what is a Lie algebra, 

and in particular 𝑠𝑙(2, ℂ) representations and modules. A literature review about fundamentals of Lie algebra 

and then representations through various textbooks is developed and the methodology is purely algebraic with a 

use the maximal weight theory. Based on Weyl’s theorem on the reducibility of a Lie algebra representation, we 

proved that all finite dimensional representations of a semisimple Lie algebra are completely reducible and the 

paper takes end with the classification of all finite 𝑠𝑙(2, ℂ) modules. The representation theory of 𝑠𝑙(2, ℂ)is very 

important because it is used as the model for the study of other Lie algebras. The present work brought an 

overview of how to construct representations, in particular those of 𝑠𝑙(2, ℂ). 
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I. Introduction 
Lie algebras were discovered by Marius Sophus Lie (1842−1899) while he was attempting to classify 

certain ‘smooth’ subgroups of general linear groups. The groups he considered are now called Lie groups. In fact, 

Lie defined his groups as being analytic rather than just smooth. One of Poincarée’s conjecture was that Lie 

groups (finite-parameter Lie groups, that is) could be equivalently defined as smooth groups, and it took almost 

another 50 years before this conjecture was proved by the American mathematician Deane Montgomery to be 

correct. Questions about the groups could be treated using Lie algebras that were introduced to study the concept 

of infinitesimal transformations. The term Lie algebra was introduced by Hermann Weyl in the 1930s and in older 

texts, the name infinitesimal group is used. [14] 

 

Problem Statement 

The two by two matrices with complex entries and trace zero 𝑠𝑙(2, ℂ) do not form an associative ring 

but they have another algebraic structure, a so-called Lie algebra structure. Given two matrices A, B in 𝑠𝑙(2, ℂ)we 

can consider the Lie product 𝐴𝐵 − 𝐵𝐴, which also has trace zero. This is called the Lie bracket of the two 

matrices. This Lie algebra, and similar ones occur in differential geometry, physics and the theory of differential 

equations, and they often act on some complex space ℂ n. Even if the study of the general case 𝑠𝑙(𝑛, ℂ)Lie algebra 

of all traceless n ×n matrices with complex entries has been developed [5], the representation theory of 𝑠𝑙(2, ℂ)is 

very important because it is used as the model for the study of other Lie algebras. The present work will bring an 

overview of how to construct representations, in particular those of 𝑠𝑙(2, ℂ) 
 

Objectives 

The aims of this work are the following: 

i. To give a description of the Lie algebra 𝑠𝑙(2, ℂ) and its finite-dimensional representations. 

ii. To show that any constructed finite dimensional 𝑠𝑙(2, ℂ)representation is irreducible 

iii. To classify irreducible 𝑠𝑙(2, ℂ)modules 

 

Research methodology 

In order to achieve the goals of this work, we first make a literature review about fundamentals of Lie 

algebra and then representations. Secondly, we construct 𝑠𝑙(2, ℂ) representations as a complex semisimple Lie 

algebra.The methodology is purely algebraic and will use maximal weight theory. 

 

II. Literature review 
As mentioned in introduction, Lie algebras are due to Sophus Lie. They are used to study geometric 

objects such as Lie groups (finite groups in which multiplication and maps are infinitely differentiable) and 



Theory And Classification Of Sl (2,C) Modules 

DOI: 10.9790/0661-1905011120                www.iosrjournals.org                                            12 | Page 

differentiable manifolds. As an example, we can mention a group of translations and a group of rotations. Each 

group has an associated Lie algebra. In this section, fundamental concepts of Lie algebras are treated. 

 

Definition and first examples of Lie algebras 

 

Definition 2.1 A Lie algebra over a field 𝔽 is an 𝔽−vector space L together with a bilinear map 

[. , . ] ∶ 𝐿 × 𝐿 → 𝐿 

called the Lie bracket of L, which is skew symmetric for all x, y in L and satisfies the Jacobi identity, i.e 
[𝑦, 𝑥] = −[𝑥, 𝑦]                                                                  (2.1) 

[𝑥, [𝑦, 𝑧]] + [𝑦, [𝑥, 𝑧] + [𝑧, [𝑥, 𝑦]] = 0, ∀𝑥, 𝑦, 𝑧 ∈ 𝐿           (2.2) 

In the following all vector spaces are considered over the field 𝔽 (𝔽 will be ℝ or ℂ) and all maps are linear with 

respect to 𝔽. 

Example 2.1 Let 𝐿 be the real vector space ℝ3 equipped with [𝑥, 𝑦] = 𝑥 × 𝑦  (cross product of vectors) ∀𝑥, 𝑦, 𝑧 ∈
𝐿. Then 𝐿 is a Lie algebra. 

Proof. Let 

𝑓 ∶ 𝐿 × 𝐿 → 𝐿 

(𝑥, 𝑦)  →  𝑓(𝑥, 𝑦)  =  𝑥 ×  𝑦 
 

It is known that 𝑥 × 𝑦 =  −𝑦 × 𝑥 and that f is bilinear. For the cross product of vectors in the (oriented) three 

dimension Euclidean space, there exists an orthonormal basis (𝑒1, 𝑒2, 𝑒3) such that 

𝑒1  ×  𝑒2  = 𝑒3, 𝑒2  ×  𝑒3  = 𝑒1, 𝑒3  ×  𝑒1  = 𝑒2, and the cross product of a vector with itself is zero. 

