A Study Of Submanifolds In A Contact Riemannian Manifold

Dr. Anshu Chauhan
Assistant Professor, Department of Mathematics, Sardar Bhagat Singh Government College, Dhaka, Powayan, Shahjahanpur (U.P.)

Abstract

In this chapter, we investigate non-invariant submanifolds of almost para-contact Riemannian manifolds, we establish a necessary and sufficient condition for a sub manifold immersed in an almost Para contact Riemannian manifold to be invariant and show further properties of invariant sub manifolds in almost paracontact Riemannian manifolds. Now we shall recollect an almost r-para-contact Riemannian manifold and treat the relations between this manifold and an almost product Riemannian manifold. Next, we study an invariant sub manifold immersed in an almost r-para contact Riemannian manifold and show that there exist the invariant sub manifolds of the three types in the almost r-para contact Riemannian manifold. The purpose of the present note is to give a necessary and sufficient condition for a sub manifold M^{3} of a conformally flat space to be conformally flat. In this note, we generalize this result to K-contact Riemannian manifold and also study an invariant submani fold V immersed in almost paracontact Riemannian manifold to show that the V admits either an almost paracontact Riemannian structure or an almost product Riemannian structure (φ, g) excepting the case where φ is trivial.

I. An Almost Para-contact Riemannian Manifold:

Let \bar{M} be an m-dimensional manifold. If there exist on \bar{M} a $(1,1)$ tensor field φ a vector field ξ and a 1 -form η satisfying
(1.1)
$\eta(\xi)=1$,

$$
\varphi^{2}=\mathrm{I}-\eta \otimes \xi,
$$

where I is the identity, then \bar{M} is said to be an almost para contact manifold [3]. In the almost para contact manifold, the following relations hold good.
(1.2) $\quad \varphi \xi=0, \quad \eta \circ \varphi=0, \quad \operatorname{rank}(\varphi)=m-1$

Every almost para contact manifold has a positive definite Riemannian metric G such that

$$
\begin{align*}
& \eta(\bar{X})=G(\xi, \bar{X}), \tag{1.3}\\
& G(\varphi \bar{X}, \varphi \bar{Y})=G(\bar{X}, \bar{Y})-\eta(\bar{X}) \eta(\bar{Y}), \bar{X}, \bar{Y} \in \mathcal{X} \mathbb{M}(\tag{1.4}
\end{align*}
$$

where $\mathcal{X}(\bar{M})$ denotes the set of differentiable vector fields on \bar{M}. In this case, we say that \bar{M} has an almost para contact metric structure (φ, ξ, η, G) and \bar{M} is said to be an almost para contact Riemannian manifold. Form (1.3) and (1.4), we can easily get the relation

$$
\begin{equation*}
G(\varphi \bar{X}, \bar{y})=G(\bar{X}, \varphi \bar{Y}) \tag{1.5}
\end{equation*}
$$

Here after, we assume that \bar{M} is an almost para contact Riemannian manifold with a structure $(\varphi, \xi$ $, \eta, G)$. It is clear that the eigen values of the matrix (φ) are 0 and ± 1, where the multiplicity of 0 is equal to 1 .

Let M be an n-dimensional differentiable manifold ($S=m-n$) and suppose that M is immersed in the almost para contact Riemannian manifold \bar{M} by the immersion $i: \quad M \rightarrow \bar{M}$. We denote by i_{*} the differential of the immersion i. The induced Riemannian metric g of M is given by

$$
g(X, Y)=\mathrm{G}\left(i_{*} X, i_{*} Y\right), \quad X, Y \in \boldsymbol{X} \quad(M)
$$

where $\mathcal{X}(M)$ is the set differentiable vector fields on M. We denote by $T_{p}(M)$ the tangent space of M at $P \in M$, by $T_{P}(M)^{\perp}$ the normal space of M at P and by $\left\{N_{1}, . N_{2}, \ldots ., N_{S}\right\}$ an orthonormal basis of the normal
space $T_{P}(M)^{\perp}$. If $\varphi T_{P}(M) \subset T_{P}(M)$ for any point $P \in M$, then M is called an invariant submanifold. If $\varphi T_{P}(M)$ $\subset T_{P}(M)^{\perp}$ for any point $P \in M$, then M is called an anti-invariant submanifold.

The transform $\varphi i_{*} X$ of $X \in T_{P}(M)$ by φ and φN_{i} of N_{i} by φ can be respectively written in the next forms:

$$
\begin{align*}
& \varphi i_{*} X=i_{*} \psi X+\sum_{i=1}^{S} u_{i}(X) N_{i}, \quad X \in \mathcal{X}(M) \tag{1.6}\\
& \varphi N_{i}=i_{*} U_{i}+\sum_{j=1}^{S} \lambda_{j i} N_{j} \tag{1.7}
\end{align*}
$$

where ψ, u_{i}, U_{i} and $\lambda_{j i}$ are respectively a (1,1)-tensor, 1 -forms, vector field and functions on M and Latin indices take values 1,2 , S. And the vector field ξ can be expressed as follows:

$$
\begin{equation*}
\xi=i_{*} V+\sum_{i=1}^{S} \alpha_{i} N_{i} \tag{1.8}
\end{equation*}
$$

where V and α_{i} are respectively a vector field and functions on M, from these equations we have [6].

$$
\begin{align*}
& g(\psi X, Y)=g(X, \psi Y) \tag{1.9}\\
& u_{i}(X)=g\left(U_{i}, X\right), \quad \lambda_{i j}=\lambda_{j i}
\end{align*}
$$

If M is an invariant sub manifold, then we have $U_{i}=0$. However, in the paper, we treat mainly a noninvariant sub manifold.
II. Sub Manifolds of an Almost Para Contact Riemannian Manifold Satisfying $\bar{\nabla}_{i_{x x}} \varphi=0$:

Let M be a sub manifold of an almost para contact Riemannian manifold \bar{M} with a structure (φ, ξ, $, \eta, G)$. Now we suppose that $\bar{\nabla}_{i_{*} x} \varphi=0$ holds good along M. then from (a) and (b)
(a) $\bar{\Sigma}_{i^{*} X} \varphi \boldsymbol{\imath}=i_{*}\left\{\left(\nabla_{X} \psi\right) Y-\sum_{i} u_{i}(y) H_{i} X-\sum_{i} h_{i}(X, y) U_{i}\right\}$

$$
+\sum_{i} \boldsymbol{Q}(X, \psi y)+\left(\nabla_{X} u_{i}\right)(y)-\sum_{i} \mu_{i j}(X) u_{j}(y)-\sum_{j} \lambda_{i j} h_{j}(X, Y) \text { V }
$$

(b)

$$
\begin{aligned}
\widehat{\underline{C}}_{i^{*} \mathrm{X}} \varphi \boldsymbol{\aleph}_{i}= & i_{*} \boldsymbol{母}_{x} U_{i}+\psi H_{i} X-\sum_{j} \mu_{i j}(X) U_{j}-\sum_{j} \lambda_{i j} H_{j} \mathrm{X} \boldsymbol{V} \\
& +\sum_{j}\left\{h_{j}\left(\mathrm{X}, U_{i}\right)+h_{i}\left(X, U_{j}\right)+\nabla_{\mathrm{x}} \lambda_{i j}+\sum_{k} \lambda_{i k} \mu_{k j}(X)+\sum_{k} \lambda_{j k} \mu_{k i}(X)\right\} N_{j}
\end{aligned}
$$

we have

$$
\begin{align*}
& \mathbf{Q}_{X} \psi \underline{y}-\sum_{i} u_{i}(y) H_{i} X-\sum_{i} h_{i}(X, Y) U_{i}=0 \tag{2.1}\\
& h_{j}\left(X, U_{i}\right)+h_{i}\left(X, U_{j}\right)+\nabla_{X} \lambda_{i j}+\sum_{k} \lambda_{i k} \mu_{k j}(X)+\sum_{k} \lambda_{j k} \mu_{k i}(X)=0 \tag{2.2}
\end{align*}
$$

from (2.1), we know that if M is totally geodesic, then an equation $\nabla_{X} \psi=0$ holds good. Conversely, we have the following theorem
Theorem 2.1:
Let \bar{M} be an almost para contact Riemannian manifold with a structure (φ, ξ, η, G) and M a sub manifold of \bar{M} satisfying $\bar{\nabla}_{i_{X} X} \varphi=0$, if $U_{i}(i=1,2, \ldots \ldots, S)$ is linearly independent and $\nabla_{X} \psi=0$, then M is totally geodesic.
Proof:
If $\nabla_{X} \psi=0$, then we have from (2.1)
$\sum_{i} u_{i}(Y) H_{i} \mathrm{X}+\sum_{i} h_{i}(\mathrm{X}, Y) U_{i}=0$.
from which,
$\sum_{i} u_{i}(Y) h_{i}(\mathrm{X}, Z)+\sum_{i} u_{i}(Z) h_{i}(\mathrm{X}, Y)=0, \quad X, Y, Z \in \mathcal{X}(M)$
that is

$$
\sum_{i} u_{i}(Y) h_{i}(\mathrm{X}, Z)=-\sum_{i} u_{i}(Z) h_{i}(\mathrm{X}, Y)
$$

Thus, we know that $\sum_{i} u_{i}(Y) h_{i}(X, Z)$ is symmetric and at the same time skew symmetric in X, Y. Therefore we have $\sum_{i} u_{i}(Y) h_{i}(X, Z)=0$ and consequently we get $h_{i}(\mathrm{X}, Z)=0$ because $U_{i}(i=1,2, \ldots, S)$ are linearly independent. Let $\left\{e_{1}, e_{2}, \ldots ., e_{n}\right\}$ be an orthonormal basis of $T_{P}(M)$ at any point $P \in M$. Then a trace of the matrix (ψ) is given by an equation

$$
T_{r}(\psi)=\sum_{\lambda=1}^{n} g\left(\psi e_{\lambda}, e_{\lambda}\right),
$$

where Greek indices takes values $1,2, \ldots . ., n$.

