A Study Of Submanifolds In A Contact Riemannian Manifold

Dr. Anshu Chauhan

Assistant Professor, Department of Mathematics, Sardar Bhagat Singh Government College, Dhaka, Powayan, Shahjahanpur (U.P.)

ABSTRACT

In this chapter, we investigate non-invariant submanifolds of almost para-contact Riemannian manifolds, we establish a necessary and sufficient condition for a sub manifold immersed in an almost Para contact Riemannian manifold to be invariant and show further properties of invariant sub manifolds in almost para-contact Riemannian manifolds.

Now we shall recollect an almost r-para-contact Riemannian manifold and treat the relations between this manifold and an almost product Riemannian manifold. Next, we study an invariant sub manifold immersed in an almost r-para contact Riemannian manifold and show that there exist the invariant sub manifolds of the three types in the almost r-para contact Riemannian manifold.

The purpose of the present note is to give a necessary and sufficient condition for a sub manifold M^3 of a conformally flat space to be conformally flat.

In this note, we generalize this result to K-contact Riemannian manifold and also study an invariant submani fold V immersed in almost paracontact Riemannian manifold to show that the V admits either an almost paracontact Riemannian structure or an almost product Riemannian structure (ϕ ,g) excepting the case where ϕ is trivial.

Date of Submission: 14-07-2023	Date of Acceptance: 24-07-2023

I. An Almost Para-contact Riemannian Manifold:

Let \overline{M} be an m-dimensional manifold. If there exist on \overline{M} a (1,1) tensor field φ a vector field ξ and a 1-form η satisfying

(1.1)
$$\eta(\xi) = 1, \qquad \phi^2 = I - \eta \otimes \xi,$$

where I is the identity, then \overline{M} is said to be an almost para contact manifold [3]. In the almost para contact manifold, the following relations hold good.

(1.2)
$$\varphi \xi = 0,$$
 $\eta \circ \varphi = 0,$ $rank (\varphi) = m-1$

Every almost para contact manifold has a positive definite Riemannian metric G such that

(1.3)
$$\eta(X) = G(\xi, X),$$

(1.4)
$$G(\varphi \overline{X}, \varphi \overline{Y}) = G(\overline{X}, \overline{Y}) - \eta(\overline{X})\eta(\overline{Y}), \overline{X}, \overline{Y} \in \mathcal{X} \mathbf{O} \mathcal{I} \mathbf{\zeta}$$

where $\mathcal{X}(\overline{M})$ denotes the set of differentiable vector fields on \overline{M} . In this case, we say that \overline{M} has an almost para contact metric structure (φ, ξ, η, G) and \overline{M} is said to be an almost para contact Riemannian manifold. Form (1.3) and (1.4), we can easily get the relation

(1.5)
$$G(\varphi \,\overline{X}, \overline{y}) = G(\overline{X}, \varphi \,\overline{Y})$$

Here after, we assume that \overline{M} is an almost para contact Riemannian manifold with a structure (φ, ξ , η, G). It is clear that the eigen values of the matrix (φ) are 0 and ± 1 , where the multiplicity of 0 is equal to 1.

Let *M* be an n-dimensional differentiable manifold (S = m - n) and suppose that *M* is immersed in the almost para contact Riemannian manifold \overline{M} by the immersion *i*: $M \to \overline{M}$. We denote by i_* the differential of the immersion *i*. The induced Riemannian metric *g* of *M* is given by $g(X,Y) = G(i_*X, i_*Y), \qquad X, Y \in \mathcal{X}$ (*M*)

where $\mathcal{X}(M)$ is the set differentiable vector fields on M. We denote by $T_p(M)$ the tangent space of M at $P \in M$, by $T_P(M)^{\perp}$ the normal space of M at P and by $\{N_1, .N_2, ..., N_S\}$ an orthonormal basis of the normal

space $T_P(M)^{\perp}$. If $\phi T_P(M) \subset T_P(M)$ for any point $P \in M$, then *M* is called an invariant submanifold. If $\phi T_P(M) \subset T_P(M)^{\perp}$ for any point $P \in M$, then *M* is called an anti-invariant submanifold.

The transform $\varphi i_* X$ of $X \in T_P(M)$ by φ and φN_i of N_i by φ can be respectively written in the next forms:

(1.6)
$$\varphi i_* X = i_* \, \psi X + \sum_{i=1}^S u_i(X) \, N_i, \quad X \in \mathcal{X}(M),$$

(1.7)
$$\varphi N_i = i_* U_i + \sum_{j=1}^S \lambda_{ji} N_j,$$

where ψ , u_i , U_i and λ_{ji} are respectively a (1,1)-tensor, 1-forms, vector field and functions on M and Latin indices take values 1,2,...,S. And the vector field ξ can be expressed as follows:

(1.8)
$$\xi = i_* V + \sum_{i=1}^{S} \alpha_i N_i,$$

where V and α_i are respectively a vector field and functions on M, from these equations we have [6].

(1.9)

$$g (\psi X, Y) = g (X, \psi Y)$$

$$u_i (X) = g (U_i, X), \qquad \lambda_{ii} = \lambda_{ii}$$

If M is an invariant sub manifold, then we have $U_i = 0$. However, in the paper, we treat mainly a non-invariant sub manifold.

II. Sub Manifolds of an Almost Para Contact Riemannian Manifold Satisfying $\overline{\nabla}_{i,v} \phi = 0$:

Let M be a sub manifold of an almost para contact Riemannian manifold \overline{M} with a structure (φ, ξ, η, G). Now we suppose that $\overline{\nabla}_{i,x} \varphi = 0$ holds good along *M*. then from (a) and (b)

(a)
$$\mathbf{\mathfrak{S}}_{i^*x} \varphi \mathbf{h}_{i^*x} = i_* \left\{ (\nabla_X \psi) Y - \sum_i u_i(y) H_i X - \sum_i h_i(X, y) U_i \right\}$$

+ $\sum_i \mathbf{\mathfrak{S}}_{i^*x} (X, \psi y) + (\nabla_X u_i)(y) - \sum_i \mu_{ij}(X) u_j(y) - \sum_j \lambda_{ij} h_j(X, Y) \mathbf{h}_{ij}(X, Y)$

we have

(2.1)
$$\mathbf{\mathfrak{O}}_{X} \Psi \mathbf{\mathfrak{G}} - \sum_{i} u_{i}(y) H_{i} X - \sum_{i} h_{i}(X, Y) U_{i} = 0,$$

(2.2)
$$h_{j}(X, U_{i}) + h_{i}(X, U_{j}) + \nabla_{X} \lambda_{ij} + \sum_{k} \lambda_{ik} \mu_{kj}(X) + \sum_{k} \lambda_{jk} \mu_{ki}(X) = 0$$

from (2.1), we know that if *M* is totally geodesic, then an equation $\nabla_X \psi = 0$ holds good. Conversely, we have the following theorem

Theorem 2.1:

Let \underline{M} be an almost para contact Riemannian manifold with a structure (φ, ξ, η, G) and M a sub manifold of \overline{M} satisfying $\overline{\nabla}_{i_x X} \varphi = 0$, if U_i (*i*=1,2,....,*S*) is linearly independent and $\nabla_X \psi = 0$, then M is totally geodesic.

Proof:

If
$$\nabla_X \psi = 0$$
, then we have from (2.1)

$$\sum_i u_i(Y) H_i X + \sum_i h_i(X, Y) U_i = 0.$$
from which,

$$\sum_i u_i(Y) h_i(X, Z) + \sum_i u_i(Z) h_i(X, Y) = 0, \quad X, Y, Z \in \mathcal{X}(M)$$
that is

$$\sum_{i} u_i(Y) h_i(X,Z) = -\sum_{i} u_i(Z) h_i(X,Y)$$

Thus, we know that $\sum_{i} u_i(Y) h_i(X,Z)$ is symmetric and at the same time skew symmetric in *X*,*Y*. Therefore we have $\sum_{i} u_i(Y) h_i(X,Z) = 0$ and consequently we get $h_i(X,Z) = 0$ because $U_i(i=1,2,...,S)$ are linearly independent. Let $\{e_1,e_2,...,e_n\}$ be an orthonormal basis of $T_P(M)$ at any point $P \in M$. Then a trace of the matrix (ψ) is given by an equation

$$T_r(\psi) = \sum_{\lambda=1}^n g(\psi e_{\lambda}, e_{\lambda}),$$

where Greek indices takes values 1,2,....,*n*. **Theorem 2.2:**

 $\nabla_X T_r(\psi) = T_r(\nabla_X \psi),$ **Proof:**

$$\nabla_{X}T_{r}(\psi) = \nabla_{X}\sum_{\lambda}g(\psi e_{\lambda}, e_{\lambda})$$

$$= \sum_{\lambda} \bigcap \nabla_{X}\psi \mathcal{Q}, e_{\lambda} + 2g(\psi e_{\lambda}, \nabla_{X}e_{\lambda}) \Gamma$$

$$= T_{r}(\nabla_{X}\psi) + 2\sum_{\lambda}g(\psi e_{\lambda}, \nabla_{X}e_{\lambda}).$$