 

∀𝑥, 𝑦, 𝑧 ∈ ℝ3; 𝑥 =∑𝑥𝑖𝑒𝑖 ,

3

𝑖=1

 𝑦 =∑𝑦𝑗𝑒𝑗

3

𝑖=1

  𝑎𝑛𝑑 𝑧 =∑𝑧𝑘𝑒𝑘;

3

𝑖=1

 

The Jacobi identity 

𝑥 ×  (𝑦 ×  𝑧) +  𝑦 ×  (𝑧 ×  𝑥) +  𝑧 ×  (𝑥 ×  𝑦) =  0                                      (2.3) 
is equivalent to 

∑𝑥𝑖𝑒𝑖

3

𝑖=1

 ×  (∑𝑦𝑗𝑒𝑗

3

𝑖=1

 ×  ∑𝑧𝑘𝑒𝑘

3

𝑖=1

) + ∑𝑦𝑗𝑒𝑗

3

𝑖=1

 ×  (∑𝑧𝑘𝑒𝑘

3

𝑖=1

× ∑𝑥𝑖𝑒𝑖

3

𝑖=1

) + ∑𝑧𝑘𝑒𝑘

3

𝑖=1

× (∑𝑥𝑖𝑒𝑖

3

𝑖=1

× ∑𝑦𝑗𝑒𝑗

3

𝑖=1

) =  0 

i.e: 

∑ 𝑥𝑖𝑦𝑗𝑧𝑘{𝑒𝑖  ×  (𝑒𝑗  ×  𝑒𝑘) + 𝑒𝑗  ×  (𝑒𝑘  ×  𝑒𝑖) + 𝑒𝑘  ×  (𝑒𝑖  ×  𝑒𝑗)}

3

𝑖,𝑗,𝑘=1

= 0  (2.4) 

Since the cross product is bilinear, we have to check whether the relation (2.2) holds. In fact, this relation is 

verified   ∀𝑥𝑖 , 𝑦𝑗 , 𝑧𝑘  𝑖𝑓𝑓 

 

𝑒𝑖  ×  (𝑒𝑗  ×  𝑒𝑘) + 𝑒𝑗  ×  (𝑒𝑘  ×  𝑒𝑖) + 𝑒𝑘  ×  (𝑒𝑖  ×  𝑒𝑗) = 0                               (2.5) 

Let us take 𝑒𝑖 , 𝑒𝑗, 𝑒𝑘   and suppose that they are all different. 

 

Then 𝑒𝑖 × 𝑒𝑗 = ± 𝑒𝑘   and so 𝑒𝑘  ×  (𝑒𝑖  ×  𝑒𝑗) = 0, and in fact all other ones are zero. 

Suppose now that all 𝑒𝑖, 𝑒𝑗 , 𝑒𝑘  are equal, then by the same argument all 𝑒𝑖 × (𝑒𝑖 × 𝑒𝑖) are zero. Suppose 

now two of them are equal. For instance 𝑖 = 𝑗, then one term vanishes and one is left with 𝑒𝑖  ×  (𝑒𝑗  ×  𝑒𝑘) +

 𝑒𝑗  ×  (𝑒𝑘  ×  𝑒𝑖). Using that 𝑒𝑗  ×  𝑒𝑘 = −𝑒𝑘  ×  𝑒𝑗, one sees that this is zero, and is done. 

The Jacobi identity is satisfied and therefore, the vector space ℝ3 together with the cross product is a Lie algebra. 

 
 

Example 2.2 If 𝑉 is a finite dimensional vector space over 𝔽, 𝐸𝑛𝑑 𝑉(the set of linear transformations 𝑉 →  𝑉) 

endowed with [𝑥, 𝑦]  =  𝑥𝑦 −  𝑦𝑥 is a Lie algebra over 𝔽. It is denoted by 𝑔𝑙(𝑉) and is called general linear 

algebra because it is closely associated to the general linear group 𝐺𝐿(𝑉), the group of all invertible 

endomorphisms of 𝑉. 
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Proof. Since 𝑔𝑙(𝑉) is an associative algebra over 𝔽, the bilinearity property is already satisfied and by definition 

of the bracket: [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 for any A and B in 𝑔𝑙(𝑉), the anticommutativity property holds. 

Let us check the Jacobi identity. 

∀𝐴, 𝐵, 𝐶 ∈  𝑔𝑙(𝑉); 

[𝐴, [𝐵, 𝐶]] +  [𝐵, [𝐶, 𝐴]] +  [𝐶, [𝐴, 𝐵]] = [𝐴, 𝐵𝐶 −  𝐶𝐵]  + [𝐵, 𝐶𝐴 −  𝐴𝐶]  + [𝐶, 𝐴𝐵 −  𝐵𝐴] 

= 𝐴(𝐵𝐶 − 𝐶𝐵) − (𝐵𝐶 − 𝐶𝐵)𝐴 + 𝐵(𝐶𝐴 − 𝐴𝐶) − (𝐶𝐴 − 𝐴𝐶)𝐵 + 𝐶(𝐴𝐵 − 𝐵𝐴) − (𝐴𝐵 − 𝐵𝐴)𝐶 
= 𝐴𝐵𝐶 − 𝐴𝐶𝐵 − 𝐵𝐶𝐴 + 𝐶𝐵𝐴 + 𝐵𝐶𝐴 − 𝐵𝐴𝐶 − 𝐶𝐴𝐵 + 𝐴𝐶𝐵 + 𝐶𝐴𝐵 − 𝐶𝐵𝐴 − 𝐴𝐵𝐶 + 𝐵𝐴𝐶 
= 0 
Therefore, 𝑔𝑙(𝑉) is a Lie algebra.  

 

Using matrices instead of linear transformations, we fix a basis for 𝑉 and then identify 𝑔𝑙(𝑉) to 𝑔𝑙(𝑛, 𝔽), a vector 

space whose basis consists of matrices 𝑒𝑖𝑗 for 1 ≤  𝑖, 𝑗 ≤  𝑛 having 1 in the position (𝑖, 𝑗) and 0 elsewhere. Since  

𝑒𝑖𝑗𝑒𝑘𝑙 = 𝛿𝑗𝑘𝑒𝑖𝑙, it follows that 

[𝑒𝑖𝑗 , 𝑒𝑘𝑙] = 𝛿𝑗𝑘𝑒𝑖𝑙 − 𝛿𝑙𝑖𝑒𝑘𝑗      (2.6) 

where 

𝛿𝑖𝑗 = {
1 𝑖𝑓 𝑖 = 𝑗
0 𝑖𝑓 𝑖 ≠ 𝑗

 

stands for Kronecker symbol. 