Theorem 2.2:

$\nabla_{\mathrm{X}} T_{r}(\psi)=T_{r}\left(\nabla_{X} \psi\right)$,
Proof:

$$
\begin{aligned}
\nabla_{\mathrm{X}} T_{r}(\psi) & =\nabla_{\mathrm{X}} \sum_{\lambda} g\left(\psi e_{\lambda}, e_{\lambda}\right) \\
& \left.=\sum_{\lambda} \mathbf{f o r}_{X} \psi \mathbf{@}_{\boldsymbol{\lambda}}, e_{\lambda}\right)+2 g\left(\psi e_{\lambda}, \nabla_{X} e_{\lambda}\right) \boldsymbol{r} \\
& =T_{r}\left(\nabla_{X} \psi\right)+2 \sum_{\lambda} g\left(\psi e_{\lambda}, \nabla_{X} e_{\lambda}\right) .
\end{aligned}
$$

Now we get

$$
\begin{aligned}
\psi e_{\lambda}= & \sum_{\mu} f_{\lambda \mu} e_{\mu}, \quad \nabla_{\mathrm{X}} e_{\lambda}=\sum_{\mu} l_{\lambda \mu} e_{\mu}, \\
& \text { Then we can see easily that } f_{\lambda \mu}=f_{\mu \lambda}, l_{\lambda \mu}+l_{\mu \lambda}=0 \text { hold good. Therefore } \\
& \sum_{\lambda} g\left(\psi e_{\lambda}, \nabla_{\mathrm{x}} e_{\lambda}\right)=\sum_{\lambda} g \sum_{\mu} f_{\lambda \mu} e_{\mu}, \sum_{V} l_{\lambda V} e_{V}=\sum_{\lambda} \sum_{\mu} \sum_{V} f_{\lambda \mu} l_{\lambda V} \delta_{\mu V}=\sum_{\lambda} \sum_{\mu} f_{\lambda \mu} l_{\lambda \mu}=0 \\
& \text { thus we get } \nabla_{\mathrm{x}} T_{r}(\psi)=T_{r}\left(\nabla_{\mathrm{x}} \psi\right) .
\end{aligned}
$$

III. Submanifolds of a P-Sasakian Manifold:

Let \bar{M} be an m-dimensional Riemannian manifold, G be a positive definite metric and $\bar{\nabla}$ be the operator of Covariant differentiation. We suppose that there exists on \bar{M} a vector field ξ and a 1 -form η satisfying.
(3.1)
$\eta(\xi)=1$,
$\eta(\bar{X})=G(\xi, \bar{X})$,
$\bar{X} \in \mathcal{X}(\bar{M})$
when equations,

$$
\begin{align*}
& G\left(\bar{\nabla}_{\bar{X}} \xi, \bar{Y}\right)=G\left(\bar{\nabla}_{\bar{y}} \xi, \bar{X}\right), \quad \bar{X}, \bar{Y} \in \mathcal{X}(\bar{M}), \tag{3.2}\\
& \bar{\nabla}_{X} \bar{\nabla}_{y} \xi-\bar{\nabla}_{z} \xi=-G(\bar{X}, \bar{Y}) \xi-G(\xi, \bar{Y}) \bar{X}+2 \eta(\bar{X}) \eta(\bar{Y}) \xi, \tag{3.3}
\end{align*}
$$

Where $\bar{Z}=\bar{\nabla}_{\bar{X}} \bar{Y}$, holds good, \bar{M} is said to be a P-Sasakian mani fold. If we suppose that φ is a $(1,1)$ tensor field, which represents a linear mapping : $\mathcal{X}(\bar{M}) \in \bar{X} \rightarrow \bar{\nabla}_{\bar{X}} \xi$, that is,

$$
\begin{equation*}
\varphi \bar{X}=\bar{\nabla}_{\bar{X}} \xi \tag{3.4}
\end{equation*}
$$

then, equation (3.2) and (3.3) become

$$
\begin{align*}
& G(\varphi \bar{X}, \overline{\bar{Y}})=G(\bar{X}, \varphi \bar{Y}), \tag{3.5}\\
& \boldsymbol{E}_{\bar{X}} \varphi \mathbf{\emptyset}=-G(\bar{X}, \bar{Y}) \xi-G(\xi, \bar{Y}) \bar{X}+2 \eta(\bar{X}) \eta(\bar{Y}) \xi \\
& \left.\quad=-\mathbf{A} \overline{\mathbf{x}}+\eta(\bar{X}) \xi \boldsymbol{r}_{\eta(\bar{Y})}\right)+\mathbf{W}(\bar{X}, \bar{Y})+\eta(\bar{X}) \eta(\bar{Y}) \boldsymbol{r} \xi
\end{align*}
$$

respectively, [4]. Differentiating $\eta(\xi)=1$ covariantly, we have $\varphi \xi=0$. Further more, differentiating this equation covariantly, we get $\varphi^{2} \bar{X}=\bar{X}-\eta(\bar{X}) \xi$, from which we have (1.4)

Theorem 3.1:

Let \bar{M} be a P-Sasakian manifold admitting a vector filed ξ and a 1 -form η which satisfy (3.1). If we denote by $\varphi a(1,1)$ tensor field which represents a linear mapping : $\mathcal{X} \bar{M} \ni \bar{X} \mapsto \bar{\nabla}_{X} \xi$, then (φ, ξ, η, G) is an almost para contact metric structure.

Hereafter, in the P-Sasakian manifold \bar{M}. Let M be a sub manifold of dimension $n(m-n=S)$ immersed in the P-Sasakian manifold \bar{M} and g be the induced metric. from (3.4) and (1.6), we have

$$
\begin{equation*}
\bar{\nabla}_{i_{*} X} \xi=i_{*} \psi X+\sum_{i} u_{i}(X) N_{i} \tag{3.7}
\end{equation*}
$$

Therefore from,

$$
\bar{\nabla}_{i_{*} X} \xi=i_{*}\left(\nabla_{X} V-\sum_{i} \alpha_{i} H_{i} X\right)+\sum_{j} \boldsymbol{\not} \boldsymbol{\psi}(X, V)+\nabla_{X} \alpha_{j}+\sum_{i} \alpha_{i} \mu_{i j}(X) \boldsymbol{V}
$$

we get

$$
\begin{align*}
& \psi X=\nabla_{X} V-\sum_{i} \alpha_{i} H_{i} X, \quad X \in \mathcal{X}(M) \tag{3.8}\\
& u_{j}(X)=h_{j}(X, V)+\nabla_{X} \alpha_{j}+\sum_{i} \alpha_{i} \mu_{i j}(X) \tag{3.9}
\end{align*}
$$

Making use of (3.9), we have
Theorem 3.2:
Let M be sub manifold of an almost para contact Riemannian manifold \bar{M} with a structure (φ, ξ, η, G) satisfying (3.4). If M is totally geodesic and ξ is tangent to M, then M is invariant.
from (3.6) we have.

$$
\begin{aligned}
& \widehat{\mathbf{\sigma}}_{i^{*} X} \varphi \boldsymbol{i}=-G\left(i_{*} X, i_{*} Y\right) \xi-\eta\left(i_{*} Y\right) i_{*} X+2 \eta\left(i_{*} X\right) \eta\left(i_{*} Y\right) \xi \\
& \quad=i_{*} \mathbf{K}_{g(X, Y) V-v(Y) X+2 v(X) v(Y) V \boldsymbol{Q} \sum_{i} \alpha_{i} \mathbf{K}^{2}(X, Y)+2 v(X) v(Y) \mathbf{W}_{i}}
\end{aligned}
$$

therefore from

$$
\begin{aligned}
& +\sum_{i} \boldsymbol{Q}(X, \psi Y)+\left(\nabla_{X} u_{i}\right)(Y)-\sum_{j} \mu_{i j}(X) u_{j}(Y)-\sum_{j} \lambda_{i j} h_{j}(X, Y) \mathbf{V}
\end{aligned}
$$

we get
(3.10)

$$
\mathbf{D}_{x} \psi-\sum_{i} u_{i}(Y) H_{i} X-\sum_{i} h_{i}(X, Y) U_{i}=-g(X, Y) V-g(V, Y) X+2 v(X) v(Y) V .
$$

Similarly, because we have from (3.6)

$$
\boldsymbol{\sigma}_{i^{*} X} \varphi \boldsymbol{N}_{i}=i_{*} \alpha_{i} \mathbf{K}_{X+2 v(X) V} \mathbf{Q}_{2 \sum_{i} \alpha_{i} \alpha_{j} v(X) N_{j}, ~}^{\text {, }}
$$

We find
${ }_{\text {(3.11) }} h_{j}\left(X, U_{i}\right)+h_{i}\left(X, U_{j}\right)+\nabla_{X} \lambda_{i j}+\sum_{k} \lambda_{i k} \mu_{k j}(X)+\sum_{k} \lambda_{j k} \mu_{k i}(X)=2 \alpha_{i} \alpha_{j} v(X)$
by

$$
\begin{aligned}
& \widehat{\mathbf{G}}_{i^{*} X} \varphi \boldsymbol{\aleph}_{i}=i_{*} \boldsymbol{母}_{X} U_{i}+\psi H_{i} X-\sum_{j} \mu_{i j}(X) U_{j}-\sum_{j} \lambda_{i j} H_{j} X \mathbf{W} \\
& \quad+\sum_{j}\left\{h_{j}\left(X, U_{i}\right)+h_{i}\left(X, U_{j}\right)+\nabla_{X} \lambda_{i j}+\sum_{k} \lambda_{i k} \mu_{k j}(X)+\sum_{k} \lambda_{j k} \mu_{k i}(X)\right\} N_{j}
\end{aligned}
$$

Now, we put

$$
\begin{equation*}
\tilde{\psi}(X, Y)=\boldsymbol{Q}_{x} \psi \mathbf{G}-\mathbf{K}_{g(X, Y) V-g(V, Y) X+2 v(X) v(Y) V \mathbf{F}} \tag{3.12}
\end{equation*}
$$

then from (3.10) we have

$$
\begin{equation*}
\widetilde{\psi}(X, Y)=\sum_{i} u_{i}(Y) H_{i} X+\sum_{i} h_{i}(X, Y) U_{i} \tag{3.13}
\end{equation*}
$$

When $\widetilde{\Psi}(X, Y)=0$ we have the following theorem:

Theorem 3.3:

Let \bar{M} be a p-Sasakian manifold with a structure (φ, ξ, η, G), M be a sub manifold immersed in \bar{M} and ξ be not tangent to M. If $U_{i}(i=1,2, \ldots ., S)$ are linearly independent and
(3.14) $\quad\left(\nabla_{X} \psi\right) Y=-g(X, Y) V-g(V, Y) X+2 v(X) v(Y) V$.