Now we get

$$\psi e_{\lambda} = \sum_{\mu} f_{\lambda\mu} e_{\mu}, \qquad \nabla_{\mathbf{X}} e_{\lambda} = \sum_{\mu} l_{\lambda\mu} e_{\mu}.$$

Then we can see easily that $f_{\lambda\mu} = f_{\mu\lambda}$, $l_{\lambda\mu} + l_{\mu\lambda} = 0$ hold good. Therefore

$$\sum_{\lambda} g(\psi e_{\lambda}, \nabla_{\mathbf{X}} e_{\lambda}) = \sum_{\lambda} g \sum_{\mu} f_{\lambda\mu} e_{\mu}, \sum_{V} l_{\lambda V} e_{V} \bigwedge_{\mu} \sum_{\lambda} \sum_{\mu} \sum_{V} f_{\lambda\mu} l_{\lambda V} \delta_{\mu V} = \sum_{\lambda} \sum_{\mu} f_{\lambda\mu} l_{\lambda\mu} = 0$$

thus we get $\nabla_{\mathbf{X}} T_{r}(\psi) = T_{r}(\nabla_{\mathbf{X}} \psi).$

III. Submanifolds of a P-Sasakian Manifold:

Let \overline{M} be an m-dimensional Riemannian manifold, G be a positive definite metric and ∇ be the operator of Covariant differentiation. We suppose that there exists on \overline{M} a vector field ξ and a 1-form η satisfying.

(3.1)
$$\eta(\xi) = 1,$$
 $\eta(\overline{X}) = G(\xi, \overline{X}),$ $\overline{X} \in \mathfrak{X}(\overline{M})$
when equations,
(3.2) $G(\overline{\nabla}_{\overline{X}}\xi, \overline{Y}) = G(\overline{\nabla}_{\overline{y}}\xi, \overline{X}),$ $\overline{X}, \overline{Y} \in \mathfrak{X}(\overline{M}),$

$$\overline{\nabla}_{X}\overline{\nabla}_{y}\xi - \overline{\nabla}_{z}\xi = -G(\overline{X},\overline{Y})\xi - G(\xi,\overline{Y})\overline{X} + 2\eta(\overline{X})\eta(\overline{Y})\xi,$$

Where $Z = \nabla_{\overline{X}} Y$, holds good, \overline{M} is said to be a P-Sasakian mani fold. If we suppose that φ is a (1,1) tensor field, which represents a linear mapping : $\mathcal{X}(\overline{M}) \in \overline{X} \to \overline{\nabla}_{\overline{X}} \xi$, that is,

(3.4)
$$\qquad \qquad \varphi \overline{X} = \overline{\nabla}_{\overline{X}} \xi,$$

then, equation
$$(3.2)$$
 and (3.3) become

(3.5)
$$G(\varphi X, Y) = G(X, \varphi Y),$$

(3.6)

$$\mathbf{\nabla}_{\overline{X}} \boldsymbol{\varphi} \, \mathbf{\widehat{N}} = -G(\overline{X}, \overline{Y})\boldsymbol{\xi} - G(\boldsymbol{\xi}, \overline{Y})\overline{X} + 2\eta(\overline{X})\eta(\overline{Y})\boldsymbol{\xi}$$
$$= -\mathbf{\Pi}_{\overline{X}} + \eta(\overline{X})\boldsymbol{\xi} \,\mathbf{\Gamma}_{\eta}(\overline{Y}) + \mathbf{\Pi}_{\overline{Y}} \mathbf{G}(\overline{X}, \overline{Y}) + \eta(\overline{X})\eta(\overline{Y}) \,\mathbf{\Gamma}_{\xi}$$

respectively, [4]. Differentiating η (ξ)=1 covariantly, we have $\varphi \xi$ =0. Further more, differentiating this equation covariantly, we get $\varphi^2 \overline{X} = \overline{X} - \eta(\overline{X})\xi$, from which we have (1.4)

Theorem 3.1:

Let \overline{M} be a P-Sasakian manifold admitting a vector filed ξ and a 1-form η which satisfy (3.1). If we denote by $\varphi a(1,1)$ tensor field which represents a linear mapping : $\mathcal{X} \overline{M} \ni \overline{X} \mapsto \overline{\nabla}_X \xi$, then (φ,ξ,η,G) is an almost para contact metric structure.

Hereafter, in the P-Sasakian manifold \overline{M} Let M be a sub-manifold of dimension n (m - n=S) immersed in the P-Sasakian manifold \overline{M} and g be the induced metric. from (3.4) and (1.6), we have $\overline{\nabla}_{i_*X}\xi = i_*\psi X + \sum_i u_i(X)N_i,$ (3.7)

Therefore from,

$$\overline{\nabla}_{i_*X}\xi = i_*(\nabla_X V - \sum_i \alpha_i H_i X) + \sum_j \mathbf{P}(X, V) + \nabla_X \alpha_j + \sum_i \alpha_i \mu_{ij}(X) \mathbf{W}$$

we get

(3.8)
$$\psi X = \nabla_X V - \sum_i \alpha_i H_i X, \qquad X \in \mathcal{X}(M),$$

(3.9)
$$u_j(X) = h_j(X,V) + \nabla_X \alpha_j + \sum_i \alpha_i \, \mu_{ij}(X).$$

Making use of (3.9), we have

Theorem 3.2:

Let *M* be sub manifold of an almost para contact Riemannian manifold \overline{M} with a structure (φ, ξ, η, G) satisfying (3.4). If M is totally geodesic and ξ is tangent to M, then M is invariant. from (3.6) we have.

$$\mathbf{\mathfrak{G}}_{i*X} \mathbf{\varphi} \mathbf{\hat{h}}_{i}Y = -G(i_*X, i_*Y)\xi - \eta(i_*Y)i_*X + 2\eta(i_*X)\eta(i_*Y)\xi$$

= $i_*\mathbf{k}g(X, Y)V - \nu(Y)X + 2\nu(X)\nu(Y)V\mathbf{p}\sum_i \alpha_i\mathbf{k}g(X, Y) + 2\nu(X)\nu(Y)\mathbf{p}V_i$

therefore from

we get

(3.10) $\mathfrak{O}_X \psi \mathfrak{O} - \sum_i u_i(Y) H_i X - \sum_i h_i(X,Y) U_i = -g(X,Y) V - g(V,Y) X + 2v(X) v(Y) V.$ Similarly, because we have from (3.6)

$$\mathfrak{F}_{i*X} \varphi \mathbf{N}_i = i_* \alpha_i \mathbf{K} X + 2\nu(X) V \mathbf{P} 2\sum_i \alpha_i \alpha_j \nu(X) N_j,$$

We find

$$(3.11) h_j(X, U_i) + h_i(X, U_j) + \nabla_X \lambda_{ij} + \sum_k \lambda_{ik} \mu_{kj}(X) + \sum_k \lambda_{jk} \mu_{ki}(X) = 2\alpha_i \alpha_j v(X)$$

by

$$\boldsymbol{\widehat{\nabla}}_{i^*X} \boldsymbol{\varphi} \, \boldsymbol{\widehat{N}}_i = i_* \, \boldsymbol{\widehat{\boldsymbol{\varphi}}}_X U_i + \boldsymbol{\psi} H_i X - \sum_j \mu_{ij}(X) U_j - \sum_j \lambda_{ij} H_j X \, \boldsymbol{\widehat{\boldsymbol{\psi}}}$$
$$+ \sum_j \left\{ h_j(X, U_i) + h_i(X, U_j) + \nabla_X \lambda_{ij} + \sum_k \lambda_{ik} \mu_{kj}(X) + \sum_k \lambda_{jk} \mu_{ki}(X) \right\} N_j$$
Now, we put
(3.12)
$$\boldsymbol{\widetilde{\boldsymbol{\psi}}}(X, Y) = \boldsymbol{\widehat{\boldsymbol{\varphi}}}_X \boldsymbol{\psi} \, \boldsymbol{\widehat{\boldsymbol{\Theta}}} - \boldsymbol{K}_g(X, Y) V - g(V, Y) X + 2v(X) v(Y) V$$

 $\widetilde{\psi}(X,Y) = \bigotimes_{X} \psi \bigotimes_{Y} - \mathbf{k} g(X,Y)V - g(V,Y)X + 2v(X)v(Y)V \mathbf{k}$ then from (3.10) we have

(3.13)
$$\widetilde{\psi}(X,Y) = \sum_{i} u_i(Y) H_i X + \sum_{i} h_i(X,Y) U_i$$

When $\widetilde{\psi}(X, Y) = 0$ we have the following theorem:

Theorem 3.3:

Let \overline{M} be a p-Sasakian manifold with a structure (φ, ξ, η, G), M be a sub-manifold immersed in \overline{M} and ξ be not tangent to M. If U_i (*i*=1,2,....,*S*) are linearly independent and

(3.14) $(\nabla_X \psi) Y = -g(X,Y) V - g(V,Y) X + 2v(X) v(Y) V.$

Then *M* is totally geodesic

Proof :

From (3.13) and (3.14) we have

 $\sum_{i} u_i(Y)H_i X + \sum_{i} h_i(X,Y)U_i = 0,$

From which, we find $h_i(X,Y) = 0$ (See proof of theorem 2.1)

Note :

When $\nabla_X \alpha_j + \sum_i \alpha_i \mu_{ij}(X) = 0$, If *M* is totally geodesic, then we have $u_j(X)=0$ by virtue of (3.9) therefore in this case, theorem (3.3) is not true.