Example 2.3 The set of all traceless endomorphisms of 𝑉, denoted by 𝑠𝑙(𝑉) is a subalgebra of 𝑔𝑙(𝑉). It is named 

Special linear algebra because it is connected to 𝑆𝐿(𝑉), the special linear group of endomorphisms of 

determinant equal to one. 

Proposition 2.1   𝑠𝑙(𝑉) is a subalgebra of 𝑔𝑙(𝑉). 

Proof. One knows that the trace is a linear map. 

i.e For any 𝐴 and 𝐵 in 𝑔𝑙(𝑉) 𝑎𝑛𝑑 𝑎 𝑠𝑐𝑎𝑙𝑎𝑟 𝛼: 

𝑡𝑟(𝐴 +  𝐵) =  𝑡𝑟(𝐴) +  𝑡𝑟(𝐵)                                       (2.7) 

𝑡𝑟(𝛼𝐴)  =  𝛼𝑡𝑟(𝐴)                                                             (2.8) 

so 𝑠𝑙(𝑉) is a vector space. 

In addition, for any  𝐴 =  (𝑎𝑗
𝑖  )1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 𝐵 =  (𝑏𝑗

𝑖  )1 ≤ 𝑖, 𝑗 ≤ 𝑛 ; 

𝑡𝑟(𝐴𝐵) =  ∑∑𝑎𝑗
𝑘

𝑛

𝑘=1

𝑛

𝑗=1

𝑏𝑘
𝑗
  = ∑∑𝑎𝑘

𝑗

𝑛

𝑘=1

𝑛

𝑗=1

𝑏𝑗
𝑘  = ∑∑𝑎𝑘

𝑗

𝑛

𝑗=1

𝑛

𝑘=1

𝑏𝑗
𝑘  =  𝑡𝑟(𝐵𝐴) 

 

𝑡𝑟(𝐴𝐵) =  𝑡𝑟(𝐵𝐴)                                                                   (2.9) 

That is 

𝑡𝑟[𝐴, 𝐵] =  𝑡𝑟(𝐴𝐵 −  𝐵𝐴) =  𝑡𝑟(𝐴𝐵) −  𝑡𝑟(𝐵𝐴) =  0        (2.10) 

which shows that 𝑠𝑙(𝑉) is stabilized by the bracket; so it is an algebra and then a subalgebra of 𝑔𝑙(𝑉).  

For the same raisons, 𝑠𝑙(𝑛, 𝔽) is a subalgebra of 𝑔𝑙(𝑛, 𝔽) and in particular for 𝑛 = 2 and  

𝔽 = ℂ, 𝑠𝑙(2, ℂ) is a subalgebra of 𝑔𝑙(2, ℂ). A basis of 𝑠𝑙(𝑛, ℂ) is given by 𝑒𝑖𝑗  (𝑖 ≠ 𝑗) and 

 𝑒𝑖𝑖  −  𝑒𝑖+1,𝑖+1. For 𝑠𝑙(2, ℂ) it consists of 𝑋, 𝑌, 𝐻 where 𝑋 = (
0 1
0 0

) , 𝑌 = (
0 0
1 0

)  𝑎𝑛𝑑 𝐻 = (
1 0
0 −1

) 

The commutation relations are such that: 

[𝑋, 𝑌 ] =   𝐻, [𝑋, 𝐻] =  −2𝑋, [𝑌, 𝐻]  =  2𝑌 

and the Jacobi identity is satisfied. i.e 

 [[𝑋, 𝑌 ], 𝐻]  +  [[𝑌, 𝐻], 𝑋]  +  [[𝐻, 𝑋], 𝑌 ]  =  0 
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Thus 𝑠𝑙(2, ℂ) is a subalgebra. 

Example 2.4 This is an example of an abelian Lie algebra. Let 𝑉 be an 𝔽-vector space. Define the Lie bracket on 

𝑉 by [𝑥, 𝑦]  =  0 ∀𝑥, 𝑦 ∈  𝑉. To show that 𝑉 is a Lie algebra we can proceed as follows: Given that 

[𝑥, 𝑦]  =  0 ∀𝑥, 𝑦 ∈  𝑉, 

(𝑖)[𝑥, 𝑦]  =  −[𝑦, 𝑥]  =  0 

(𝑖𝑖)[𝑥, [𝑦, 𝑧]]  + [𝑦, [𝑧, 𝑥]]  +  [𝑧, [𝑥, 𝑦]]  =  0 

The Jacobi identity also is satisfied because of (𝑖) and we conclude that 𝑉 is a Lie algebra. 

Definition 2.2 Given a Lie algebra 𝐿, an ideal 𝐼 of 𝐿 is a vector subspace of 𝐿 such that 

[𝑥, 𝑦]  ∈  𝐼 for all 𝑥 ∈  𝐿,and 𝑦 ∈  𝐼. 

Definition 2.3 Given a Lie algebra 𝐿, a subspace 𝐾 of 𝐿 is called a subalgebra if 𝐾 itself is a Lie algebra with 

respect to the induced bracket from 𝐿. 

An ideal is always a subalgebra. By the following example, we realise that the converse is not always true. 

Example 2.5 One-dimensional abelian subalgebra of  𝑔𝑙(2, 𝔽) does not need necessarily to be an ideal. 

Taking  𝑈 ∈  𝑔𝑙(2, 𝐹), 𝑈 = (
1 0
0 −1

) , 𝑓𝑈 = (
𝑓 0
0 −𝑓

) ∈  𝔽𝑈, 𝑊 = (
0 𝑎
𝑏 0

)  𝑤𝑖𝑡ℎ 𝑎, 𝑏 ∈ 𝐹\{0} 

[𝑊, 𝑓𝑈] = (
0 −2𝑎𝑓
2𝑏𝑓 0

) ∉ 𝔽𝑈 

𝔽𝑈 is an abelian subalgebra but not an ideal of 𝑔𝑙(2, 𝔽). 