Then M is totally geodesic
Proof:
From (3.13) and (3.14) we have
$\sum_{i} u_{i}(Y) H_{i} X+\sum_{i} h_{i}(X, Y) U_{i}=0$,
From which, we find $h_{i}(X, Y)=0$ (See proof of theorem 2.1)

Note :

When $\nabla_{X} \alpha_{j}+\sum_{i} \alpha_{i} \mu_{i j}(X)=0$, If M is totally geodesic, then we have $u_{j}(X)=0$ by virtue of (3.9) therefore in this case, theorem (3.3) is not true.

IV. Submanifolds of SP-Sasakian Manifolds:

Let \bar{M} be an m-dimensional Riemannian manifold. We suppose that there exist on \bar{M} a vector field ξ and a 1 -form η satisfying (3.1) When an equation

$$
\begin{equation*}
\bar{\nabla}_{x} \xi=\varepsilon(\bar{X}-\eta(\bar{X}) \xi)(\varepsilon= \pm 1), \quad \bar{X} \in \mathcal{X}(\bar{M}) \tag{4.1}
\end{equation*}
$$

holds good, \bar{M} is said to be an SP- Sasakian manifold. Since from (4.1) we can get (3.2) and (3.3), an SPSasakian manifold is a P-Sasakian manifold. if we suppose that a (1,1) tensor field φ satisfies (3.4), then (φ, ξ, η, G) is an almost Para contact metric structure. In this section, we suppose that \bar{M} is an SP-Sasakian manifold admitting $a(1,1)$ tensor field φ which satisfies (3.4).
from (4.1) we have

$$
\bar{\nabla}_{i_{*} X} \xi=\varepsilon\left(i_{*} X-\eta\left(i_{*} X\right) \xi\right)=\varepsilon \boldsymbol{\mathcal { q }}(X-v(X) V)-\sum_{j} \alpha_{j} v(X) N_{j}
$$

By mean of (3.7), we get

$$
\begin{align*}
& \psi X=\varepsilon(X-v(X) V), \tag{4.2}\\
& u_{j}(X)=-\varepsilon \alpha_{j} v(X), \tag{4.3}
\end{align*}
$$

V. Linear Independence of Vector Fields \boldsymbol{U}_{i} :

Let M be a sub manifold immersed in an almost paracontact Riemannian manifold \bar{M} with a structure $(\varphi, \xi, \eta, \mathrm{G})$. We transform the orthonormal basis $\left\{N_{1}, N_{2}, \ldots \ldots, N_{S}\right\}$ of $T_{P}(M)^{\perp}$ to another orthonormal basis M, $\bar{N}_{2}, \ldots . ., \bar{N}_{S} \boldsymbol{\Gamma}$ of $T_{P}(M)^{\perp}$ [7]. We put

$$
\bar{N}_{l}=\sum_{j=1}^{S} K_{j l} N_{j}
$$

Then, $\left(K_{j}\right)$ is an orthogonal matrix and we have

$$
N_{j}=\sum_{l=1}^{S} K_{j l} \bar{N}_{l}
$$

making use of $\$ M $, \bar{N}_{2}, \ldots \ldots, \bar{N}_{S} \boldsymbol{r}$, we get

$$
\begin{align*}
& \varphi i_{*} X=i_{*} \psi X+\sum_{l} \bar{u}_{l}(X) \bar{N}_{l}, \\
& \varphi \bar{N}_{l}=i_{*} \bar{U}_{l}+\sum_{h} \bar{\lambda}_{l h} \bar{N}_{h}, \\
& \xi=i_{*} V+\sum_{l} \bar{\alpha}_{l} \bar{N}_{l}, \tag{5.2}
\end{align*}
$$

Where
$\bar{U}_{l}(X)=\sum_{i} K_{i l} u_{i}(X), \quad \bar{U}_{l}=\sum_{i} k_{i l} U_{i}, \quad \bar{\lambda}_{l h}=\sum_{i, j} k_{i l} \lambda_{i j} k_{j h}, \bar{\alpha}_{l}=\sum_{i} k_{i l} \alpha_{i}$,

By a suitable transformation of the orthonormal basis $\left\{N_{1}, N_{2}, \ldots, N_{S}\right\}$, we can get $\bar{\lambda}_{i j}=\lambda_{i} \delta_{i j}$,

Where λ_{i} are eigen values of the matrix $\left(\lambda_{i j}\right)$. In this case, we have

$$
\begin{align*}
& \varphi \bar{N}_{l}=i_{*} \bar{U}_{l}+\lambda_{l} \bar{N}_{l}, \tag{5.3}\\
& \bar{u}_{j} \boldsymbol{U}_{j}^{\dagger} \overline{\mathbf{I}}=1-\bar{\alpha}_{j}^{2}-\lambda_{j}^{2}, \tag{5.4}\\
& \bar{u}_{k} \boldsymbol{C}_{j}^{-} \mathbf{A}-\bar{\alpha}_{k} \bar{\alpha}_{j} \quad(k \neq j) \tag{5.5}
\end{align*}
$$

VI. Anti Invariant Submanifolds of an Almost Paracontact Riemannian Manifold:

Let M be an anti invariant sub manifold immersed in an almost paracontact Riemannian manifold \bar{M}. Then since, we have $\psi=0$, from

$$
\begin{gathered}
\psi^{2} X=X-v(X) V-\sum_{i=1}^{S} u_{i}(X) U_{i}, \text { we get } \\
X-v(X) V-\sum_{i} u_{i}(X) U_{i}=0 .
\end{gathered}
$$

From which

$$
g(X, X)-v(X)^{2}-\sum_{i} u_{i}(X)^{2}=0
$$

Substituting $X=e_{\lambda}$ and summing up in λ, we get

$$
\begin{equation*}
(S+1)-n=2 \sum_{j} \alpha_{j}^{2}+\sum_{i, j} \lambda_{i j}^{2} \tag{6.1}
\end{equation*}
$$

by virtue of

$$
u_{k}\left(U_{j}\right)=\delta_{k j}-\alpha_{k} \alpha_{j}-\sum_{i=1}^{S} \lambda_{k i} \lambda_{j i}, \text { and } v(V)=1-\sum_{i=1}^{S} \alpha_{i}^{2},
$$

Thus we have $\eta \leqq S+1$,
When $n=S+1$, from (6.1), we have
$\lambda_{i j}=0$,

$$
\alpha_{j}=0
$$

Consequently, we have $\varphi T_{P}(M)^{\perp} \subset T_{P}(M)$ and ξ is tangent to M. Thus, by means of $u_{k}\left(U_{j}\right)=\delta_{k j}-\alpha_{k} \alpha_{j}-\sum_{i=1}^{S} \lambda_{k i} \lambda_{j i}, u_{i}(V)+\sum_{j=1}^{S} \alpha_{j} \lambda_{j i}=0$, and $v(V)=1-\sum_{i=1}^{S} \alpha_{i}^{2}$, we know that U_{i} $(i=, 1,2 \ldots . ., \mathrm{S}), V$ are mutually orthogonal unit vector fields.

In an almost para contact Riemannian manifold \bar{M}, when the equation

$$
\begin{equation*}
\varphi \bar{X}=\bar{\nabla}_{\bar{X}} \xi \tag{6.2}
\end{equation*}
$$

holds good, \bar{M} is a said to be a special para contact Riemannian manifold [4], If M is an anti-invariant submanifold of dimension $n=S+1$, then we have
$\nabla_{X} V=0, u_{j}(X)=h_{j}(X, V)$

VII. Transformation of the Orthonormal Basis $\left\{N_{i}\right\}$ of $\boldsymbol{T}(M)^{\perp}$:

Let M be a sub manifold immersed in an almost para contact Riemannian manifold \bar{M} and $\left\{N_{1}\right.$, $\left.N_{2}, \ldots . ., N_{S}\right\}$ be an orthonormal basis of the normal space $T_{P}(M)^{\perp}$ at $P \in M$ [7]. We assume that M/, $\bar{N}_{2}, \ldots, \bar{N}_{S} \boldsymbol{r}$ is the another orthonormal basis of $T_{P}(M)^{\perp}$ and put

$$
\begin{equation*}
\bar{N}_{i}=\sum_{l=1}^{S} k_{l i} N_{l} \tag{7.1}
\end{equation*}
$$

By means of $G\left(\bar{N}_{i}, \bar{N}_{j}\right)=\sum_{l=1}^{S} k_{l i} k_{l j}$, we have $\sum_{l=1}^{S} k_{l i} k_{l j}=\delta_{i j}, \quad$ from \quad which $\sum_{h=1}^{S} k_{i h} k_{j h}=\delta_{i j}$. Consequently a matrix $\left(k_{i j}\right)$ is an orthonogonal matrix. Thus from (7.1), we have $N_{j}=\sum_{l=1}^{S} k_{j l} \bar{N}_{l}$.