IV. Submanifolds of SP-Sasakian Manifolds:

Let \overline{M} be an m-dimensional Riemannian manifold. We suppose that there exist on \overline{M} a vector field ξ and a 1-form η satisfying (3.1) When an equation

(4.1) $\overline{\nabla}_{X}\xi = \varepsilon(\overline{X} - \eta(\overline{X})\xi)(\varepsilon = \pm 1), \quad \overline{X} \in \mathcal{X}(\overline{M})$

holds good, \overline{M} is said to be an SP- Sasakian manifold. Since from (4.1) we can get (3.2) and (3.3), an SP-Sasakian manifold is a P-Sasakian manifold if we suppose that a (1,1) tensor field φ satisfies (3.4), then (φ, ξ, η, G) is an almost Para contact metric structure. In this section, we suppose that \overline{M} is an SP-Sasakian manifold admitting a(1,1) tensor field φ which satisfies (3.4). from (4.1) we have

$$\overline{\nabla}_{i_*X}\xi = \varepsilon(i_*X - \eta(i_*X)\xi) = \varepsilon \sum_{j=1}^{\infty} X - v(X)V - \sum_{j=1}^{\infty} \alpha_j v(X)N_j$$

By mean of (3.7), we get

(4.2)
$$\Psi X = \varepsilon (X - v (X) V),$$

(4.3) $u_j(X) = -\varepsilon \alpha_j v(X),$

V. Linear Independence of Vector Fields *U_i*:

Let *M* be a sub-manifold immersed in an almost paracontact Riemannian manifold \overline{M} with a structure ((φ, ξ, η, G)). We transform the orthonormal basis { N_1, N_2, \dots, N_s } of $T_P(M)^{\perp}$ to another orthonormal basis basis $\{\overline{N}_1, \overline{N}_2, \dots, \overline{N}_s\}$ of $T_P(M)^{\perp}$ [7]. We put

(5.1)
$$\overline{N}_l = \sum_{j=1}^S K_{jl} N_j$$

Then, (K_{jl}) is an orthogonal matrix and we have

$$\begin{split} N_{j} &= \sum_{l=1}^{\infty} K_{jl} \overline{N}_{l} \\ \text{making use of } \bigwedge, \overline{N}_{2}, \dots, \overline{N}_{S} \bigvee, \text{ we get} \end{split}$$

$$\begin{split} \varphi i_* X &= i_* \psi X + \sum_l \overline{u}_l(X) \overline{N}_l, \\ \varphi \overline{N}_l &= i_* \overline{U}_l + \sum_h \overline{\lambda}_{lh} \overline{N}_h, \\ \xi &= i_* V + \sum_l \overline{\alpha}_l \overline{N}_l, \end{split}$$

Whore

(5.2)

$$\overline{U}_{l}(X) = \sum_{i} K_{il} u_{i}(X), \quad \overline{U}_{l} = \sum_{i} k_{il} U_{i}, \quad \overline{\lambda}_{lh} = \sum_{i,j} k_{il} \lambda_{ij} k_{jh}, \quad \overline{\alpha}_{l} = \sum_{i} k_{il} \alpha_{i},$$

By a suitable transformation of the orthonormal basis $\{N_1, N_2, ..., N_S\}$, we can get $\overline{\lambda}_{ij} = \lambda_i \, \delta_{ij}$,

Where λ_i are eigen values of the matrix (λ_{ij}). In this case, we have

(5.3)
$$\varphi \overline{N}_l = i_* \overline{U}_l + \lambda_l \overline{N}_l,$$

(5.4)
$$\overline{u}_j (\mathbf{O}_j) = 1 - \overline{\alpha}_j^2 - \lambda_j^2,$$

(5.5)
$$\overline{u}_k \, \overline{\mathbf{O}}_j \, \mathbf{h} - \overline{\alpha}_k \overline{\alpha}_j \quad (k \neq j)$$

VI. Anti Invariant Submanifolds of an Almost Paracontact Riemannian Manifold:

Let *M* be an anti invariant sub manifold immersed in an almost paracontact Riemannian manifold \overline{M} . Then since, we have $\psi = 0$, from

$$\psi^2 X = X - v(X)V - \sum_{i=1}^S u_i(X)U_i, \text{ we get}$$
$$X - v(X)V - \sum u_i(X)U_i = 0.$$

From which

$$g(X, X) - v(X)^2 - \sum_i u_i(X)^2 = 0,$$

Substituting $X = e_{\lambda}$ and summing up in λ , we get

(6.1)
$$(S+1) - n = 2\sum_{j} \alpha_{j}^{2} + \sum_{i,j} \lambda_{ij}^{2}$$

by virtue of

$$u_k(U_j) = \delta_{kj} - \alpha_k \alpha_j - \sum_{i=1}^S \lambda_{ki} \lambda_{ji}$$
, and $v(V) = 1 - \sum_{i=1}^S \alpha_i^2$,

Thus we have $\eta \leq S+1$, When n = S+1, from (6.1), we have $\lambda = 0$ $\alpha = 0$

$$\lambda_{ij} = 0, \qquad \alpha_j =$$

Consequently, we have $\varphi T_P(M)^{\perp} \subset T_P(M)$ and ξ is tangent to M. Thus, by means of $u_k(U_j) = \delta_{kj} - \alpha_k \alpha_j - \sum_{i=1}^{S} \lambda_{ki} \lambda_{ji}, u_i(V) + \sum_{j=1}^{S} \alpha_j \lambda_{ji} = 0$, and $v(V) = 1 - \sum_{i=1}^{S} \alpha_i^2$, we know that U_i

 $(i=,1,2,\ldots,S)$, V are mutually orthogonal unit vector fields.

In an almost para contact Riemannian manifold \overline{M} , when the equation

holds good, \overline{M} is a said to be a special para contact Riemannian manifold [4], If M is an anti-invariant submanifold of dimension n=S+1, then we have $\nabla_X V = 0$, $u_i(X) = h_i(X,V)$

VII. Transformation of the Orthonormal Basis $\{N_i\}$ of $T(M)^{\perp}$:

Let *M* be a sub-manifold immersed in an almost para contact Riemannian manifold \overline{M} and $\{N_1, N_2, \dots, N_S\}$ be an orthonormal basis of the normal space $T_P(M)^{\perp}$ at $P \in M$ [7]. We assume that $[M_1, \overline{N}_2, \dots, \overline{N}_S]$ is the another orthonormal basis of $T_P(M)^{\perp}$ and put

(7.1)
$$\overline{N}_i = \sum_{l=1}^{S} k_{li} N_l$$

By means of $G(\overline{N}_i, \overline{N}_j) = \sum_{l=1}^{S} k_{li} k_{lj}$, we have $\sum_{l=1}^{S} k_{li} k_{lj} = \delta_{ij}$, from which $\sum_{h=1}^{S} k_{ih} k_{jh} = \delta_{ij}$. Consequently a matrix (k_{ij}) is an orthonogonal matrix. Thus from (7.1), we have $N_j = \sum_{l=1}^{S} k_{jl} \overline{N}_l$.

Making use of (7.1), equations (1.6), (1.7) and (1.8) are respectively written in the following forms:

$$\varphi i_* X = i_* \psi X + \sum_{l=1}^{S} \overline{u}_l(X) \overline{N}_l,$$
$$\varphi \overline{N}_l = i_* \overline{U}_l + \sum_{h=1}^{S} \overline{\lambda}_{lh} \overline{N}_h,$$

$$\begin{split} \varphi \overline{N}_{l} &= i_{*} \overline{U}_{l} + \sum_{h=1}^{S} \overline{\lambda}_{lh} \overline{N}_{h}, \\ \xi &= i_{*} V + \sum_{l=1}^{S} \overline{\alpha}_{l} \overline{N}_{l}, \end{split}$$

where

(7.2)

(7.3)
$$u_{l}(X) = \sum_{i=1}^{S} k_{il} u_{i}(X), \quad \overline{U}_{l} = \sum_{i=1}^{S} k_{il} U_{i},$$

(7.4)
$$\overline{\lambda}_{lh} = \sum_{i,j=1}^{3} k_{il} \lambda_{ij} k_{jh}, \quad \overline{\lambda}_{lh} = \overline{\lambda}_{hl},$$

$$\overline{\alpha}_{l} = \sum_{i=1}^{s} k_{il} \alpha_{i}$$

By virtue of (7.3), the linear independence of vectors U_i (i = 1, 2, ..., S) is invariant under the transformation (7.1) of the orthonormal basis { $N_1, N_2, ..., N_S$ }.