Definition 2.4 The center of a Lie algebra 𝐿 is 

𝑍(𝐿) =  {𝑥 ∈  𝐿 ∶  [𝑥, 𝑦] =  0 ∀𝑦 ∈  𝐿} 

If 𝑍(𝐿)  =  𝐿 then [x, y] = 0 for all 𝑥 ∈  𝐿 and 𝑦 ∈  𝐿. Then 𝐿 is an abelian Lie algebra. 

Definition 2.5 Let 𝐿 and 𝐿′ be Lie algebras. A linear map 

𝜌 ∶  𝐿 →  𝐿′ 

is a Lie algebra homomorphism if 

𝜌([𝑥, 𝑦])  =  [𝜌(𝑥), 𝜌(𝑦)] ∀𝑥, 𝑦 ∈  𝐿 
If the homomorphism ρ is bijective, i.e isomorphism, then 𝐿 and 𝐿′ are said to isomorphic Lie algebras. 

Example 2.6 The adjoint homomorphism is a good example of a Lie algebra homomorphism. Let 𝐿 be a Lie 

algebra. Define 𝑎𝑑 ∶  𝐿 →  𝑔𝑙(𝐿) by 𝑎𝑑𝑥  =  [𝑥, . ]; that is, (𝑎𝑑𝑥)(𝑦)  =  [𝑥, 𝑦] for 𝑦 ∈  𝐿. Then 𝑎𝑑 is a Lie 

algebra homomorphism. 

Proof. If L is a Lie algebra then 𝑔𝑙(𝐿) is a Lie algebra. The adjoint representation is such that: 

𝑎𝑑 ∶  𝑔 →  𝑔𝑙(𝐿) 

𝑥 → 𝑎𝑑𝑥(𝑦)  =  [𝑥, 𝑦] 

is a Lie algebra homomorphism if it is linear and if it preserves the Lie bracket. 

(i)For any scalars 𝛼 and 𝛽, and 𝑥, 𝑦 ∈  𝐿 

𝑎𝑑𝛼𝑥(𝛽𝑦)  =  [𝛼𝑥, 𝛽𝑦]  =  𝛼𝑥𝛽𝑦 −  𝛽𝑦𝛼𝑥 =  𝛼𝛽[𝑥, 𝑦] 
The bracket is bilinear. 

(ii)We need also to check if 

𝑎𝑑[𝑥,𝑦](𝑧)  =  [𝑎𝑑𝑥 , 𝑎𝑑𝑦](𝑧) ∀𝑧 ∈  𝐿. 

By definition 
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𝑎𝑑[𝑥,𝑦] (𝑧)  =  [[𝑥, 𝑦], 𝑧] 

and 

[𝑎𝑑𝑥 , 𝑎𝑑𝑦](𝑧)  = 𝑎𝑑𝑥𝑎𝑑𝑦(𝑧)  − 𝑎𝑑𝑦𝑎𝑑𝑥(𝑧) 

By Jacobi identity, 

[[𝑥, 𝑦], 𝑧]  =  [𝑥, [𝑦, 𝑧]]  −  [𝑦, [𝑥, 𝑧]] 

Therefore 

𝑎𝑑[𝑥, 𝑦] (𝑧)  =  [𝑎𝑑𝑥, 𝑎𝑑𝑦](𝑧) ∀𝑧 ∈  𝐿. 

The adjoint 𝑎𝑑, which is linear and preserves the bracket, is a Lie algebra homomorphism.∎ 

Proposition 2.2 Let 𝜌: 𝐿 →  𝐿′ be a Lie algebra homomorphism. Then 𝐾𝑒𝑟𝜌 is an ideal of 𝐿 and 𝐼𝑚 𝜌 is a 

subalgebra of 𝐿′ . 

Proof. (a) 

𝐾𝑒𝑟𝜌 =  {𝑥 ∈  𝐿 ∶  𝜌(𝑥)  =  0} 
 𝐾𝑒𝑟𝜌 is a vector subspace because ρ is a vector space homomorphism. i.e 

∀𝑥, 𝑦 ∈  𝐿, 𝜌[𝑥, 𝑦] =  [𝜌(𝑥), 𝜌(𝑦)]. 𝐼𝑓 𝑥 ∈  𝐾𝑒𝑟𝜌 𝑎𝑛𝑑 𝑦 ∈  𝐿, 
then 

𝜌[𝑥, 𝑦]  =  [𝜌(𝑥), 𝜌(𝑦)]  =  [0, 𝜌(𝑦)]  =  0 
because the bracket is bilinear. Thus, 

∀𝑥 ∈  𝐾𝑒𝑟𝜌, ∀ 𝑦 ∈  𝐿, [𝑥, 𝑦]  ∈  𝐾𝑒𝑟𝜌 

which means that 𝐾𝑒𝑟𝜌 is an ideal 

𝐾𝑒𝑟𝜌 =  𝑍(𝐿)  ⊂  𝐿 
reason why it is an Ideal of 𝐿. 

(b )𝐼𝑚𝜌 is a subalgebra of 𝐿′ . 

By definition, 𝐼𝑚𝜌 is a subalgebra if 

∀𝑥′, 𝑦′ ∈  𝐼𝑚𝜌, [𝑥′, 𝑦′] ∈  𝐼𝑚𝜌                                (2.12) 
If 𝑥′, 𝑦′ ∈ 𝐼𝑚𝜌; then ∃𝑥, 𝑦 ∈  𝐿 such that 𝑥′ = 𝜌(𝑥) and 𝑦′ =  𝜌(𝑦). 

[𝑥′, 𝑦′] =  [𝜌(𝑥), 𝜌(𝑦)] =  𝜌[𝑥, 𝑦] ∈  𝐼𝑚𝜌, 
since ρ is a homomorphism. 