Making use of (7.1), equations (1.6), (1.7) and (1.8) are respectively written in the following forms:

$$
\begin{align*}
& \varphi i_{*} X=i_{*} \psi X+\sum_{l=1}^{S} \bar{u}_{l}(X) \bar{N}_{l} \\
& \varphi \bar{N}_{l}=i_{*} \bar{U}_{l}+\sum_{h=1}^{S} \bar{\lambda}_{l h} \bar{N}_{h} \tag{7.2}\\
& \xi=i_{*} V+\sum_{l=1}^{S} \bar{\alpha}_{l} \bar{N}_{l}
\end{align*}
$$

where

$$
\begin{align*}
& u_{l}(X)=\sum_{i=1}^{S} k_{i l} u_{i}(X), \quad \bar{U}_{l}=\sum_{i=1}^{S} k_{i l} U_{i} \tag{7.3}\\
& \bar{\lambda}_{l h}=\sum_{i, j=1}^{S} k_{i l} \lambda_{i j} k_{j h}, \quad \bar{\lambda}_{l h}=\bar{\lambda}_{h l}, \tag{7.4}\\
& \bar{\alpha}_{l}=\sum_{i=1}^{S} k_{i l} \alpha_{i}
\end{align*}
$$

By virtue of (7.3), the linear independence of vectors $U_{i}(i=1,2, \ldots \ldots, S)$ is invariant under the transformation (7.1) of the orthonormal basis $\left\{N_{1}, N_{2}, \ldots, N_{S}\right\}$.

Further more, because $\lambda_{i j}$ is symmetric in i and j, from (7.4) we can find that under a suitable transformation (7.1) $\lambda_{i j}$ reduces to $\bar{\lambda}_{i j}=\lambda_{i} \delta_{i j}$, where $\lambda_{i}(i=1,2, \ldots, s)$ are eigen values of matrix ($\lambda_{i j}$). In this case (7.2) and

$$
\begin{gather*}
u_{k}\left(U_{j}\right)=\delta_{k j}-\alpha_{k} \alpha_{j}-\sum_{i=1}^{S} \lambda_{k i} \lambda_{j i}, \text { are respectively written in the next forms: } \\
\varphi \bar{N}_{l}=i_{*} \bar{U}_{l}+\lambda_{l} \bar{N}_{l} \\
\bar{u}_{k}\left(\bar{U}_{j}\right)=\delta_{k j}-\bar{\alpha}_{k} \bar{\alpha}_{j}-\lambda_{k} \lambda_{j} \delta_{k j} \tag{7.5}
\end{gather*}
$$

from which we have
$\bar{u}_{j}\left(\bar{U}_{j}\right)=1-\bar{\alpha}_{j}^{2}-\lambda_{j}^{2}$ and $\bar{u}_{k}\left(\bar{U}_{j}\right)=-\bar{\alpha}_{k} \bar{\alpha}_{j}(k \neq j)$

VIII. Invariant Submanifolds of an Almost Paracontact Riemannian Manifold :

Let M be a sub manifold immersed in an almost paracontact Riemannian manifold \bar{M}. If $\varphi T_{P}(M) \subset$ $T_{P}(M)$ for any point $P \in M$, then M is called an invariant submanifold. In an invariant submanifold M, equations (1.6), (1.7) and (1.8) are written in the following forms:

$$
\begin{align*}
& \varphi i_{*} X=i_{*} \psi X, \quad X \in \mathcal{X}(M) \tag{8.1}\\
& \varphi N_{i}=\sum_{j=1}^{S} \lambda_{i j} N_{j} \tag{8.2}\\
& \xi=i_{*} V+\sum_{i=1}^{S} \alpha_{i} N_{i} \tag{8.3}
\end{align*}
$$

Lemma 8.1:
In an invariant submanifold M which is immersed in an almost paracontact Riemannian manifold \bar{M}, the following equations hold good.

$$
\begin{align*}
& \psi^{2}=1-v \otimes V, \tag{8.4}\\
& \alpha_{i} V=0 .
\end{align*}
$$

$$
\begin{align*}
& \delta_{k j}-\alpha_{k} \alpha_{j}-\sum_{i=1}^{S} \lambda_{k i} \lambda_{j i}=0 . \tag{8.6}\\
& \psi V=0 \tag{8.7}\\
& \sum_{i=1}^{S} \alpha_{i} \lambda_{i j}=0 \tag{8.8}\\
& v(V)=1-\sum_{i=1}^{S} \alpha_{i}^{2} \tag{8.9}\\
& g(\psi X, \psi Y)=g(X, Y)-v(X) v(Y), \quad X, Y \in \mathcal{X}(M) . \tag{8.10}
\end{align*}
$$

From (8.5) and (8.9), we get the following two cases: When $\mathrm{V}=0$ (or $\sum_{i} \alpha_{i}^{2}=1$), that is, ξ normal to M, since from (8.4) and (8.10) we have $\psi^{2}=I, g(\psi X, \psi Y)=g(X, Y),(\psi, g)$ is an almost product metric structure when ever ψ is non-trivial.
when $V \neq 0$ (or $\alpha_{i}=0$), that is, ξ is tangent to M, by means of (8.4), (8.9), (8.10) and $v(X)=g(V, X),(\psi, V, v, g)$ is an almost para contact metric structure. Thus we have

Theorem 8.1:

Let M be an invariant sub manifold immersed in an almost para contact Riemannian manifold \bar{M} with a structure (φ, ξ, η, G). Then one of the following cases occurs T. Miya Zawa[6].
Case (I) : $\quad \xi$ is normal to M. In this case, the induced structure (ψ, g) on M is an almost product metric structure when ever ψ is non-trivial.
Case (II): $\quad \xi$ is tangent to M . In this case, the induced structure $(\psi, \mathrm{V}, \nu, g)$ is an almost para contact metric structure.
Furthermore, we have the following theorems:

Theorem 8.2:

In order that, in an almost para contact. Riemannian manifold M with a structure (φ, ξ, η, G) the submanifold M of \bar{M} is invariant, it is necessary and sufficient that the induced structure (ψ, g) on M is an almost product metric structure when ever ψ is non-trivial or the induced structure (ψ, V, v, g) on M is an almost paracontact metric structure.

Proof:

From theorem 8.1, the necessity is evident conversely, we first assume that the induced structure (ψ, g) is an almost product metric structure. Then from equation (c)

$$
\begin{equation*}
\psi^{2} X=X-v(X) V-\sum_{i=1}^{S} u_{i}(X) U_{i} \text { or } \psi^{2}=I-v \otimes V-\sum_{i=1}^{S} u_{i} \otimes U_{i}, X \in \mathcal{H}(M) \tag{c}
\end{equation*}
$$

We have $v(X) V+\Sigma_{i} u_{i}(X) U_{i}=0$ from which $g\left(v(X) V+\Sigma_{i} u_{i}(X) U_{i}, X\right)=0$ that is $v(X)^{2}+\Sigma_{i} u_{i}(X)^{2}=0$. Consequently, since we get $v(X)=u_{i}(X)=0(i=1,2, \ldots ., s)$ the submanifold M is invariant and ξ is normal to M.

Next, we assume that the induced structure (ψ, V, ν, g) is an almost para contact metric structure. Then, from Equation (c) we have $\Sigma_{i} u_{i}(X) U_{i}=0$, from which $u_{i}(X)=0(i=1,2, \ldots, s)$ and from Equation (d).

$$
\begin{equation*}
u_{j}(\psi X)+\sum_{i=1}^{S} \lambda_{j i} u_{i}(X)+\alpha_{j} v(X)=0 \tag{d}
\end{equation*}
$$

We get $\alpha_{\mathrm{i}}=0$, thus M is invariant and ξ is tangent to M.

IX. Paracontact Riemannian Manifolds and P-Sasakian Manifolds:

Let \bar{M} be an almost paracontact Riemannian manifold with a structure (φ, ξ, η, G). If we put $\Phi(\bar{X}, \bar{Y})=G(\varphi \bar{X}, \bar{Y})$ for $\bar{X}, \bar{Y} \in \mathcal{X}(\bar{M})$, then from (1.5) we have $\Phi(\bar{X}, \bar{Y})=\Phi(\bar{Y}, \bar{X})$.

We denote by $\bar{\nabla}_{X}$ the operator of covariant differentiation with respect to G along the vector field \bar{X}. For a vector field \bar{Y}, the covariant derivative $\bar{\nabla}_{X} \bar{Y}$ of \bar{Y}, has local components $\bar{X}^{\mu} \bar{\nabla}_{\mu} \bar{Y}^{\lambda}$, where \bar{X}^{μ} and \bar{Y}^{μ} are the local components of \bar{X} and \bar{Y} respectively and Greek indices λ, μ, ν take values 1,2,....., m.

When the equation

$$
\begin{equation*}
2 \Phi(\bar{X}, \bar{Y})=\left(\bar{\nabla}_{x} \eta\right)(\bar{Y})+\left(\bar{\nabla}_{y} \eta\right)(\bar{X}) \tag{9.1}
\end{equation*}
$$

holds good, \bar{M} is called a Para contact Riemannian manifold and (φ, ξ, η, G) a Para contact metric structure.
Especially, If the equation $\left(\bar{\nabla}_{\bar{X}} \eta\right)(\bar{Y})=\left(\bar{\nabla}_{\bar{Y}} \eta\right)(\bar{X})$ holds good, then we have $\Phi(\bar{X}, \bar{Y})=\left(\bar{\nabla}_{\bar{X}} \eta\right)(\bar{Y})$
Consequently,

$$
G(\varphi \bar{X}, \bar{Y})=\bar{\nabla}_{\bar{X}} \eta(\bar{Y})-\eta\left(\bar{\nabla}_{\bar{X}} \bar{Y}\right)=\bar{\nabla}_{\bar{X}} G(\xi, \bar{Y})-\eta\left(\bar{\nabla}_{\bar{X}} \bar{Y}\right)=G\left(\bar{\nabla}_{\bar{X}} \xi, \bar{Y}\right)
$$

Thus we find

$$
\begin{equation*}
\varphi \bar{X}=\bar{\nabla}_{\bar{X}} \xi \tag{9.2}
\end{equation*}
$$

when the above equation holds good, \bar{M} is called a special paracontact Riemannian manifold and (φ, ξ, η, G) is referred as a special contact metric structure [1].