Further more, because λ_{ij} is symmetric in *i* and *j*, from (7.4) we can find that under a suitable transformation (7.1) λ_{ij} reduces to $\overline{\lambda}_{ij} = \lambda_i \delta_{ij}$, where λ_i (*i* = 1,2,...,*s*) are eigen values of matrix (λ_{ij}). In this case (7.2) and

$$u_{k}(U_{j}) = \delta_{kj} - \alpha_{k}\alpha_{j} - \sum_{i=1}^{S} \lambda_{ki}\lambda_{ji}, \text{ are respectively written in the next forms:}$$

$$\varphi \overline{N}_{l} = i_{*}\overline{U}_{l} + \lambda_{l}\overline{N}_{l},$$

$$\overline{u}_{k}(\overline{U}_{j}) = \delta_{kj} - \overline{\alpha}_{k}\overline{\alpha}_{j} - \lambda_{k}\lambda_{j}\delta_{kj},$$

from which we have

(7.5)

$$\overline{u}_{j}(\overline{U}_{j}) = 1 - \overline{\alpha}_{j}^{2} - \lambda_{j}^{2} \text{ and } \overline{u}_{k}(\overline{U}_{j}) = -\overline{\alpha}_{k}\overline{\alpha}_{j}(k \neq j)$$

VIII. Invariant Submanifolds of an Almost Paracontact Riemannian Manifold :

Let *M* be a submanifold immersed in an almost paracontact Riemannian manifold M. If $\varphi T_P(M) \subset T_P(M)$ for any point $P \in M$, then M is called an invariant submanifold. In an invariant submanifold *M*, equations (1.6), (1.7) and (1.8) are written in the following forms:

(8.1)
$$\phi i_* \ X = i_* \psi X, \quad X \in \mathcal{X}(M),$$

(8.2)
$$\varphi N_i = \sum_{j=1}^{N} \lambda_{ij} N_j,$$

(8.3)
$$\xi = i_* V + \sum_{i=1}^S \alpha_i N_i,$$

Lemma 8.1:

In an invariant submanifold M which is immersed in an almost paracontact Riemannian manifold \overline{M} , the following equations hold good.

(8.4)
$$\psi^2 = 1 - v \otimes V,$$

$$(8.5) \qquad \qquad \alpha_i V = 0$$

(8.6)
$$\delta_{kj} - \alpha_k \alpha_j - \sum_{i=1}^S \lambda_{ki} \lambda_{ji} = 0.$$

(8.7)
$$\psi V = 0$$

(8.8)
$$\sum_{i=1}^{5} \alpha_i \lambda_{ij} = 0,$$

(8.9)
$$v(V) = 1 - \sum_{i=1}^{S} \alpha_i^2,$$

(8.10)
$$g(\psi X, \psi Y) = g(X, Y) - v(X)v(Y), \quad X, Y \in \mathcal{X}(M).$$

From (8.5) and (8.9), we get the following two cases: When V =0 (or $\sum_{i} \alpha_{i}^{2} = 1$), that is, ξ normal to *M*, since from (8.4) and (8.10) we have $\psi^{2} = I$, $\underline{g}(\psi X, \psi Y) = g(X,Y)$, (ψ,g) is an almost product metric structure when ever ψ is non-trivial.

when $V \neq 0$ (or $\alpha_i = 0$), that is, ξ is tangent to *M*, by means of (8.4), (8.9), (8.10) and v(X) = g(V,X), (ψ , *V*, *v*,*g*) is an almost para contact metric structure. Thus we have

Theorem 8.1:

Let M be an invariant sub manifold immersed in an almost para contact Riemannian manifold \overline{M} with a structure (φ, ξ, η, G). Then one of the following cases occurs T. Miya Zawa[6].

- Case (I): ξ is normal to *M*. In this case, the induced structure (ψ , *g*) on *M* is an almost product metric structure when ever ψ is non-trivial.
- Case (II): ξ is tangent to M. In this case, the induced structure (ψ, V, v, g) is an almost para contact metric structure.

Furthermore, we have the following theorems:

Theorem 8.2:

In order that, in an almost para contact. Riemannian manifold M with a structure (φ , ξ , η , G) the submanifold M of \overline{M} is invariant, it is necessary and sufficient that the induced structure (ψ , g) on M is an almost product metric structure when ever ψ is non-trivial or the induced structure (ψ , V,v,g) on M is an almost paracontact metric structure.

Proof:

From theorem 8.1, the necessity is evident conversely, we first assume that the induced structure (ψ,g) is an almost product metric structure. Then from equation (c)

(c)
$$\psi^2 X = X - v(X)V - \sum_{i=1}^S u_i(X)U_i \text{ or } \psi^2 = I - v \otimes V - \sum_{i=1}^S u_i \otimes U_i, X \in \mathcal{X}(M)$$

We have $v(X)V + \Sigma_i u_i(X) U_i = 0$ from which $g(v(X) V + \Sigma_i u_i(X)U_i, X) = 0$ that is $v(X)^2 + \Sigma_i u_i(X)^2 = 0$. Consequently, since we get $v(X) = u_i(X) = 0$ (*i*=1,2,...,*s*) the submanifold *M* is invariant and ξ is normal to *M*.

Next, we assume that the induced structure (ψ, V, v, g) is an almost para contact metric structure. Then, from Equation (c) we have $\sum_{i} u_i(X) U_i = 0$, from which $u_i(X) = 0$ (*i* = 1,2,...,*s*) and from Equation (d).

(d)
$$u_j(\psi X) + \sum_{i=1}^{s} \lambda_{ji} u_i(X) + \alpha_j v(X) = 0$$

We get $\alpha_i = 0$, thus *M* is invariant and ξ is tangent to *M*.

IX. Paracontact Riemannian Manifolds and P-Sasakian Manifolds:

Let \overline{M} be an almost paracontact Riemannian manifold with a structure (φ, ξ, η, G) . If we put $\Phi(\overline{X}, \overline{Y}) = G(\varphi \overline{X}, \overline{Y})$ for $\overline{X}, \overline{Y} \in \mathcal{K}(\overline{M})$, then from (1.5) we have $\Phi(\overline{X}, \overline{Y}) = \Phi(\overline{Y}, \overline{X})$.

We denote by $\overline{\nabla}_{x}$ the operator of covariant differentiation with respect to G along the vector field

 \overline{X} . For a vector field \overline{Y} , the covariant derivative $\overline{\nabla}_X \overline{Y}$ of \overline{Y} , has local components $\overline{X}^{\mu} \overline{\nabla}_{\mu} \overline{Y}^{\lambda}$, where \overline{X}^{μ} and \overline{Y}^{μ} are the local components of \overline{X} and \overline{Y} respectively and Greek indices λ , μ, ν take values 1,2,....,m.

When the equation

(9.1)
$$2\Phi(\overline{X},\overline{Y}) = (\overline{\nabla}_{X}\eta)(\overline{Y}) + (\overline{\nabla}_{Y}\eta)(\overline{X})$$

holds good, \overline{M} is called a Para contact Riemannian manifold and (φ, ξ, η, G) a Para contact metric structure.

Especially, If the equation $(\overline{\nabla}_{\overline{X}}\eta)(\overline{Y}) = (\overline{\nabla}_{\overline{Y}}\eta)(\overline{X})$ holds good, then we have $\Phi(\overline{X},\overline{Y}) = (\overline{\nabla}_{\overline{Y}}\eta)(\overline{Y})$

Consequently,

 $G(\varphi \overline{X}, \overline{Y}) = \overline{\nabla}_{\overline{X}} \eta(\overline{Y}) - \eta(\overline{\nabla}_{\overline{X}} \overline{Y}) = \overline{\nabla}_{\overline{X}} G(\xi, \overline{Y}) - \eta(\overline{\nabla}_{\overline{X}} \overline{Y}) = G(\overline{\nabla}_{\overline{X}} \xi, \overline{Y})$ Thus we find
(0.2) $(\varphi \overline{X} - \overline{\nabla}_{\overline{X}} \xi)$

(9.2)
$$\phi X = \nabla_{\overline{X}} \xi$$

when the above equation holds good, \overline{M} is called a special paracontact Riemannian manifold and (φ, ξ, η, G) is referred as a special contact metric structure [1].