The study of the structure of a given Lie algebra is done through its ideals. 

 

Properties used to classify Lie Algebras 

 

a. Simple Lie algebra 

Definition 2.6 A Lie algebra 𝐿 is called simple if it has no ideals except itself and {0} and if it is not abelian. If 

a Lie algebra L is simple, 

𝑍(𝐿) =  0 
and 𝐿 non abelian means that 

[𝐿, 𝐿] ≠  0 

 

Example 2.7 𝑠𝑙(2, ℂ)is simple. 

Proof. The Lie algebra 𝑠𝑙(2, ℂ) admits for basis 𝑋, 𝑌, 𝐻 such that 

[𝑋, 𝑌 ]  =  𝐻; [𝐻, 𝑋]  =  2𝑋; [𝐻, 𝑌 ]  =  −2𝑌 
𝑠𝑙(2, ℂ)is not abelian since  

[𝑠𝑙(2, ℂ), 𝑠𝑙(2, ℂ)] ≠ 0 
What we have to verify is the existence of 1 or 2 dimensional ideals in 𝑠𝑙(2, ℂ). 

Case1: One-dimensional ideal 
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If One-dimensional ideal exists in 𝑠𝑙(2, ℂ), it is generated by a nonzero vector 

𝑍 =  𝑎𝐻 + 𝑏𝑋 + 𝑐𝑌 
and for any  

𝑈 ∈  𝑠𝑙(2, ℂ), [𝑈, 𝑍]  =  𝜆𝑍 
Let us take 𝑈 =  𝐻 

[𝑎𝐻 +  𝑏𝑋 +  𝑐𝑌, 𝐻]  =  −2𝑏𝑋 +  2𝑐𝑌 
𝑎𝐻 + 𝑏𝑋 + 𝑐𝑌 and −2𝑏𝑋 +  2𝑐𝑌 are linearly dependent if and only 

if 𝑎 =  0 and |
𝑏 −2𝑏
𝑐 2𝑐

| = 0 

⟺ {
𝑎 = 0
4𝑏𝑐 = 0

 

⟺ {
𝑎 = 0                 
𝑏 = 0 𝑜𝑟 𝑐 = 0

 

Let us assume that 𝑐 = 0 and 𝑏 ≠ 0. Then 𝑍 =  𝑏𝑋, 𝑍 is a multiple of 𝑋. 

Let us take 𝑍 =  𝑋 and 𝑈 =  𝑌, [𝑋, 𝑌 ]  =  𝐻 is not a multiple of X.  

The case 𝑏 =  0 and 𝑐 ≠  0 leads to the same results which implies that there is no one-dimensional ideal in 

𝑠𝑙(2, ℂ). 

Case2 Two-dimensional ideal 

If a two-dimensional ideal  𝒈 exists in 𝑠𝑙(2, ℂ)  , let (𝑈1, 𝑈2) be a basis of 𝒈. Then [𝑈1, 𝑈2] ∈  𝒈. Let 𝑈3  ∈
𝑠𝑙(2, ℂ), 𝑈3 ∉ 𝒈. Then (𝑈1, 𝑈2, 𝑈3) is a basis of 𝑠𝑙(2, ℂ). Since 𝒈 is supposed to be an ideal, [𝑈1, 𝑈3] ∈  𝑔 and 

[𝑈2, 𝑈3] ∈  𝒈.  

Let us take 2 arbitrary vectors 𝑎𝑈1  +  𝑏𝑈2  +  𝑐𝑈3 and 𝛼𝑈1  +  𝛽𝑈2  +  𝛾𝑈3  

Their commutation is such that 

[𝑎𝑈1  +  𝑏𝑈2  +  𝑐𝑈3, 𝛼𝑈1  +  𝛽𝑈2  +  𝛾𝑈3] 

= (𝑎𝛽 − 𝑏𝛼)[𝑈1, 𝑈2] + (𝑎𝛾 − 𝑐𝛼) + [𝑈1, 𝑈3](𝑏𝛾 − 𝑐𝛽)[𝑈2, 𝑈3]⏟                                      
𝑁

 

𝑁 ∈  𝒈 because 𝒈 is an ideal. Since the Lie bracket of two arbitrary elements is in 𝒈, this means that  
[𝑠𝑙(2, ℂ), 𝑠𝑙(2, ℂ)] = 𝒈 ≠ 𝑠𝑙(2, ℂ)  which is a contradiction since 𝑋, 𝑌, 𝐻 is a basis of 𝑠𝑙(2, ℂ)  satisfying 

[𝑋, 𝑌 ]  =  𝐻; [𝑋, 𝐻]  =  −2𝑋; [𝑌, 𝐻]  =  2𝑌 

There is no one or two dimensional ideal in 𝑠𝑙(2, ℂ). Therefore 𝑠𝑙(2, ℂ)  is simple.∎ 

b. Solvable Lie algebra 

The definition of a solvable Lie algebra L is based on knowledge of its derived algebras  

(𝐿′ = [𝐿, 𝐿]). The derived series of L is the series with terms: 𝐿(0) = 𝐿, 𝐿(1) = 𝐿 ′ and 𝐿(𝑘)  = [𝐿(𝑘 − 1), 𝐿(𝑘 −
1)] 𝑓𝑜𝑟 𝑘 ≥  2. We say that 𝐿 is solvable if 𝐿(𝑛) = 0 for some 𝑛 ≥  1. Giving examples, abelian Lie algebras 

are solvable because abelian implies solvability. In this way 𝑠𝑙(2, ℂ)   is not solvable. 

Definition 2.7 A non-abelian Lie algebra 𝐿 is said to be semisimple if it has no non-zero solvable ideals. [2] 

Example 2.8    𝑠𝑙(2, ℂ) is an example of a semisimple Lie algebra while 𝑔𝑙(2, ℂ)  =  𝑠𝑙(2, ℂ) ⊕ ℝ𝐼 is an example 

of a non-semisimple Lie algebra since it has ℝ𝐼 as a non zero solvable ideal. 𝐼 is a unit matrix of order 2. 