Now, we assume that \bar{M} is a special paracontact Riemannian manifold. If the equation

$$
\begin{equation*}
\left(\bar{\nabla}_{\bar{X}} \varphi\right) \bar{Y}=-G(\bar{X}, \bar{Y}) \xi-G(\xi, \bar{Y}) \bar{X}+2 \eta(\bar{X}) \eta(\bar{Y}) \xi, \tag{9.3}
\end{equation*}
$$

holds good where $G(\xi \bar{y})=\eta(\bar{y})$, then \bar{M} is called a P-sasakian (or para Sasakian) manifold . By using local Components (9.2) and (9.3) are written as follows:
$\varphi_{\mu}^{\lambda}=\bar{\nabla}_{\mu} \xi^{\lambda}, \quad \bar{\nabla}_{v} \bar{\nabla}_{\mu} \xi^{\lambda}=\left(-G_{v \mu}+\eta_{v} \eta_{\mu}\right) \xi^{\lambda}+\mathbf{C} \delta_{v}^{\lambda}+\eta_{v} \xi^{\lambda} \mathbf{h}_{\mu}$
where $\varphi_{\mu}^{\lambda}, \xi^{\mu}, \eta_{\mu}$ and $G_{\mu \lambda}$ are local components of φ, ξ, η and G respectively, moreover, in a special para contact Riemannian manifold \bar{M}, if the equation

$$
\begin{equation*}
\varphi \bar{X}=\bar{\nabla}_{X} \xi=\varepsilon(\bar{X}-\eta(\bar{X}) \xi) \quad(\varepsilon= \pm 1), \text { i.e., } \varphi=\varepsilon(I-\eta \otimes \xi) \tag{9.4}
\end{equation*}
$$

holds good, then \bar{M} is called an SP-Sasakian (or special para Sasakian) manifold. It is clean that (9.4) satisfies (9.3).

X. An Almost r-paracontact Riemannian Manifold:

Let \bar{M} be an m-dimensional Riemannian manifold with a positive definite metric G. If there exist a (1,1)-tensor field ψ on \bar{M}, r vector fields $\xi_{1}, \ldots, \xi_{r}(r<m), r 1$-forms $\eta_{1}, \ldots, \eta_{r}$ such that

$$
\begin{align*}
& \eta_{X}\left(\xi_{y}\right)=\delta_{x y}(X, Y=1, \ldots, r) \tag{10.1}\\
& \psi^{2}=I-\sum_{x=1}^{r} \eta_{x} \otimes \xi_{x}, \tag{10.2}\\
& \eta_{x}(\bar{X})=G\left(\xi_{x}, \bar{X}\right), \tag{10.3}\\
& G(\psi \bar{X}, \psi \bar{Y})=G(\bar{X}, \bar{Y})-\sum_{X=1}^{r} \eta_{X}(\bar{X}) \eta_{X}(\bar{Y}), \tag{10.4}
\end{align*}
$$

where \bar{X}, \bar{Y} are any vector fields on \bar{M}, then ($\psi, \xi_{1} \ldots, \xi_{r}, \eta_{1}, \ldots \eta_{r}, G$) is said to be an almost r-paracontact Riemannian structure on \bar{M} and \bar{M} an almost r-paracontact Riemannian manifold, [5]. This structure is written $\left(\psi, \xi_{x}, \eta_{x}, G\right)$ for short.

Theorem:

In an almost r-para contact Riemannian manifold with the structure $\left(\psi, \xi_{x}, \eta_{x}, G\right)$, the following equations hold good:
(10.5)
(a) $\psi \xi_{x}=0$
(b) $\quad \eta \circ \psi=0$,

$$
\begin{equation*}
\Phi(\bar{X}, \bar{Y})^{\operatorname{def}}=G(\psi \bar{X}, \bar{Y})=G(\bar{X}, \psi \bar{Y}) \tag{10.6}
\end{equation*}
$$

Proof:
(10.5) (a) using (10.4), we get
$G\left(\psi \xi_{X}, \psi \xi_{X}\right)=G\left(\xi_{X}, \xi_{X}\right)-\sum_{y} \eta_{y}\left(\xi_{X}\right) \eta_{y}\left(\xi_{X}\right)=0$,
From which, we have $\psi \xi_{x}=0$
(10.5) (b) using (10.2) for $\psi^{2}(\psi \bar{X})=\psi\left(\psi^{2} \bar{X}\right)$, we have

$$
\psi \bar{X}-\sum \eta_{x}(\psi \bar{X}) \xi_{X}=\psi\left(\bar{X}-\sum \eta_{X}(\bar{X}) \xi_{X}\right)
$$

from which, we obtain $\sum \eta_{x}(\psi \bar{X}) \xi_{X}=0$ Virtue of (10.5) (a) Since $\xi_{1}, \ldots ., \xi_{r}$ are linearly independent, we have $\eta_{x}(\psi \bar{X})=0$, that is $\eta_{x} \circ \psi=0$ (10.6) Using (10.2) and (10.4) for $G\left(\psi \bar{X}, \psi^{2} \bar{Y}\right)$, the equation (10.6) is easily verified.

It is obvious that ψ satisfies $\psi^{3}-\psi=0$. Because of (10.1) and (10.5) a), r vector fields ξ_{1}, \ldots, ξ_{r} are the mutualy orthogonal eigen vectors of a matrix (ψ) and their eigen values are all equal to 0 . Since a matrix (Φ) is symmetric, the eigen values of the matrix (ψ) are all real. If we denote by ζ the eigen vector orthogonal to ξ_{X} $(X=1, \ldots, r)$ and by a its eigen value, then we have $\psi \zeta=\alpha \zeta$ therefore, we get $\psi^{2} \zeta$ - $\alpha^{2} \zeta$. Accordingly, we see that the eigen values of (ψ) are $0, \pm 1$, where the multiplicity of 0 is equal to r and hence $\operatorname{rank}(\psi)=m \rightarrow r$.

If we denote by $\bar{\nabla}$ a Riemannian connection, then the torsion tensor \bar{N} for ψ may be expressed as follows [5],[9].

$$
\begin{align*}
& \bar{N}(\bar{X}, \bar{Y})=\left(\bar{\nabla}_{\psi \bar{y}} \psi\right) \bar{X}-\left(\bar{\nabla}_{\bar{X}} \psi\right) \psi \bar{Y}-\left(\bar{\nabla}_{\psi \bar{X}} \psi\right) \bar{Y}+\left(\bar{\nabla}_{\bar{y}} \psi\right) \psi \bar{X} \tag{10.7}\\
& +\sum_{X} \eta_{X}(\bar{X}) \bar{\nabla}_{\bar{y}} \xi_{X}-\sum_{X} \eta_{X}(\bar{Y}) \bar{\nabla}_{\bar{X}} \xi_{X}
\end{align*}
$$

when the torsion tensor for ψ vanishes, the almost r-para contact Riemannian manifold, or its structure is said to be normal.

XI. Conformally flat submanifolds:

Let $M^{m}(m>3)$ be a Riemannian manifold covered by coordinate neighbourhoods (U, x^{h}) the indices $h, i, j, k \ldots$. running over the range $1,2 \ldots, m$. Let $g_{i j}, \nabla_{h}, K_{k j i}^{h}, k_{j i}$ and R denote the metric tensor, the Riemannian connection, the curvature tensor, the Ricci tensor and the scalar curvature of M^{m} respectively. Let $M^{n}(n \geqq 3)$ be a submanifold of M^{m} and be covered by a system of coordinate neighbourhoods (V, u^{a}) the indices a, b, c, \ldots. running over the range $1,2, \ldots, n$. The immersion of M^{n} in M^{m} is locally given by $X^{h}=X^{h}\left(u^{a}\right)$. Let $g_{a b}$, ∇_{b} denote the metric tensor and the Riemannian connection of M^{n} induced from those of M^{m}. We have $g_{c b}=g_{i j} B_{c}^{j} B_{b}^{i}$ when $B_{b}^{i}=\frac{\partial X^{i}}{\partial u^{b}}$ Let $K_{d c b}^{a}, K_{c b}$ and K denote the curvature tensor, the Ricci tensor and the Scalar curvature of M^{n} respectively.

We choose $m-n$ orthogonal unit normal vectors C_{x}^{h}, (the indices x, y, z running over the range ($n+1$, ${ }_{n+2, \ldots, m)}$ in such a way that $\boldsymbol{\widehat { C }}_{a}^{h}, C_{x}^{h} \mathbf{\|}$ from a positively oriented frame of M^{m} along M^{n}. The equations of Gauss and Weingarten are given by.

$$
\begin{equation*}
\nabla_{c} B_{b}^{h}=H_{c b}^{x} C_{x}^{h}, \quad \nabla_{c} C_{x}^{h}=-H_{c x}^{a} B_{a}^{h} \tag{11.1}
\end{equation*}
$$

where $H_{c b}^{x}$ and $H_{b x}^{c}=H_{b a}^{y} g^{a c} g_{y x}$ and are the second fundamental tensors of M^{n} with respect to the normal $C_{x}^{h}, g_{y x}$ being the metric tensor of the normal bundle. The equation of Gauss for M^{n} are

$$
\begin{equation*}
K_{k i j h} B_{d}^{k} B_{c}^{j} B_{b}^{i} B_{a}^{h}=K_{d c b a}-A_{d c b a} \tag{11.2}
\end{equation*}
$$

where we set

$$
\begin{equation*}
A_{d c b a}=H_{c b}^{x} H_{d a x}-H_{d b}^{x} H_{c a x} \tag{11.3}
\end{equation*}
$$

Theorem A:

Let $M^{n}(n>3)$ be a submanifold of a conformally flat Riemannian manifold $M^{m}(m>3)$. Then M^{n} is conformally flat if and only if

$$
\begin{align*}
& A_{d c b a}-\left(g_{d a} A_{c b}-g_{d b} A_{c a}+A_{d a g} g_{c b}-A_{d b} g_{c a}\right) /(n-2) \tag{11.4}\\
& +A\left(g_{d a} g_{c b}-g_{d b} g_{c a}\right) /(n-1)(n-2)=0,
\end{align*}
$$

where $A_{\text {dcba }}$ is given by (11.3) and

$$
\begin{equation*}
A_{d a}=g^{c b} A_{d c b a} \quad A=g^{d a} A_{d a} \tag{11.5}
\end{equation*}
$$

```

\section*{Theorem B:}

Let \(M^{n}(n>3)\) be a totally umbilical submanifold of a conformally flat Riemannian manifold \(M^{m}\) \((m>3)\) then \(M^{n}\) is conformally flat.

\section*{XII. The Main Theorem and its Applications:}

If \(M^{m}(m>3)\) is conformally flat, then the Weyl conformal curvature tensor \(C_{k j i h}=0\) and we have
\[
\begin{equation*}
\nabla_{j} C_{i h}-\nabla_{i} C_{j h}=0 \tag{12.1}
\end{equation*}
\]
where \(C_{i h}=-k_{i h} /(m-2)+R g_{i h} / 2(m-1)(m-2)\). we set
(12.2)
\[
C_{c b a}=\nabla_{c} C_{b a}-\nabla_{b} C_{c a}
\]
where \(C_{b a}\) is defined by a formula similar to the one for \(C_{i j}\) in (12.1)

\section*{Theorem 12.1:}

Let \(M^{n}(n \geqq 3)\) be a submanifold of a Conformally flat Riemannian manifold \(M^{m}(m>3)\). Then
\[
\begin{align*}
C_{c b a}= & \left(\bar{\nabla}_{b} A_{c a}-\nabla_{c} A_{b a}\right) /(n-2)-\left\{\left(\nabla_{b} A\right) g_{c a}-\left(\nabla_{c} A\right) g_{b a}\right\} / 2(n-1)(n-2)  \tag{12.3}\\
& \left.+\mathbf{a}_{b x} H_{c a}^{x}-L_{c x} H_{b a}^{x}\right\},
\end{align*}
\]
where \(A_{c a}\) is given by (11.5) and
\[
\begin{equation*}
L_{c x}=C_{j i} B_{c}^{j} C_{x}^{i} \tag{12.4}
\end{equation*}
\]

Proof:
Since \(M^{m}\) is conformally flat, we have
\[
\begin{equation*}
K_{k j h}=g_{h j} C_{k i}-g_{h k} C_{j i}+C_{h j} g_{k i}-\mathrm{C}_{\mathrm{hk}} \mathrm{~g}_{\mathrm{ji}} \tag{12.5}
\end{equation*}
\]

Transvecting (12.5) with \(B_{d}^{k} \boldsymbol{B}_{c}^{j} \boldsymbol{B}_{b}^{i} \boldsymbol{B}_{a}^{h}\) and using (11.2) we get
\[
\begin{equation*}
K_{d c b a}=A_{d c b a}+g_{c a} P_{d b}-g_{d a} P_{c b}+P_{c a} g_{d b}-P_{d a} g_{c b}, \tag{12.6}
\end{equation*}
\]
where we have set \(P_{c a}=B_{c}^{j} B_{a}^{h} C_{j h}\).Transvecting (12.6) with \(g^{d a}\) and the resulting equation with \(g^{c b}\) we get
\[
\begin{equation*}
K_{c b}=A_{c b}+(2-n) P_{c b}-P g_{c b}, K=A+2(1-n) P, \tag{12.7}
\end{equation*}
\]
where \(P=g^{c b} P_{c b}\) from (12.7) we get
\(C_{c b}=P_{c b}-A_{c b} l(n-2)+A g_{c b} / 2(n-1)(n-2)\)
Hence
\[
\begin{align*}
C_{c b a} & =\nabla_{c} P_{b a}-\nabla_{b} P_{c a}-\left\{\nabla_{c} A_{b a}-\nabla_{b} A_{c a}\right\} /(n-2)  \tag{12.8}\\
& +\left\{\left(\nabla_{c} \mathrm{~A}\right) g_{b a}-\left(\nabla_{b} A\right) g_{c a}\right\} / 2(n-1)(n-2)
\end{align*}
\]

Now transvecting (12.1) with \(B_{c}^{j} B_{b}^{i} B_{a}^{h}\) we obtain
\[
\begin{equation*}
\nabla_{c} p_{b a}-\nabla_{b} p_{c a}=L_{b x} H_{c a}^{x}-L_{c x} H_{b a}^{x} \tag{12.9}
\end{equation*}
\]
where \(L_{c x}\) is defined by (12.4) from (12.8) and (12.9), we obtain (12.3)

\section*{XIII. K-Contact Riemannian Manifold:}

An n-dimensional \(K\)-contact Riemannian manifold \(M\) is a differentiable manifold with a contact metric structure \((\varphi, \xi, \eta, g)\) such that \(\xi\) is a killing vector filed. Therefore, with respect to an arbitrary coordinate neighbourhoods of \(M\), we have the following conditions:
\(\xi^{\lambda} \eta_{\lambda}=1, \varphi_{\mu}^{\lambda} \xi^{\mu}=0, \varphi_{\mu}^{\lambda} \eta_{\lambda}=0, \varphi_{\mu}^{\lambda} \varphi_{v}^{\mu}=-\delta_{v}^{\lambda}+\eta_{\nu} \xi^{\lambda}, g_{\lambda \mu} \xi^{\lambda}=\eta_{\mu}{ }^{2)}\)
where the matrix \(\mathrm{C}_{\lambda}^{\mu} \boldsymbol{j}\) is of rank \(n\)-1. Hereafter, we write \(\eta\) instead of \(\xi\). It is well-known that a K-contact Riemannian manifold is orientable and odd dimensional.

On a K-contact Riemannian manifold the following identities hold good .
\[
\begin{equation*}
\nabla_{\lambda} \varphi_{\mu}^{\lambda}=(n-1) \eta_{\mu}, \quad \nabla_{\lambda} \varphi_{\mu \nu}+R_{\varepsilon \lambda \mu \nu} \eta^{\varepsilon}=0, \tag{13.1}
\end{equation*}
\]
\[
\begin{equation*}
R_{\lambda \mu \nu \varepsilon} \eta^{\lambda} \eta^{\varepsilon}=g_{\mu \nu}-\eta_{\mu} \eta_{\nu}, \quad R_{\lambda \varepsilon} \eta^{\varepsilon}=(n-1) \eta_{\lambda} \tag{13.2}
\end{equation*}
\]
where \(\nabla_{\lambda}\) is the covariant derivative with respect to the metric g and \(R_{\varepsilon v \mu \lambda}\) and \(R_{\mu \lambda}\) denote the Riemannian curvature tensor and the Ricci tensor respectively.

Next, the exterior differential du and co differential \(\delta u\) of p-form \(u\) are given by
\[
\begin{array}{cc}
(d u)_{\mu \lambda_{1} \ldots \lambda_{p}}=\nabla_{\mu} u_{\lambda_{1} \ldots \lambda_{p}}-\sum_{i=1}^{P} \nabla_{\lambda_{i}} u_{\lambda_{i} \ldots \ldots . \hat{\mu} \ldots \ldots \lambda_{p},}^{i} & P \geqq 1, \\
(d u)_{\lambda}=\nabla_{\lambda} u, & P=0, \\
(\delta u)_{\lambda_{2} \ldots \ldots \ldots \lambda_{p}}=-\nabla^{\lambda} u_{\lambda \lambda_{2} \ldots \ldots \lambda_{p}}, & P \geqq 1, \\
\delta u=0, & P=0,
\end{array}
\]

The Laplacian is given by \(\Delta=\mathrm{d} \delta+\delta d\). for a p-form \(u\) we have explicitly
\[
\begin{aligned}
& \mathbf{Q} u \boldsymbol{f}_{\lambda_{1} \ldots \lambda_{p}}=-\nabla^{\lambda} \nabla_{\lambda} u_{\lambda_{1} \ldots \lambda_{\rho}}+\sum_{i=1}^{P} R_{\lambda i}^{\sigma} u_{\lambda_{1} \ldots \ldots \ldots \lambda_{p}}+\sum_{j<i}^{P} R_{\lambda j \lambda_{i}}^{\rho \sigma} u_{\lambda_{1} \ldots \ldots, \hat{\rho}_{\rho}^{i} \ldots \lambda_{p}}, \\
& \mathbf{Q} u \geqq 2, \\
& \Delta f=-\nabla^{\alpha} \nabla_{\alpha} u_{\lambda}+R_{\lambda}^{\varepsilon} u_{\varepsilon}, \quad P=1, \\
& \Delta f=-\nabla^{\alpha} \nabla_{\alpha} f, \quad P=0,
\end{aligned}
\]

\section*{XIV. Invariant Submanifolds in a k-contact Riemannian Manifold:}

\section*{Theorem 14.1:}

For an invariant submanifold \(M\) of a \(k\)-contact Riemannian manifold \(\bar{M}\), if the vector field \(X\) on \(M\) is orthogonal to \(x\), we have

\section*{Proof:}

\section*{First, we calculate \(\bar{\nabla}_{N_{A}} \widehat{\phi}^{2} X \mid\) and find}

Using
\(\bar{\phi} \bar{\xi}=0, \bar{\eta} \boldsymbol{\varepsilon} \mathbf{\|}=1, \bar{\phi}^{2}=-I+\bar{\eta} \otimes \bar{\xi}\),
\(\bar{g} \boldsymbol{\phi} \bar{X}, \bar{\phi} \bar{Y} \boldsymbol{g} \mathbf{Q}, \bar{Y} \mathbf{G} \bar{\eta}(\bar{X}) \bar{\eta}(\bar{Y}), \bar{g}(\bar{\phi} \bar{X}, \bar{Y})=d \bar{\eta}(\bar{X}, \bar{Y}), \bar{\eta}(\bar{X})=\bar{g}\) छि \(\bar{X} \boldsymbol{i}\)