Now, we assume that \overline{M} is a special paracontact Riemannian manifold. If the equation

(9.3)
$$(\overline{\nabla}_{\overline{X}}\phi)\overline{Y} = -G(\overline{X},\overline{Y})\xi - G(\xi,\overline{Y})\overline{X} + 2\eta(\overline{X})\eta(\overline{Y})\xi,$$

holds good where $G(\xi \bar{y}) = \eta(\bar{y})$, then \overline{M} is called a P-sasakian (or para Sasakian) manifold. By using local Components (9.2) and (9.3) are written as follows:

$$\boldsymbol{\varphi}_{\mu}^{\lambda} = \overline{\nabla}_{\mu}\boldsymbol{\xi}^{\lambda}, \quad \overline{\nabla}_{\nu}\overline{\nabla}_{\mu}\boldsymbol{\xi}^{\lambda} = (-G_{\nu\mu} + \eta_{\nu}\eta_{\mu})\boldsymbol{\xi}^{\lambda} + \mathbf{C}\boldsymbol{\delta}_{\nu}^{\lambda} + \eta_{\nu}\boldsymbol{\xi}^{\lambda}\mathbf{h}_{\mu}$$

where $\phi_{\mu}^{\lambda}, \xi^{\mu}, \eta_{\mu}$ and $G_{\mu\lambda}$ are local components of ϕ, ξ, η and G respectively, moreover, in a special para contact Riemannian manifold \overline{M} , if the equation

(9.4)
$$\varphi \overline{X} = \overline{\nabla}_X \xi = \varepsilon (\overline{X} - \eta(\overline{X})\xi)$$
 ($\varepsilon = \pm 1$), i.e., $\varphi = \varepsilon (I - \eta \otimes \xi)$
holds good then \overline{M} is called an SP-Sasakian (or special para Sasakian) manifold. It is clear

holds good, then M is called an SP-Sasakian (or special para Sasakian) manifold. It is clean that (9.4) satisfies (9.3).

X. An Almost r-paracontact Riemannian Manifold:

Let \overline{M} be an m-dimensional Riemannian manifold with a positive definite metric *G*. If there exist a (1,1)-tensor field ψ on \overline{M} , *r* vector fields ξ_1, \dots, ξ_r (r < m), *r* 1-forms η_1, \dots, η_r such that

(10.1)
$$\eta_X(\xi_Y) = \delta_{xy}(X, Y = 1, ..., r)$$

(10.2)
$$\Psi^2 = I - \sum_{x=1}^{\infty} \eta_x \otimes \xi_x,$$

(10.3)
$$\eta_x(\overline{X}) = G(\xi_x, \overline{X}),$$

(10.4)
$$G(\psi \overline{X}, \psi \overline{Y}) = G(\overline{X}, \overline{Y}) - \sum_{X=1}^{r} \eta_X(\overline{X}) \eta_X(\overline{Y}),$$

where $\overline{X}, \overline{Y}$ are any vector fields on \overline{M} , then $(\psi, \xi_1...,\xi_r,\eta_1,...,\eta_r,G)$ is said to be an almost r-paracontact Riemannian structure on \overline{M} and \overline{M} an almost r-paracontact Riemannian manifold, [5]. This structure is written (ψ, ξ_x, η_x, G) for short.

Theorem:

In an almost r-para contact Riemannian manifold with the structure (ψ, ξ_x, η_x, G) , the following equations hold good:

(10.5)
(10.6)
(a)
$$\psi \xi_X = 0$$

(b) $\eta o \psi = 0,$
 $\Phi(\overline{X}, \overline{Y})^{def} = G(\psi \overline{X}, \overline{Y}) = G(\overline{X}, \psi \overline{Y})$

Proof:

(10.5) (a) using (10.4), we get

$$G(\psi \xi_X, \psi \xi_X) = G(\xi_X, \xi_X) - \sum_y \eta_y(\xi_X) \eta_y(\xi_X) = 0,$$

From which, we have $\psi \xi_x = 0$

(10.5) (b) using (10.2) for $\psi^2(\psi \overline{X}) = \psi(\psi^2 \overline{X})$, we have

$$\psi \overline{X} - \sum \eta_x(\psi \overline{X}) \xi_X = \psi(\overline{X} - \sum \eta_X(\overline{X}) \xi_X),$$

from which, we obtain $\sum \eta_x(\psi \overline{X})\xi_x = 0$ Virtue of (10.5) (a) Since $\xi_1, ..., \xi_r$ are linearly independent, we have $\eta_x(\psi \overline{X}) = 0$, that is $\eta_x \circ \psi = 0$ (10.6) Using (10.2) and (10.4) for $G(\psi \overline{X}, \psi^2 \overline{Y})$, the equation (10.6) is easily verified.

It is obvious that ψ satisfies $\psi^3 - \psi = 0$. Because of (10.1) and (10.5) a), *r* vector fields ξ_1, \dots, ξ_r are the mutually orthogonal eigen vectors of a matrix (ψ) and their eigen values are all equal to 0. Since a matrix (Φ) is symmetric, the eigen values of the matrix (ψ) are all real. If we denote by ζ the eigen vector orthogonal to ξ_X ($X=1,\dots,r$) and by a its eigen value, then we have $\psi\zeta = \alpha \zeta$ therefore, we get $\psi^2\zeta - \alpha^2\zeta$. Accordingly, we see that the eigen values of (ψ) are 0, ±1, where the multiplicity of 0 is equal to *r* and hence rank (ψ) = $m \rightarrow r$.

If we denote by $\overline{\nabla}$ a Riemannian connection, then the torsion tensor \overline{N} for ψ may be expressed as follows [5],[9].

(10.7)
$$\overline{N}(\overline{X},\overline{Y}) = (\overline{\nabla}_{\psi\overline{y}}\psi)\overline{X} - (\overline{\nabla}_{\overline{x}}\psi)\psi\overline{Y} - (\overline{\nabla}_{\psi\overline{x}}\psi)\overline{Y} + (\overline{\nabla}_{\overline{y}}\psi)\psi\overline{X} + \sum_{X}\eta_{X}(\overline{X})\overline{\nabla}_{\overline{y}}\xi_{X} - \sum_{X}\eta_{X}(\overline{Y})\overline{\nabla}_{\overline{X}}\xi_{X}$$

when the torsion tensor for ψ vanishes, the almost r-para contact Riemannian manifold, or its structure is said to be normal.

XI. Conformally flat submanifolds:

Let M^m (m>3) be a Riemannian manifold covered by coordinate neighbourhoods (U, x^h) the indices h, i, j, k... running over the range 1,2...,m. Let $g_{ij}, \nabla_h, K^h_{kji}, k_{ji}$ and R denote the metric tensor, the Riemannian connection, the curvature tensor, the Ricci tensor and the scalar curvature of M^m respectively. Let M^n ($n \ge 3$) be a submanifold of M^m and be covered by a system of coordinate neighbourhoods (V, u^a) the indices a, b, c, ... running over the range 1,2,...,n. The immersion of M^n in M^m is locally given by $X^h = X^h$ (u^a). Let g_{ab} , ∇_b denote the metric tensor and the Riemannian connection of M^n induced from those of M^m . We have

 $g_{cb} = g_{ij}B_c^j B_b^i$ when $B_b^i = \frac{\partial X^i}{\partial u^b}$ Let K_{dcb}^a , K_{cb} and K denote the curvature tensor, the Ricci tensor and the Scalar curvature of M^n respectively.

We choose *m*-*n* orthogonal unit normal vectors C_x^h , (the indices *x*,*y*,*z* running over the range (*n*+1, *n*+2,...,*m*) in such a way that G_a^h, C_x^h from a positively oriented frame of M^m along M^n . The equations of Gauss and Weingarten are given by.

(11.1)
$$\nabla_c B_b^h = H_{cb}^x C_x^h, \quad \nabla_c C_x^h = -H_{cx}^a B_a^h,$$

where H_{cb}^x and $H_{bx}^c = H_{ba}^y g^{ac} g_{yx}$ and are the second fundamental tensors of M^n with respect to the normal C_x^h , g_{yx} being the metric tensor of the normal bundle. The equation of Gauss for M^n are

 $(112) V D^k D^j D^i D^h - V A$

(11.2)
$$K_{kijh}B_d^{\kappa}B_c^{J}B_b^{l}B_a^{n} = K_{dcba} - A_{dcba},$$

where we set

(11.3)
$$A_{dcba} = H_{cb}^{x} H_{dax} - H_{db}^{x} H_{cax}$$

Theorem A:

(11.4)

Let M^n (n > 3) be a submanifold of a conformally flat Riemannian manifold M^m (m > 3). Then M^n is conformally flat if and only if

$$A_{dcba} - (g_{da}A_{cb} - g_{db}A_{ca} + A_{da}g_{cb} - A_{db}g_{ca})/(n-2)$$

 $+A(g_{da}g_{cb} - g_{db}g_{ca})/(n-1) (n-2) = 0,$ where A_{dcba} is given by (11.3) and (11.5) $A_{da} = g^{cb} A_{dcba} \quad A = g^{da}A_{da}$

Theorem B:

Let M^n (n > 3) be a totally umbilical submanifold of a conformally flat Riemannian manifold M^m (m>3) then M^n is conformally flat.