 

Definition 2.8 

The map 

𝜅 ∶  𝐿 ×  𝐿 →  𝔽  

(𝑥, 𝑦) →  𝜅(𝑥, 𝑦)  =  𝑡𝑟((𝑎𝑑𝑥)(𝑎𝑑𝑦))𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 𝑖𝑛 𝐿 
is called the Killing form. 

The Killing form satisfies the following properties: For all 𝑥, 𝑦, 𝑧 ∈  𝐿 and 𝛼, 𝛽, ∈  𝔽 
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(1) 𝜅(𝛼𝑥 + 𝛽𝑦, 𝑧) = 𝛼𝜅(𝑥, 𝑧) + 𝛽𝜅(𝑦, 𝑧) 𝜅(𝑥, 𝛼𝑦 + 𝛽𝑧) = 𝛼𝜅(𝑥, 𝑦) + 𝛽𝜅(𝑥, 𝑧) (Bilinearity)  

(2) 𝜅(𝑥, 𝑦) = 𝜅(𝑦, 𝑥) (Symmetry)  

(3) 𝜅([𝑥, 𝑦], 𝑧)  = 𝜅(𝑥, [𝑦, 𝑧]) (Associativity)  

(4) 𝜅((𝑎𝑑𝑦)𝑥), 𝑧) + 𝜅(𝑥, (𝑎𝑑𝑦)𝑧) = 0 (Invariance of the Killing form under the adjoint action ) 

Theorem 2.1 (Cartan’s criterion of semisimplicity).  

A Lie algebra is semisimple iff the Killing form is non-degenerate.[11] 

Example 2.9 The Killing form defined on 𝑠𝑙(2, ℂ) is obtained as follows: 

𝑎𝑑𝑋 = (
0 −2 0
0 0 1
0 0 0

) , 𝑎𝑑𝐻 = (
2 0 0
0 0 0
0 0 −2

)𝑎𝑑𝑋 = (
0 0 0
−1 0 0
0 2 0

) 

The matrix elements of the Killing form are given by 

𝜅(𝑋, 𝑌 )  =  𝜅(𝑌, 𝑋)  =  4  
𝜅(𝐻, 𝐻)  =  0 
 𝜅(𝐻, 𝑋)  =  𝜅(𝑋, 𝐻)  =  𝜅(𝐻, 𝑌 )  =  𝜅𝑌, 𝐻 =  𝜅(𝑋, 𝑋)  =  𝜅(𝑌, 𝑌 )  =  0 

so the Killing form will be represented by the matrix 

𝐾 =  (

0 0 4 0
0 8 0 0
4 0 0 0
0 0 0 0

) 

and it is nondegenerate since 𝑑𝑒𝑡(𝐾) ≠ 0 Thus 𝑠𝑙(2, 𝐶) is semisimple. 

c. Nilpotent Lie algebra 

A Lie algebra 𝐿 such that 𝐿0 =  𝐿, 𝐿1  =  [𝐿, 𝐿], 𝐿2 =  [𝐿, 𝐿1 ], . . . , 𝐿𝑖 = [𝐿, 𝐿𝑖−1 ] is nilpotent if 𝐿𝑛 = 0 for some 

𝑛 ∈  ℕ. Consequently, all abelian Lie algebras are nilpotent . 

The reverse is not necessarily true. Taking the three-dimensional Heisenberg Lie algebra, denoted as ℎ(3), 
which has a basis {𝑚, 𝑛, 𝑝} and Lie brackets defined by 

[𝑚, 𝑛]  =  𝑧, [𝑚, 𝑝]  =  0, [𝑛, 𝑝]  =  0 

Proposition 2.3 Let 𝐿 be a Lie algebra 

a) If 𝐿 is nilpotent, then all subalgebra and homomorphic images of 𝐿 are nilpotent 

b) If 𝐿/𝑍(𝐿) is nilpotent, then 𝐿 is nilpotent  

c) If 𝐿 is nilpotent and non zero, then 𝑍(𝐿)  ≠ 0 [1] 

 

Jordan-Chevalley decomposition 

Definition 2.10 Let V be a finite dimensional complex vector space and 𝑓 ∶  𝑉 →  𝑉 a complex linear map. Then 

a Jordan decomposition of 𝑓 is an expression 𝑓 =  𝑓1  +  𝑓2, where 𝑓1, 𝑓2: 𝑉 ⟶ 𝑉 are complex linear maps such 

that 𝑓1 is diagonalizable and 𝑓2 is nilpotent and such that 𝑓1o𝑓2 = 𝑓2o𝑓1.[8] 

Jordan-Chevalley decomposition expresses a linear operator f as a direct sum of its commuting 

semisimple and nilpotent parts. Let us consider a such 𝑓1 and 𝑓2 in 𝐸𝑛𝑑(𝑉 ) with 𝑉 a finite dimensional vector 

space. 𝑓1 is semisimple if the roots of its minimal polynomial over 𝔽 are all distinct. i.e the operator 𝑓1 is 

semisimple if it is diagonalizable over algebraically closed field 𝔽 . An operator 𝑓2 is nilpotent if 𝑓2
𝑛= 0 for some 

n. In matrix form, the Jordan decomposition of an endomorphism 𝑓 is given by: 

𝑓 = (

𝑎 0 ⋯ 0
0 𝑎 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 0 ⋯ 𝑎

)

⏟          
𝑓1

+(

0 1 ⋯ 0
0 0 ⋱ ⋮
0 ⋱ ⋱ 1
0 0 ⋯ 0

)

⏟          
𝑓2
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III. Lie algebra and finite dimensional representations 
Module 

Let 𝐿 be a Lie algebra over the field 𝔽. A vector space 𝑉 endowed with an operation  

𝐿 ×  𝑉 →  𝑉 (denoted(𝑥, 𝑣)  →  𝑥. 𝑣 𝑜𝑟 𝑗𝑢𝑠𝑡 𝑥𝑣) is called an 𝐿 − module if the following properties are satisfied: 