for any vector fields \(\bar{X}\) and \(\bar{Y}\) on \(\bar{M}\).
\(\bar{M}\) is called a k-contact Riemannian manifold, if \(\bar{\xi}\) is a killing vector field. Then, we have \(\bar{\nabla}_{\bar{X}} \bar{\xi}=\bar{\phi} \bar{X}\) and \(\bar{R}(\bar{X}, \bar{\xi}) \bar{Y}=\bar{\zeta}_{\bar{X}} \bar{\phi} \mid \bar{\eta}\),
\[
\text { which implies that } 0=\bar{R}\left(N_{A}, \bar{\xi}\right) \bar{\phi} X+\bar{\phi} \bar{R}\left(N_{A}, \bar{\xi}\right) X+\bar{g} \dot{ه}_{N_{A}} X, \bar{\xi} \bar{\xi}
\]
on the other hand, by the assumption, we have
\[
\bar{g}\left(\bar{\nabla}_{N_{A}} X, \bar{\xi}\right)=\bar{\nabla}_{N_{A}} \mathbf{Q}(X, \bar{\xi}) \mid-\bar{g} \mathbf{X}, \bar{\phi} N_{A} \boldsymbol{\neq} \text { 0.consequently, }
\]
\(\overline{\text { we obtain }} \bar{R}\) ध \(N_{A} \mid X=-\bar{R}\) ध \(N_{A} \mid \bar{\phi} X\).

\section*{Theorem 14.2:}

Any invariant submanifold \(M\) of a \(k\)-contact Riemannian manifold \(M\) is minimal.
Proof:
First, using \(\bar{\nabla}_{X} Y=\nabla_{X} Y+\sum_{A} h_{A}(X, Y) N_{A}\) we calculate \(\bar{\nabla}_{X}(\phi Y)\) and find
\(\bar{\nabla}_{X}(\phi Y)=\nabla_{X}(\phi Y)+\sum_{A} h_{A}(X, \phi Y) N_{A}=\left(\nabla_{X} \phi\right) Y+\phi\left(\nabla_{X} Y\right)+\sum_{A} h_{A}(X, \phi Y) N_{A}\) And
we have
\[
\begin{align*}
& \bar{\nabla}_{X}(\phi Y)=\nabla_{X}(\phi Y)=\bar{\nabla}_{X}(\phi Y)+\bar{\phi}\left(\bar{\nabla}_{X} Y\right)=\left(\bar{\nabla}_{X} \phi\right) Y+\bar{\phi}\left(\nabla_{X} Y+\sum_{B} h_{B}(X, Y) N_{B}\right) \\
& =\left(\bar{\nabla}_{X} \bar{\phi}\right) Y+\phi\left(\nabla_{X} Y\right)+\sum_{B} h_{B}(X, Y) \bar{\phi} N_{B} \tag{By}
\end{align*}
\]
the definition of k-contact Riemannian manifold, we get
\[
\begin{aligned}
& \text { We have }
\end{aligned}
\]
\[
\begin{aligned}
& \left(\nabla_{X} \phi\right) Y+\sum_{A} h_{A}(X, \phi Y) N_{A}=\bar{R}(X, \bar{\xi}) Y+\sum_{B} h_{B}(X, Y) \bar{\phi} N_{B}, \text { from which, } \\
& h_{C}(X, \phi Y)=\bar{g}\left(\bar{R}(X, \bar{\xi}) Y, N_{C}\right)+\sum_{B} h_{B}(X, Y) \bar{g}\left(\bar{\phi} N_{B}, N_{C}\right)
\end{aligned}
\]

Replacing \(Y\) by \(\phi Y\), we find,
using, \(H_{A} \xi=0\)
\[
\begin{aligned}
& \text { we have } \\
& -g\left(H_{C} X, Y\right)=g @ \mathbf{C}, \bar{\xi} \mathbf{|} \phi Y, N_{C} \dot{\mathbf{j}}-\sum_{B} g \mathbf{\phi} \boldsymbol{H}_{B} X, Y \mathbf{G} \mathbf{\phi}_{B}, N_{C} \mathbf{|}
\end{aligned}
\]

Here taking a \(\phi\)-basis ( \(\xi, E_{1}, \phi E_{1}, E_{2}, \phi E_{2}, \ldots, E_{m}, \phi E_{m}\) ) we have
\[
\begin{aligned}
& \text { How }
\end{aligned}
\]
ever, since \(\phi\) is skew-symmetric and \(H_{A}\) is symmetric \(\operatorname{tr} \phi H_{B}\) vanishes identically and hence, we get
\[
\begin{aligned}
-\operatorname{tr} H_{C} & =\sum_{i=1}^{m}\left[\bar{g}\left(\bar{R}\left(E_{i}, \bar{\xi}\right) \phi E_{i}, N_{C}\right)-\bar{g}\left(\bar{R}\left(\phi E_{i}, \bar{\xi}\right) E_{i}, N_{C}\right)\right] \\
& =\sum_{i=1}^{m}\left[\bar{g}\left(\bar{R}\left(E_{i}, \bar{\xi}\right) \phi E_{i}, N_{C}\right)-\bar{g}\left(\bar{R}\left(\bar{\xi}, \phi E_{i}\right) E_{i}, N_{C}\right)\right]
\end{aligned}
\]

By virtue of the Bianchi's identity, we get
\[
\operatorname{tr}_{C}=\sum_{i=1}^{m} \bar{g}\left(\bar{R}\left(\phi E_{i}, E_{i}\right) \bar{\xi}, N_{C}\right)
\]

On the other hand, from theorem 14.1, we have
\[
\begin{aligned}
\bar{g}\left(\bar{R}\left(\phi E_{i}, E_{i}\right) \bar{\xi}, N_{C}\right) & =\bar{g}\left(\bar{R}\left(\bar{\xi}, N_{C}\right) \phi E_{i}, E_{i}\right)=-\bar{g}\left(\bar{\phi} \bar{R}\left(\bar{\xi}, N_{C}\right) E_{i}, E_{i}\right) \\
& =\bar{g}\left(\bar{R}\left(\bar{\xi}, N_{C}\right) E_{i}, \phi E_{i}\right)=\bar{g}\left(\bar{R}\left(E_{i}, \phi E_{i}\right) \bar{\xi}, N_{C}\right)
\end{aligned}
\]

Therefore we get \(\bar{g}\left(\bar{R}\left(\phi E_{i}, E_{i}\right) \bar{\xi}, N_{C}\right)=0\), Hence we obtain \(\operatorname{tr} H_{C}=0\)

\section*{XV. Invariant Submanifolds Immersed in an Almost Paracontact Riemannian Manifold:}

An \(n\)-dimensional differentiable manifold \(M\) of class \(C^{\infty}\) is called an almsot paracontact Riemannian manifold [9], if their exist in \(M\) a tansor field \(\varphi_{\mu}^{[\lambda 2]}\), a positive definite Riemannian metric \(g_{\mu \lambda}\) and vector fields \(\xi^{\lambda}\) and \(\eta_{\lambda}\) satisfying.
\[
\begin{equation*}
\text { (a) } \quad \eta_{\alpha} \xi^{\alpha}=1 \text {, } \tag{15.1}
\end{equation*}
\]
(b) \(\quad \varphi_{\alpha}^{\lambda} \varphi_{\mu}^{\alpha}=\delta_{\mu}^{\lambda}-\eta_{\mu} \xi^{\lambda}\)
\(\eta_{\lambda}=g_{\lambda \alpha} \xi^{\alpha}\),
\[
g_{\beta \alpha} \varphi_{\mu}^{\beta} \varphi_{\lambda}^{\alpha}=g_{\mu \lambda}-\eta_{\mu} \eta_{\lambda},
\]

The set \(\mathbf{C}_{\mu}^{\lambda}, \xi^{\lambda}, \eta_{\lambda}, g_{\mu \lambda} \dot{I}_{\text {is called an almost paracontact Riemannian structure. }}\)
In the manifold \(M\), the following relations hold good [3].
(a) \(\quad \varphi_{\alpha}^{\lambda} \xi^{\alpha}=0, \quad \eta_{\alpha} \varphi_{\mu}^{\alpha}=0\),
(b) \(\quad \varphi_{\mu \lambda}=\varphi_{\lambda \mu} \quad\left(\varphi_{\lambda \mu}=g_{\lambda \alpha} \varphi_{\mu}^{\alpha}\right)\)

We consider an m-dimensional Riemannian manifold \(V\) with local coordinates \(\left\{Y^{h}\right\}\) immersed in the almost paracontact Riemannian manifold M with local co-ordinates \(\left\{X^{\lambda}\right\}\) and denote the immersion by \(X^{\lambda}=X^{\lambda}\)
\(\left(Y^{h}\right)\). We put \(B_{i}^{\lambda}=\partial X^{\lambda} / \partial Y^{i}\). The induced Riemannian metric is given by \(g_{j i}=g_{\beta \alpha} B_{j}^{\beta} B_{i}^{\alpha}\). We denote by \(N_{x}^{\lambda} n-m\) mutually orthogonal unit normals to \(V\).

We assume that the submanifold \(V\) of \(M\) is \(\varphi\) invariant, then we have.
\[
\begin{equation*}
\varphi_{\alpha}^{\lambda} B_{i}^{\alpha}=\varphi_{i}^{t} B_{t}^{\lambda} \tag{15.3}
\end{equation*}
\]

Where \(\varphi_{i}^{t}\) is a tensor field on \(V\). It follows from (15.3) that \(\varphi_{\beta \alpha} N_{x}^{\beta} B_{i}^{\alpha}=0\) which implies that, \(\varphi_{\beta}^{\lambda} N_{x}^{\beta}\) is normal to \(V\). Thus, we put:
a
where \(\gamma_{x y}\) are functions on \(V\). The vector \(\xi^{\lambda}\) can be expressed as follows:
\[
\begin{equation*}
\xi^{\lambda}=\xi^{t} B_{t}^{\lambda}+\sum_{x} \alpha_{X} N_{X}^{\lambda} \tag{15.5}
\end{equation*}
\]