XII. The Main Theorem and its Applications:

If M^m (m>3) is conformally flat, then the Weyl conformal curvature tensor $C_{kiih} = 0$ and we have (12.1) $\nabla_i C_{ih} - \nabla_i C_{jh} = 0$ where $C_{ih} = -k_{ih}/(m-2) + Rg_{ih}/2(m-1)$ (m-2). we set $C_{cba} = \nabla_c C_{ba} - \nabla_b C_{ca}$ (12.2)where C_{ba} is defined by a formula similar to the one for C_{ij} in (12.1) Theorem 12.1: Let M^n $(n \ge 3)$ be a submanifold of a Conformally flat Riemannian manifold M^m (m>3). Then (12.3) $C_{cba} = (\nabla_b A_{ca} - \nabla_c A_{ba})/(n-2) - \{(\nabla_b A)g_{ca} - (\nabla_c A)g_{ba}\}/2(n-1)(n-2)$

$$+\mathbf{O}_{bx}H_{ca}^{x}-L_{cx}H_{ba}^{x}$$
,

where A_{ca} is given by (11.5) and

$$L_{cx} = C_{ji} B_c^j C_j^k$$

Since M^m is conformally flat, we have

(12.5)
$$K_{kjih} = g_{hj} C_{ki} - g_{hk} C_{ji} + C_{hj} g_{ki} - C_{hk} g_{ji}$$

Transvecting (12.5) with $B_d^k B_a^j B_b^i B_a^h$ and using (11.2) we get

(12.6)
$$\begin{aligned} & -a - c - b - a \\ K_{dcba} = A_{dcba} + g_{ca} P_{db} - g_{da} P_{cb} + P_{ca} g_{db} - P_{da} g_{cb}, \end{aligned}$$

where we have set $P_{ca} = B_c^j B_a^h C_{jh}$. Transvecting (12.6) with g^{da} and the resulting equation with g^{cb} we get (12.7) $K_{cb} = A_{cb} + (2-n) P_{cb} - P_{gcb}, K = A + 2(1-n)P,$

$$K_{cb} = A_{cb} + (2-n) P_{cb} - Pg_{cb}, P_{cb}$$

where $P = g^{cb}P_{cb}$ from (12.7) we get
 $C_{cb} = P_{cb} - A_{cb}/(n-2) + Ag_{cb}/2 (n-1) (n-2)$
Hence
 $C_{cba} = \nabla_c P_{ba} - \nabla_b P_{ca} - \{\nabla_c A_{ba} - \nabla_b A_{ca}\} / (n-2)$

(12.8)

$$C_{cba} = \nabla_c P_{ba} - \nabla_b P_{ca} - \left\{\nabla_c A_{ba} - \nabla_b A_{ca}\right\} / (n-2)$$

+ { ($\nabla_c A$)g_{ba} - ($\nabla_b A$)g_{ca}}/2(n-1)(n-2)

Now transvecting (12.1) with $B_c^j B_b^i B_a^h$ we obtain

(12.9)
$$\nabla_c p_{ba} - \nabla_b p_{ca} = L_{bx} H^x_{ca} - L_{cx} H^x_{ba}$$

where L_{cx} is defined by (12.4) from (12.8) and (12.9), we obtain (12.3)

K-Contact Riemannian Manifold: XIII.

An n-dimensional K-contact Riemannian manifold M is a differentiable manifold with a contact metric structure (φ, ξ, η, g) such that ξ is a killing vector filed. Therefore, with respect to an arbitrary coordinate neighbourhoods of *M*, we have the following conditions:

$$\xi^{\lambda}\eta_{\lambda} = 1, \phi^{\lambda}_{\mu}\xi^{\mu} = 0, \phi^{\lambda}_{\mu}\eta_{\lambda} = 0, \phi^{\lambda}_{\mu}\phi^{\mu}_{\nu} = -\delta^{\lambda}_{\nu} + \eta_{\nu}\xi^{\lambda}, g_{\lambda\mu}\xi^{\lambda} = \eta_{\mu},^{2}$$

where the matrix \mathbf{W}_{λ} is of rank *n*-1. Hereafter, we write η instead of ξ . It is well-known that a K-contact Riemannian manifold is orientable and odd dimensional.

On a K-contact Riemannian manifold the following identities hold good .

(13.1)
$$\nabla_{\lambda} \phi_{\mu}^{\lambda} = (n-1) \eta_{\mu}, \quad \nabla_{\lambda} \phi_{\mu\nu} + R_{\epsilon\lambda\mu\nu} \eta^{\epsilon} = 0,$$

(13.2)
$$R_{\lambda\mu\nu\epsilon} \eta^{\lambda}\eta^{\epsilon} = g_{\mu\nu} - \eta_{\mu}\eta_{\nu}, \quad R_{\lambda\epsilon}\eta^{\epsilon} = (n-1)\eta_{\lambda},$$

where ∇_{λ} is the covariant derivative with respect to the metric g and $R_{\epsilon\nu\mu\lambda}$ and $R_{\mu\lambda}$ denote the Riemannian curvature tensor and the Ricci tensor respectively.

Next, the exterior differential du and co differential δu of p-form u are given by

$$(du)_{\mu\lambda_{1}...\lambda_{p}} = \nabla_{\mu}u_{\lambda_{1}...\lambda_{p}} - \sum_{i=1}^{P}\nabla_{\lambda i}u_{\lambda i}....\hat{\mu}...\lambda_{p}, \qquad P \ge 1,$$

$$(du)_{\lambda} = \nabla_{\lambda}u, \qquad \qquad P = 0,$$

$$(\delta u)_{\lambda_{2}}....\lambda_{p} = -\nabla^{\lambda}u_{\lambda\lambda_{2}...\lambda_{p}}, \qquad \qquad P \ge 1,$$

$$\delta u = 0, \qquad \qquad P \ge 0,$$

The Laplacian is given by $\Delta = d\delta + \delta d$. for a p-form *u* we have explicitly

$$\begin{aligned} \mathbf{a}_{\mu}\mathbf{f}_{\lambda_{1},\dots,\lambda_{p}} &= -\nabla^{\lambda}\nabla_{\lambda}u_{\lambda_{1},\dots,\lambda_{p}} + \sum_{i=1}^{p}R_{\lambda i}^{\sigma}u_{\lambda_{1},\dots,\hat{\sigma},\dots,\lambda_{p}} + \sum_{j$$

XIV. Invariant Submanifolds in a k-contact Riemannian Manifold:

Theorem 14.1:

For an invariant submanifold M of a k-contact Riemannian manifold \overline{M} , if the vector field X on M is orthogonal to *x*, we have

$$\overline{\phi}\overline{R} \textcircled{E} N_A | X = -\overline{R} \textcircled{E} N_A | \overline{\phi}X.$$
Proof:

Proof:

First, we calculate
$$\overline{\nabla}_{N_A} \bigoplus^2 X \, \dot{\mathbf{i}}$$
 and find
 $\overline{\nabla}_{N_A} \bigoplus^2 X \, \dot{\mathbf{i}} = \bigoplus^2_{N_A} \overline{\phi} \, \dot{\mathbf{i}} \overline{\phi} \, X + \overline{\phi} \bigoplus^2_{N_A} \bigoplus^2_{N_A} \bigoplus^2_{N_A} \bigoplus^2_{N_A} \overline{\phi} \, \dot{\mathbf{i}} \overline{\phi} X + \overline{\phi} \bigoplus^2_{N_A} X \, \dot{\mathbf{i}}$
Using
 $\overline{\phi}\overline{\xi} = 0, \overline{\eta} \bigoplus^2_{\mathbf{i}} = 1, \overline{\phi}^2 = -I + \overline{\eta} \otimes \overline{\xi},$
 $\overline{g} \bigoplus^2_{N_A} \overline{\phi} \, \overline{Y} \bigoplus^2_{N_A} \overline{g} \bigoplus^2_{N_A} \overline{\eta} (\overline{X}) \overline{\eta} (\overline{Y}), \overline{g} (\overline{\phi} \overline{X}, \overline{Y}) = d\overline{\eta} (\overline{X}, \overline{Y}), \overline{\eta} (\overline{X}) = \overline{g} \bigoplus^2_{N_A} \overline{X} \, \dot{\overline{I}}$

for any vector fields \overline{X} and \overline{Y} on \overline{M} .