1. (𝑎𝑥 +  𝑏𝑦). 𝑣 =  𝑎(𝑥. 𝑣)  +  𝑏(𝑦. 𝑣) 
2. 𝑥. (𝑎𝑣 +  𝑏𝑤)  =  𝑎(𝑥. 𝑣)  +  𝑏. (𝑥. 𝑤)  
3. [𝑥, 𝑦]. 𝑣 =  𝑥𝑦. 𝑣 −  𝑦𝑥. 𝑣 (𝑥, 𝑦 ∈  𝐿;  𝑣, 𝑤 ∈  𝑉 𝑎𝑛𝑑 𝑎, 𝑏 𝑎𝑟𝑒 𝑠𝑐𝑎𝑙𝑎𝑟𝑠) [1] 

For example; if 𝜑 ∶  𝐿 →  𝑔𝑙(𝑉 ) is a representation of 𝐿 over 𝑉, then 𝑉 is an 𝐿 −module by the action 𝑥. 𝑣 =
 𝜑(𝑥)(𝑣) 

An 𝐿 −module 𝑉 is said to be 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 if its submodules are only itself and the trivial submodule Ο. It is 

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑙𝑦 𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 if it is a direct sum of irreducible L-submodules. 

It is noticed that a zero-dimension vector space is not considered as an irreducible L-module and a  

1-dimensional vector space on which acts 𝐿 is irreducible 𝐿 −module. 

Theorem 3.1 Weyl’s Theorem 

If 𝜌 ∶  𝐿 →  𝑔𝑙(𝑉 ) is a (finite dimensional) representation of a semisimple Lie algebra. Then ρ is completely 

reducible. [1] 

3.2 Irreducible representations of 𝒔𝒍(𝟐, ℂ) 

The 3 dimensional 𝑠𝑙(2, ℂ) has for basis 

𝑋 = (
0 1
0 0

) , 𝑌 = (
0 0
1 0

)  𝑎𝑛𝑑 𝐻 = (
1 0
0 −1

) 

Satisfying: 

[𝑋, 𝑌 ] =   𝐻, [𝑋, 𝐻] =  −2𝑋 𝑎𝑛𝑑 [𝑌, 𝐻]  =  2𝑌 

Let 𝑉 be an arbitrary 𝐿-module. Given that 𝐻 is semisimple, its action on 𝑉 is diagonalizable and 𝑉 can be written 

as a direct sum of eigenspaces 

𝑉𝜆  =  {𝑣|𝐻. 𝑣 =  𝜆𝑣;  𝜆 ∈ ℂ} 

𝐹𝑜𝑟 𝑉𝜆  ≠ 0, 𝜆 is a weight of 𝐻 and 𝑉𝜆 is called a weight space. A weight of a representation is a generalization 

of the notion of an eigenvalue, and the corresponding eigenspace is called a weight space. 

Lemma 3.1 If 𝑣 ∈ 𝑉𝜆 then 𝑋. 𝑣 ∈  𝑉𝜆+2 and 𝑌. 𝑣 ∈  𝑉𝜆−2 

Proof. 𝐻. (𝑋. 𝑣) =  𝑋. 𝐻(𝑣) + [𝐻, 𝑋]. 𝑣 =  𝜆𝑋(𝑣) +  2𝑋(𝑣) =  (𝜆 + 2)𝑋(𝑣) ∈  𝑉𝜆+2 

𝑎𝑛𝑑 𝑓𝑜𝑟 𝑌; 

𝐻. 𝑌. (𝑣)  =  𝑌. 𝐻(𝑣)  +  [𝐻, 𝑌 ](𝑣)  =  𝜆𝑌 (𝑣)  −  2𝑌 (𝑣)  =  (𝜆 −  2)𝑌 (𝑣)  ∈  𝑉𝜆−2∎ 

3.3 Classification of all finite-dimensional modules of 𝒔𝒍(𝟐, ℂ) 

In the previous sections, it has been shown that 𝑠𝑙(2, ℂ)is semi simple; and according to the Weyl’s theorem, all 

finite-dimensional 𝑠𝑙(2, ℂ) modules are reducible. Let 𝜆 ∈  {0, 1, 2, 3, . . . } and let ℂ[𝑧1, 𝑧2] be the polynomial ring 

over ℂ in 𝑧1 𝑎𝑛𝑑  𝑧2. 

𝑉𝜆 ∶=  𝑆𝑝𝑎𝑛(𝑧1
𝜆 , 𝑧1

𝜆−1  𝑧2, . . . , 𝑧1𝑧2
𝜆−1 , 𝑧2

𝜆 ) 

is a ℂ -vector space of homogeneous polynomial functions of degree λ. The action on 𝑉𝜆 is described as follows: 

{
𝑋. 𝑧1 = 𝑧2
𝑋. 𝑧2 = 0

, {
𝑌. 𝑧1 = 0
𝑌. 𝑧2 =

, {
𝐻. 𝑧1 = 𝑧1
𝐻. 𝑧2 = −𝑧2

 

Using 𝑋, 𝑌 and 𝐻 as derivation operators, we have the following scenario: 