where \(\xi^{t}\) and \(\alpha_{x}\) are a vector field and functions on \(V\) respectively
Contracting (15.3) and (15.5) with \(B_{j \lambda}\left(=g_{\lambda \alpha} B_{j}^{\alpha}\right)\) respectively and making use of (15.2)b), we get
\[
\begin{align*}
& \varphi_{j i}=\varphi_{\beta \alpha} B_{j}^{\beta} B_{i}^{\alpha}=\varphi_{i j} \widehat{@}_{j i}=g_{i t} \varphi_{j}^{t} \mathbf{|},  \tag{15.6}\\
& \xi^{h}=B_{\alpha}^{h} \xi^{\alpha} \widehat{G}_{\alpha}^{h}=g^{h t} B_{t \alpha} \mathbf{l} \tag{15.7}
\end{align*}
\]
from(15.4) and (15.5), we have
\[
\gamma_{x y}=\varphi_{\beta \alpha} N_{X}^{\beta} N_{y}^{\alpha}=\gamma_{y x}, \alpha_{x}=N_{x \beta} \xi^{\beta} \bigotimes_{x \beta}=g_{\beta \lambda} N_{X}^{\lambda}
\]

Contracting (15.3), (15.4) and (15.5) with \(\varphi_{\lambda}^{\mu}\) respectively and using (15.1) b), (15.2)a), (15.4), (15.5), (15.7) and the above equations, we find
\[
\begin{equation*}
\varphi_{t}^{h} \varphi_{i}^{t}=\delta_{i}^{h}-\eta_{i} \xi^{h}\left(\eta_{i}=g_{i t} \xi^{t}\right) \tag{15.8}
\end{equation*}
\]
\[
\begin{equation*}
\text { (b) } \quad \alpha_{x} \eta_{i}=0 \tag{a}
\end{equation*}
\]

\section*{XVI. An Invariant Submanifold Immersed in an Almost Paracontact Riemannian Manifold with Vanishing Torsion Tensor:}

Differentiating (15.3) and (15.5) covariantly along \(V\) respectively and making use of Gauss and Weignarten's equations
\[
\begin{aligned}
& \nabla_{j} B_{i}^{\lambda}=\sum_{X} h_{j i X} N_{X}^{\lambda} \\
& \nabla_{j} N_{X}^{\lambda}=-h_{j X}^{t} B_{t}^{\lambda}+\sum_{y} l_{j X y} N_{y}^{\lambda} \mathscr{b}_{j X}=g^{t i} h_{j i X}
\end{aligned}
\]

Where \(\nabla_{j}\) denotes covariant differentiation with respect to \(g_{j i} h_{j i X} I_{j X Y}\) are the so-called second and third fundamental tensors respectively and satisfy
\(h_{j i X}=h_{i j X}, I_{j X Y}=-I_{j y X}\),
we obtain.
\(\left(\nabla_{j} \varphi_{\alpha}^{\lambda}\right) B_{i}^{\alpha}=\left(\nabla_{j} \varphi_{i}^{s}\right) B_{s}^{\lambda}+\sum_{Y}\left(\varphi_{i}^{s} h_{j s y}-\sum_{x}\left(h_{j i X} \gamma_{X Y}\right) N_{y}^{\lambda}\right.\),


We now assume that the so-called torsion tensor \(N_{\nu \mu}\) introduced by \(I\). Satō [9] vanishes. Then we have
\[
\begin{equation*}
N_{v \mu}^{\lambda}=\varphi_{v}^{\alpha} \mathbb{Q}_{\alpha} \varphi_{\mu}^{\lambda}-\nabla \mu \varphi_{\alpha}^{\lambda} \mid-\varphi_{\mu}^{\alpha} \dot{Q}_{\alpha} \varphi_{v}^{\lambda}-\nabla_{v} \varphi_{\alpha}^{\lambda \mid}+\eta_{\mu} \nabla_{v} \xi^{\lambda}-\eta_{v} \nabla_{\mu} \xi^{\lambda}=0 \tag{16.2}
\end{equation*}
\]

Where \(\nabla_{\mu}\) denotes covariant differentiation with respect of \(g_{\mu \lambda}\). Contracting (16.2) with \(B_{j}^{v} B_{i}^{\mu}\) and using (16.3), (16.7), (16.8) a) and (16.1), we obtain
\[
\begin{align*}
& \boldsymbol{\prod}_{j}\left(\nabla_{i} \varphi_{i}^{S}-\nabla_{i} \varphi_{t}^{s}\right)-\varphi_{i}^{t}\left(\nabla_{t} \varphi_{j}^{S}-\nabla_{j} \varphi_{t}^{s}\right)+\eta_{i} \nabla_{j} \xi^{s}-\eta_{j} \nabla_{i} \xi^{s}  \tag{16.3}\\
& \left.\quad-\sum_{X} \alpha_{X}\left(\eta_{i} h_{j X}^{S}-\eta_{j} h_{i X}^{S}\right)\right\} B_{S}^{\lambda}+\sum_{Y}\left\{\eta_{i}\left(\nabla_{j} \alpha_{Y}+\sum_{X} \alpha_{X} l_{j X Y}\right)\right. \\
& \left.\quad-\eta_{j}\left(\nabla_{i} \alpha_{Y}+\sum_{X} \alpha_{X} l_{i X Y}\right)\right\} N_{Y}^{\lambda}=0
\end{align*}
\]
first consider the case (I). In this case, from (16.3), we find \(\varphi_{j}^{t}\left(\nabla_{t} \varphi_{i}^{S}-\nabla_{i} \varphi_{t}^{S}\right)-\varphi_{i}^{t}\left(\nabla_{t} \varphi_{j}^{S}-\nabla_{j} \varphi_{t}^{S}\right)=0\)
that is, the Nijenhuis tensor of \(\varphi_{i}^{h}\) vanishes
we next consider the case (II). In this case, from (16.3), we find
\(\varphi_{j}^{t}\left(\nabla_{t} \varphi_{i}^{S}-\nabla_{i} \varphi_{t}^{S}\right)-\varphi_{i}^{t}\left(\nabla_{t} \varphi_{j}^{S}-\nabla_{j} \varphi_{t}^{S}\right)+\eta_{i} \nabla_{j} \xi^{S}-\eta_{j} \nabla_{i} \xi^{S}=0\)
that is the torsion tensor of \(V\) vanishes.

\section*{XVII. Invariant Submanifold Immersed in a Paracontact Riemannian Manifold}

An almost Paracontact Riemannian manifold \(M\) with structure \(\Theta_{\mu}^{\lambda}, \xi^{\lambda}, \eta_{\lambda}, g_{\mu \lambda} \boldsymbol{i}\) is called a paracontract Riemannian manifold [10] if the following relation holds good.
\(2 \varphi_{\mu \lambda}=\nabla_{\mu} \eta_{\lambda}+\nabla_{\lambda} \eta_{\mu}\)
We assume that \(M\) is a Paracontact Riemannian manifold Contracting the above equation with \(B_{j}^{\mu} B_{i}^{\lambda}\) using. (15.3) and (16.1), we can find
\(2 \varphi_{j i}=\left(\nabla_{j} \eta_{i}+\nabla_{i} \eta_{j}\right)-2 \sum_{X} \alpha_{X} h_{j i X}\)
Hence, we observe that
\(\xi^{\lambda}\) is normal to \(V\). In this case, \(V\) admits an almost Product Riemannian structure \(\left(\varphi_{i}^{h}, g_{j i}\right)\) whenever \(\varphi_{i}^{h}\) is non-trivial.
We get
\(\varphi_{j i}=-\sum_{X} \alpha_{X} h_{j i X}\) and using,
\(\xi^{\lambda}\) is normal to \(V\). In this case, \(V\) admits an almost Paracontact Riemannian structure \(\left(\varphi_{i}^{h}, \xi^{h}, \eta_{i}, g_{j i}\right)\)

We get
\(2 \varphi_{j i}=\nabla_{j} \eta_{i}+\nabla_{i} \eta_{j}\)

\section*{References}
[1]. Adati, T. : Suibmanifolds Of An Almost Product Riemannian Manifold, Kodai Math., J., 4 (1981), 327-343.
[2]. Adati, T. : Conditions For Invariant Submanifolds Of An Almost Para Contact Riemannian Manifold, Tensor, N.S. 38 (1982), 4152.
[3]. Adati, T. And Miyazawa, T. : On Paracontact Riemannian Manifolds, TRU Math., 13-2 (1977), 27-30.
[4]. Andrzej, G.: On Totally Umbilical Submanifolds M A Conformally Flat Riemannian Manifold, Demanst Ratio Math., 6 (1973), 641-646.
[5]. Bucki, A : Invariant Submanifolds Of A Almost R-Para Contact Manifold, Tensor, N.S., 41 (1984), 261-269.
[6]. Miyazawa, T. : An Invariant Hypersurface Immersed In An Almost Para Contact Riemannian Manifold, II. TRU Math. 14-2 (1978), 27-30, 15-2 (1979), 9-20.
[7]. Miyazawa, T. : Invariant Submanifolds Of An Almost Para Contact Riemannian Manifold, Tensor N.S., 34 (1980), 205-210.
[8]. Pujar, S.S. And Kirshna Amur : On Conformally Flat, Totally Real Submanifolds Of A Kaehlerian Manifold , To Appear.
[9]. Satō, I. : On A Structure Similar To The Almost Contact Structure, I, II, Tensor, N.S., 30 (1976), 219-224, 31 (1977), 199-205.
[10]. Tanno, S.: Isometric Immersions Of Sasakian Manifolds In Spheres, Kōdai Math. Sem. Rep., 21 (1969), 448-458.
[11]. Yano, K. And Ishihara, S.: Invariant Submanifolds Of An Almost Contact Manifold, Kōdai Math. Sem. Rep., 21 (1969), 350364.```