 \overline{M} is called a k-contact Riemannian manifold, if $\overline{\xi}$ is a killing vector field. Then, we have $\overline{\nabla}_{\overline{X}}\overline{\xi} = \overline{\phi}\,\overline{X}$ and

$$\overline{R}(\overline{X},\overline{\xi})\overline{Y} = \mathbf{O}_{\overline{X}}\overline{\phi}\mathbf{N},$$

We have

$$\overline{\nabla}_{N_{A}} \mathbf{C} X + \overline{g}(X,\overline{\xi})\overline{\xi} \mathbf{I} = \overline{R} \mathbf{C}_{A}, \overline{\xi} \mathbf{I} \overline{\phi} X + \overline{\phi} \overline{R} \mathbf{C}_{A}, \overline{\xi} \mathbf{I} X - \overline{\nabla}_{N_{A}} X + \overline{g} \mathbf{C}_{N_{A}} X, \overline{\xi} \mathbf{I} \overline{\xi}$$

which implies that $0 = \overline{R}(N_{A},\overline{\xi})\overline{\phi} X + \overline{\phi}\overline{R}(N_{A},\overline{\xi}) X + \overline{g} \mathbf{C}_{N_{A}} X, \overline{\xi} \mathbf{I} \overline{\xi}$

on the other hand, by the assumption, we have

$$\overline{g}(\overline{\nabla}_{N_A}X,\overline{\xi}) = \overline{\nabla}_{N_A} \mathbf{G}(X,\overline{\xi}) \mathbf{i} - \overline{g} \mathbf{G}(\overline{X},\overline{\phi}) \mathbf{h} + 0.$$
 Consequently,

we obtain

$$\overline{\phi}\overline{R} \bigotimes N_A X = -\overline{R} \bigotimes N_A \overline{\phi}X.$$

Theorem 14.2:

Any invariant submanifold *M* of a *k*-contact Riemannian manifold *M* is minimal.

Proof:

First, using
$$\overline{\nabla}_X Y = \nabla_X Y + \sum_A h_A(X,Y)N_A$$
 we calculate $\overline{\nabla}_X(\phi Y)$ and find
 $\overline{\nabla}_X(\phi Y) = \nabla_X(\phi Y) + \sum_A h_A(X,\phi Y)N_A = (\nabla_X \phi)Y + \phi(\nabla_X Y) + \sum_A h_A(X,\phi Y)N_A$ And

we have

$$\overline{\nabla}_{X}(\phi Y) = \nabla_{X}(\phi Y) = \overline{\nabla}_{X}(\phi Y) + \overline{\phi}(\overline{\nabla}_{X}Y) = (\overline{\nabla}_{X}\phi)Y + \overline{\phi}(\nabla_{X}Y + \sum_{B}h_{B}(X,Y)N_{B})$$
$$= (\overline{\nabla}_{X}\overline{\phi})Y + \phi(\nabla_{X}Y) + \sum_{B}h_{B}(X,Y)\overline{\phi}N_{B}$$
By

the definition of k-contact Riemannian manifold, we get

$$(\nabla_{X}\phi)Y + \sum_{A}h_{A}(X,\phi Y)N_{A} = \overline{R}(X,\overline{\xi})Y + \sum_{B}h_{B}(X,Y)\overline{\phi}N_{B}, \text{ from which,}$$
$$h_{C}(X,\phi Y) = \overline{g}(\overline{R}(X,\overline{\xi})Y,N_{C}) + \sum_{B}h_{B}(X,Y)\overline{g}(\overline{\phi}N_{B},N_{C})$$

Replacing *Y* by ϕY , we find,

$$h_{C}(X,\phi^{2}Y) = g \Theta_{C}X,\phi^{2}Y \Rightarrow \overline{g} \Theta O, \overline{\xi} \phi Y, N_{C} + \sum_{B} g \Theta_{B}X,\phi Y \Theta O, N_{C}$$

using, $H_{A}\xi = 0$
we have

$$-g(H_{c}X,Y) = g \bigoplus \mathbf{O}_{i}, \overline{\xi} | \phi Y, N_{c} | - \sum_{B} g \bigoplus \mathbf{H}_{B}X, Y \bigoplus \mathbf{O}_{N}, N_{c} |$$

Here taking a ϕ -basis (ξ , E_{1} , ϕE_{1} , E_{2} , ϕE_{2} ,..., E_{m} , ϕE_{m}) we have

$$-trH_{c} = \sum_{i=1}^{m} \overline{g} \bigoplus \mathbf{O}_{i}, \overline{\xi} | \phi E_{i}, N_{c} | + \sum_{i=1}^{m} \overline{g} \bigoplus \mathbf{O}_{E}, \overline{\xi} | \phi^{2}E_{i}, N_{c} | - \sum_{B} \bigoplus \phi H_{B} \bigoplus \mathbf{O}_{N}, N_{c} |$$

$$= \sum_{i=1}^{m} \overline{g} \bigoplus \mathbf{O}_{i}, \overline{\xi} | \phi E_{i}, N_{c} | - \sum_{i=1}^{m} \overline{g} \bigoplus \mathbf{O}_{E}, \overline{\xi} | E_{i}, N_{c} | - \sum_{B} \bigoplus \phi H_{B} \bigoplus \mathbf{O}_{N}, N_{c} |$$

How

ever, since ϕ is skew-symmetric and H_A is symmetric tr ϕH_B vanishes identically and hence, we get

$$-trH_{C} = \sum_{i=1}^{m} \left[\overline{g}(\overline{R}(E_{i},\overline{\xi})\phi E_{i},N_{C}) - \overline{g}(\overline{R}(\phi E_{i},\overline{\xi})E_{i},N_{C}) \right]$$
$$= \sum_{i=1}^{m} \left[\overline{g}(\overline{R}(E_{i},\overline{\xi})\phi E_{i},N_{C}) - \overline{g}(\overline{R}(\overline{\xi},\phi E_{i})E_{i},N_{C}) \right]$$

By virtue of the Bianchi's identity, we get

$$trH_C = \sum_{i=1}^{m} \overline{g}(\overline{R}(\phi E_i, E_i)\overline{\xi}, N_C)$$

On the other hand, from theorem 14.1, we have

$$\overline{g}(\overline{R}(\phi E_i, E_i)\overline{\xi}, N_C) = \overline{g}(\overline{R}(\overline{\xi}, N_C)\phi E_i, E_i) = -\overline{g}(\overline{\phi}\overline{R}(\overline{\xi}, N_C)E_i, E_i)$$
$$= \overline{g}(\overline{R}(\overline{\xi}, N_C)E_i, \phi E_i) = \overline{g}(\overline{R}(E_i, \phi E_i)\overline{\xi}, N_C)$$
Therefore we get $\overline{g}(\overline{R}(\phi E_i - E_i)\overline{\xi}, N_C) = 0$. Hence we obtain $trH_C = 0$.

Therefore we get $\overline{g}(R(\phi E_i, E_i)\xi, N_C) = 0$, Hence we obtain *trHc*=0

XV. Invariant Submanifolds Immersed in an Almost Paracontact Riemannian Manifold:

An *n*-dimensional differentiable manifold M of class C^{∞} is called an almost paracontact Riemannian manifold [9], if their exist in M a tansor field $\Phi_{\mu}^{[\lambda 2]}$, a positive definite Riemannian metric $g_{\mu\lambda}$ and vector fields ξ^{λ} and η_{λ} satisfying.

(15.1) (a)
$$\eta_{\alpha}\xi^{\alpha} = 1$$
, (b) $\phi_{\alpha}^{\lambda}\phi_{\mu}^{\alpha} = \delta_{\mu}^{\lambda} - \eta_{\mu}\xi^{\lambda}$
 $\eta_{\lambda} = g_{\lambda\alpha}\xi^{\alpha}$, $g_{\beta\alpha}\phi_{\mu}^{\beta}\phi_{\lambda}^{\alpha} = g_{\mu\lambda} - \eta_{\mu}\eta_{\lambda}$,
The set $\Phi_{\mu}^{\lambda}, \xi^{\lambda}, \eta_{\lambda}, g_{\mu\lambda}$ is called an almost paracontact Riemannian structure.
In the manifold *M*, the following relations hold good [3].

(15.2) (a)
$$\varphi_{\alpha}^{\lambda}\xi^{\alpha} = 0$$
, $\eta_{\alpha}\varphi_{\mu}^{\alpha} = 0$,
(b) $\varphi_{\mu\lambda} = \varphi_{\lambda\mu}$ $(\varphi_{\lambda\mu} = g_{\lambda\alpha}\varphi_{\mu}^{\alpha})$

We consider an m-dimensional Riemannian manifold V with local coordinates $\{Y^h\}$ immersed in the almost paracontact Riemannian manifold M with local co-ordinates $\{X^{\lambda}\}$ and denote the immersion by $X^{\lambda} = X^{\lambda}$

(*Y*^{*h*}). We put $B_i^{\lambda} = \partial X^{\lambda} / \partial Y^i$. The induced Riemannian metric is given by $g_{ji} = g_{\beta\alpha} B_j^{\beta} B_i^{\alpha}$. We denote by $N_x^{\lambda} n - m$ mutually orthogonal unit normals to *V*.

We assume that the submanifold V of M is φ invariant, then we have.