𝑋. 𝑧1
𝜆 = 𝜆𝑧1

𝜆−1  𝑧2 

𝑋. (𝑧1
𝜆−1  𝑧2) = (𝜆 − 1)𝑧1

𝜆−2𝑧2
2 

𝑋.  (𝑧1
𝜆−2𝑧2

2) = (𝜆 − 2)𝑧1
𝜆−3𝑧2

3 
⋮ 
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𝑋. (𝑧1𝑧2
𝜆−1) = 𝑧2

𝜆 

𝑋. 𝑧2
𝜆 = 0 

𝑌. 𝑧2
𝜆 = 𝜆𝑧1𝑧2

𝜆−1 

𝑌. (𝑧1𝑧2
𝜆−1  ) = (𝜆 − 1)𝑧1

2𝑧2
𝜆−2 

 𝑌. (𝑧1
2𝑧2
𝜆−2  ) = (𝜆 − 2)𝑧1

3𝑧2
𝜆−3 

⋮ 

𝑌. (𝑧1
𝜆−1𝑧2) = 𝑧1

𝜆 
𝑌. (𝑧1

𝜆) = 0 

𝐻. 𝑧1
𝜆 = 𝜆𝑧1

𝜆−1  𝑧2 

𝐻. (𝑧1
𝜆−1  𝑧2) = (𝜆 − 2)𝑧1

𝜆−1𝑧2 

𝐻.  (𝑧1
𝜆−2𝑧2

2) = (𝜆 − 4)𝑧1
𝜆−2𝑧2

2 
⋮ 

𝐻. (𝑧1𝑧2
𝜆−1) = (2 − 𝜆)𝑧1𝑧2

𝜆 

𝐻. 𝑧2
𝜆 = −𝜆𝑧2

𝜆 
Corollary 3.2 All eigenvalues of 𝐻 are integers and each one occurs along with its negative. 

Proposition 3.1 Let 𝑉 be a finite dimensional 𝑠𝑙(2, ℂ) −module then there exists an eigenvector 𝑤 ∈ 𝑉 for 𝐻 

such that 𝑋.𝑤 =  0. 

Proof. Since we work over an algebraically closed field ℂ the linear map, 

𝐻 ∶  𝑉 →  𝑉has at least one eigenvalue and hence at least one eigenvector. Let 𝐻. 𝑣 =  𝜆𝑣 and consider the 

vectors 

𝑣;  𝑋. 𝑣; 𝑋2 . 𝑣;  . . ., 

By the Proposition 3.1; if they are non zero, they constitute an infinite sequence of eigenvectors of 𝐻 with 

different eigenvalues. However 𝑉 is finite dimensional so these cannot all be non-zero, hence there exists a 𝑘 ≥
 0 such that 𝑋2. 𝑣 ≠  0 and 𝑋𝑘+1 . 𝑣 =  0. Setting 𝑤 =  𝑋𝑘. 𝑣 we have 

𝐻.𝑤 =  (𝜆 +  2𝑘)𝑤 
and 

𝑋.𝑤 =  0∎ 

Proposition 3.2 For all 𝜆 ∈ {0, 1, 2, 3, . . . }, the module 𝑉𝜆 is irreducible. 

Proof. Assume 0 ⊂  𝑊 ⊆  𝑉𝜆 is an invariant non-zero subspace under the action of 𝑠𝑙(2, ℂ). The endomorphism 

of 𝑊 induced by the action of 𝐻 has an eigenvalue 𝜆 with a corresponding non-zero eigenvector 𝑤 ∈  𝑊; i.e 

𝐻𝑤 =  𝜆𝑤. Since H has 1-dimensional eigenspaces spanned by the monomials 

{𝑧1
𝜆 , 𝑧1

𝜆−1  𝑧2, . . . , 𝑧1𝑧2
𝜆−1 , 𝑧2

𝜆 } 

The vector 𝑤 is a scalar multiple of one of these. The subspace 𝑊 contains all such monomials since successive 

applications of 𝑋 and 𝑌 map one to some non-zero scalar multiple of every other one. Thus 

𝑊 =  𝑉𝜆 
which prove that 𝑉𝜆 is irreducible.∎ 

Briefly, let 𝐿 =  𝑠𝑙(2, ℂ)and 𝑉 an irreducible 𝐿 −module of dimension 𝜆 +  1. Consider a maximal vector 𝑣0  ∈
 𝑉𝜆 with assumption that 𝑣−1 = 0 and 𝑣𝑖 = (1/𝑖!)𝑌

𝑖  𝑣0(𝑖 ≥  0). 

Then H has eigenvalues 

{𝜆, 𝜆 − 2, 𝜆 − 4,⋯ , −𝜆}; 
𝑉 has for basis 

{𝑣0, 𝑣1, 𝑣2. ⋯ , 𝑣𝑛} 
and the following lemma holds. 

Lemma 3.2 (a) 𝐻𝑣𝑖 = (𝜆 −  2𝑖)𝑣𝑖  
 (b) 𝑌𝑣𝑖  =  (𝑖 +  1)𝑣𝑖+1 

(c) 𝑋𝑣𝑖  =  (𝜆 −  𝑖 +  1)𝑣𝑖−1(𝑖 ≥  0) 
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Theorem 3.3 Let 𝑉 an irreducible module for 𝐿.  
Relative to 𝐻, 𝑉 is a direct sum of weight spaces 𝑉𝜇 , 𝜇 =  𝜆, 𝜆 − 2,⋯ , −(𝜆 − 2), −𝜆 where 𝜆 + 1 =  𝑑𝑖𝑚𝑉 and 

𝑑𝑖𝑚𝑉𝜇 = 1 for each 𝜇 (𝑖𝑓 𝑉𝜇 ≠ 0) . 

(a) 𝑉 has (up to nonzero scalar multiples) a unique maximal vector, whose weight (called the highest weight 

of 𝑉 )is 𝜆. 

(b) The action of L on 𝑉 is given explicitly by the formulas (a), (b) and (c) in the above lemma, if the basis 

is chosen in the prescribed fashion. In particular, there exists at most one irreducible 𝐿-module (up to 

isomorphism)of each possible dimension 𝜆 +  1, 𝜆 ≥  0 [1] 

 

IV. Conclusion 
The purpose of this work was to make a description of the Lie algebra 𝑠𝑙(2, ℂ)and its finite dimensional 

representations. From proposed definitions, propositions, theorems and corresponding proofs, the present work 

established what is fundamental for a better understanding of a Lie algebra. We defined a module and proved that 

all finite dimensional 𝑠𝑙(2, ℂ)modules are irreducible. Thus, we have classified all modules of 𝑠𝑙(2, ℂ). 
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