(15.3)
$$\varphi_{\alpha}^{\lambda}B_{i}^{\alpha}=\varphi_{i}^{t}B_{t}^{\lambda},$$

Where φ_i^t is a tensor field on V. It follows from (15.3) that $\varphi_{\beta\alpha}N_x^{\beta}B_i^{\alpha} = 0$ which implies that, $\varphi_{\beta}^{\lambda}N_x^{\beta}$ is normal to V. Thus, we put: (15.4)

where γ_{xy} are functions on *V*. The vector ξ^{λ} can be expressed as follows:

(15.5)
$$\xi^{\lambda} = \xi^{t} B_{t}^{\lambda} + \sum_{x} \alpha_{X} N_{X}^{\lambda}$$

where ξ^t and α_x are a vector field and functions on *V* respectively

Contracting (15.3) and (15.5) with $B_{j\lambda} (= g_{\lambda\alpha} B_j^{\alpha})$ respectively and making use of (15.2) b), we get

(15.6)
$$\phi_{ji} = \phi_{\beta\alpha} \ B_j^{\beta} B_i^{\alpha} = \phi_{ij} \ \mathbf{G}_{ji} = g_{ii} \phi_j^{t} \, \mathbf{I},$$

(15.7)
$$\xi^{h} = B^{h}_{\alpha}\xi^{\alpha} \mathbf{Q}^{h}_{\alpha} = g^{ht}B_{t\alpha} \mathbf{I}$$

from(15.4) and (15.5), we have

$$\gamma_{xy} = \varphi_{\beta\alpha} N_x^{\beta} N_y^{\alpha} = \gamma_{yx}, \ \alpha_x = N_{x\beta} \xi^{\beta} \bigotimes_{x\beta} = g_{\beta\lambda} N_x^{\lambda}$$

Contracting (15.3), (15.4) and (15.5) with ϕ^{μ}_{λ} respectively and using (15.1) b), (15.2)a), (15.4), (15.5), (15.7) and the above equations, we find

(15.8) (a)
$$\varphi_t^h \varphi_i^t = \delta_i^h - \eta_i \xi^h (\eta_i = g_{it} \xi^t)$$

(b) $\alpha_x \eta_i = 0$

XVI. An Invariant Submanifold Immersed in an Almost Paracontact Riemannian Manifold with Vanishing Torsion Tensor:

Differentiating (15.3) and (15.5) covariantly along V respectively and making use of Gauss and Weignarten's equations

$$\nabla_{j}B_{i}^{\lambda} = \sum_{X} h_{jiX} N_{X}^{\lambda}$$
$$\nabla_{j}N_{X}^{\lambda} = -h_{jX}^{t}B_{t}^{\lambda} + \sum_{y} l_{jXy} N_{y}^{\lambda} \mathbf{O}_{jX}^{t} = g^{ti}h_{jiX}^{t},$$

Where ∇_j denotes covariant differentiation with respect to $g_{ji} h_{jiX} I_{jXY}$ are the so-called second and third fundamental tensors respectively and satisfy

 $h_{jiX} = h_{ijX}, I_{jXY} = -I_{jyX},$ we obtain.

We now assume that the so-called torsion tensor $N_{\nu\mu}$ introduced by *I*. Sato [9] vanishes. Then we have

(16.2)
$$N_{\nu\mu}^{\lambda} = \varphi_{\nu}^{\alpha} \mathbf{Q}_{\alpha} \varphi_{\mu}^{\lambda} - \nabla \mu \varphi_{\alpha}^{\lambda} \mathbf{I} - \varphi_{\mu}^{\alpha} \mathbf{Q}_{\alpha} \varphi_{\nu}^{\lambda} - \nabla_{\nu} \varphi_{\alpha}^{\lambda} \mathbf{I} + \eta_{\mu} \nabla_{\nu} \xi^{\lambda} - \eta_{\nu} \nabla_{\mu} \xi^{\lambda} = 0$$

Where ∇_{μ} denotes covariant differentiation with respect of $g_{\mu\lambda}$. Contracting (16.2) with $B_j^{\nu}B_i^{\mu}$ and using (16.3), (16.7), (16.8) a) and (16.1), we obtain

(16.3)

$$\begin{split} \mathbf{\hat{p}}_{j}(\nabla_{i}\varphi_{i}^{s}-\nabla_{i}\varphi_{t}^{s}) - \varphi_{i}^{t}(\nabla_{t}\varphi_{j}^{s}-\nabla_{j}\varphi_{t}^{s}) + \eta_{i}\nabla_{j}\xi^{s} - \eta_{j}\nabla_{i}\xi^{s} \\ &-\sum_{X}\alpha_{X}(\eta_{i}h_{jX}^{s}-\eta_{j}h_{iX}^{s}) \Big\} B_{s}^{\lambda} + \sum_{Y} \Big\{ \eta_{i}(\nabla_{j}\alpha_{Y} + \sum_{X}\alpha_{X}l_{jXY}) \\ &-\eta_{j}(\nabla_{i}\alpha_{Y} + \sum_{X}\alpha_{X}l_{iXY}) \Big\} N_{Y}^{\lambda} = 0 \end{split}$$

C.

first consider the case (I). In this case, from (16.3), we find $\varphi_i^t(\nabla_t \varphi_i^S - \nabla_i \varphi_t^S) - \varphi_i^t(\nabla_t \varphi_i^S - \nabla_i \varphi_t^S) = 0$

 $\mathbf{m} = \mathbf{c} = \mathbf{c}$

that is, the Nijenhuis tensor of Φ_i^h vanishes

we next consider the case (II). In this case, from (16.3), we find

 $\varphi_j^t(\nabla_t \varphi_i^S - \nabla_i \varphi_t^S) - \varphi_i^t(\nabla_t \varphi_j^S - \nabla_j \varphi_t^S) + \eta_i \nabla_j \xi^S - \eta_j \nabla_i \xi^S = 0$ that is the torsion tensor of V vanishes.

XVII. Invariant Submanifold Immersed in a Paracontact Riemannian Manifold

An almost Paracontact Riemannian manifold *M* with structure $\mathbf{Q}_{\mu}^{\lambda}, \xi^{\lambda}, \eta_{\lambda}, g_{\mu\lambda}$ is called a paracontract Riemannian manifold [10] if the following relation holds good. $2 \phi_{\mu\lambda} = \nabla_{\mu} \eta_{\lambda} + \nabla_{\lambda} \eta_{\mu}$

We assume that M is a Paracontact Riemannian manifold Contracting the above equation with $B_i^{\mu}B_i^{\lambda}$ using. (15.3) and (16.1), we can find

$$2\varphi_{ji} = (\nabla_j \eta_i + \nabla_i \eta_j) - 2\sum_X \alpha_X h_{jiX}$$

Hence, we observe that

 ξ^{λ} is normal to V. In this case, V admits an almost Product Riemannian structure (ϕ_i^h, g_{ii}) whenever

 ϕ_i^h is non-trivial. We get

$$\varphi_{ji} = -\sum_{X} \alpha_X h_{jiX}$$
 and using,

 ξ^{λ} is normal to V. In this case, V admits an almost Paracontact Riemannian structure $(\varphi_i^h, \xi^h, \eta_i, g_{ji})$

We get $2\varphi_{ji} = \nabla_j \eta_i + \nabla_i \eta_j$

References

- Adati, T.: Suibmanifolds Of An Almost Product Riemannian Manifold, Kodai Math., J., 4 (1981), 327-343. [1].
- [2]. Adati, T. : Conditions For Invariant Submanifolds Of An Almost Para Contact Riemannian Manifold, Tensor, N.S. 38 (1982), 41-52
- [3]. Adati, T. And Miyazawa, T. : On Paracontact Riemannian Manifolds, TRU Math., 13-2 (1977), 27-30.
- [4]. Andrzej, G.: On Totally Umbilical Submanifolds M A Conformally Flat Riemannian Manifold, Demanst Ratio Math., 6 (1973), 641-646.
- Bucki, A : Invariant Submanifolds Of A Almost R-Para Contact Manifold, Tensor, N.S., 41 (1984), 261-269. [5].
- Miyazawa, T. : An Invariant Hypersurface Immersed In An Almost Para Contact Riemannian Manifold, II. TRU Math. 14-2 [6]. (1978), 27-30, 15-2 (1979), 9-20.
- Miyazawa, T.: Invariant Submanifolds Of An Almost Para Contact Riemannian Manifold, Tensor N.S., 34 (1980), 205-210. [7].
- [8]. Pujar, S.S. And Kirshna Amur : On Conformally Flat, Totally Real Submanifolds Of A Kaehlerian Manifold , To Appear.
- [9]. Satō, I.: On A Structure Similar To The Almost Contact Structure, I. II, Tensor, N.S., 30 (1976), 219-224, 31 (1977), 199-205.
- [10]. Tanno, S.: Isometric Immersions Of Sasakian Manifolds In Spheres, Kōdai Math. Sem. Rep., 21 (1969), 448-458.
- Yano, K. And Ishihara, S.: Invariant Submanifolds Of An Almost Contact Manifold, Kodai Math. Sem. Rep., 21 (1969), 350-[11]. 364.