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Abstract 
This paper presents a deterministic mathematical model on the transmission dynamics of tuberculosis with 

exogenous reinfection and vaccination control. A non-linear compartmental model for the disease transmission 

was developed. Stability analysis of disease-free equilibrium point was estimated to be both locally and globally 

asymptotically stable if 𝑅0 < 1 and unstable𝑅0 > 1 using the next-generation matrix and the comparison 

theorem. The findings indicate that transmission of tuberculosis can be reduced by ensuring adequate 

intervention by continuous vaccination and sensitization. 
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I. Introduction 
Tuberculosis is an ancient scourge that has been in existence for long; though, it took years of research 

before the microbial causes (Mycobacterium tuberculosa, Mtb) was discovered by a German microbiologist 

Robert koch in 1882. Tuberculosis is an infectious disease which can be easily contracted because it spreads 

quickly through the air medium. When an infected individual sneezes, coughs, spits etc. the bacteria known as 

bacillus is propelled into the air. Only a small amount of the bacillus is needed to be inhaled to cause an 

infection [W.H.O, 2011]. Tuberculosis is classified as active or inactive (latent). Active means the bacteria are 

active in the body which means the immune system is unable to stop the bacteria from causing illness; 

symptoms include coughing, breathlessness, fever, weight loss, night sweats etc. Inactive tuberculosis or (latent) 

on the other hand implies the body has been able to fight the bacteria successfully from causing illness thereby 

making it latent. An inactive individual shows no symptoms and cannot spread the disease. Tuberculosis usually 

affects the lungs (pulmonary) but it also occurs outside the lungs (extra-pulmonary) which is more common 

among people with weak immune system. 

Tuberculosis is a chronic relapsing infection and remains a leading cause of infectious mortality by a 

single infectious agent second only to HIV. The epidemiology is complex and not completely understood which 

makes the planning for control measures difficult [C.D.C, 2000]. About one-third of the world’s population is 

believed to have latent and a new infection are occurring at a rate of one person per second [W.H.O, 2010]. 

Once latently infected, an individual can remain so for life or progress towards active tuberculosis though the 

chances are not much. [C.D.C, 2000] says a latently infected individual has a 10% chance of progressing but it 

is much higher in people with complicated immune system e.g people living with HIV, Smokers. Progression 

may also accelerate with re-exposure to bacteria through repeated contacts with the bacteria known as 

exogenous reinfection. An infected individual will infect about 10 to 15 people each year [C.D.C, 2000], as a 

result, it is responsible for about 2 to 3 million deaths each year. In order to curb this figures, global initiatives 

spearheaded by (WHO) came into existence. Presently, the only effective vaccine for is the BCG (Bacillus 

Calmette Guerrin); a notable medical contribution to be used on infants and in general population. Vaccinated 

individuals have 70% to 80% chance of immunity from the infection. According to [W.H.O, 2011], all cases of 

tuberculosis are curable with proper treatment but without proper treatment, up to two-third of people with 

tuberculosis will die. Treatment consists of combination of drugs that must be used judicially for about 6 to 9 

months e.g Isomiazid (INH), Rifampicin (RIF), Ethambutol. [C.D.C, 2010] says most people with active 

tuberculosis who have received appropriate treatment for at least 2weeks are no longer contagious. 

Modeling of infectious diseases is that which has been used to study the mechanism by which diseases 

spread to predict future causes of an outbreak and evaluate strategies to control the epidemic [Daley and Gani, 

2005]. The earliest account of mathematical model of spread of diseases was carried out in 1766 by David 

Bernulli. He created a mathematical model to defend the practice of innoculation against small pox. The ability 

to make predictions about diseases has enabled scientist to evaluate innoculations or isolations plans which have 

a significant effect on the mortality rate of a particular epidemic. 
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The rest of this paper is structured as follows: Method which includes model formulation and analysis 

are described in “Method” section. Next section consist of Sensitivity analysis, discussion of results is given in 

“Discussion” section. Finally, in “Conclusion” section, we have provided conclusions of this article. 

 

II. Method 
We propose a deterministic mathematical model on the transmission dynamics of tuberculosis with 

exogenous reinfection and vaccination control. The total population is divided into five compartments. 

Individuals are classified based on their epidemiological status spread out within the five compartments; the 

Vaccinated (M), the susceptible (S), the Exposed or latently infected (E), the Infected (I) and the Recovery class 

(R). Recruitment’s are into the vaccinated and the susceptible class at a constant rate 𝜃𝑘 and (1 −  𝜃)𝑘. Natural 

Mortality leaves all the compartments at a rate 𝜇 > 0 while mortality as a result of the disease leaves the 

infected class at a rate 𝛿 > 0. The vaccinated compartment reduces due to the waning of vaccine and increases 

the susceptible class at a constant rate 𝛼 > 0. The model is governed by the following set of nonlinear 

differential equations below: 

 

Fig 1: Schematic representation of the model 

 
 

Table 1 Parameters Values used for the simulations 
Parameter Value Description 

𝑘 0.2 Recruitment rate of humans  

𝜃 0.4 Proportion of vaccinated Individuals 

𝜇 0.03 Natural death rate 

𝛼 0.004 Expiration of duration of vaccine efficacy 

𝛽 0.017 Effective Contact Rate 

𝜔 0.017 Rate at which an individual’s leaves the latent class by becoming infective 

𝜎 0.04 Level reinfection progression rate (Exogenous Reinfection) 

𝑟 0.036 Recovery rate 

𝛿 0.02 Disease Induced Death Rate 

𝜏 0.04 Removal of immunity 
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𝑑𝑀

𝑑𝑡
= 𝜃𝑘 − (𝛼 +  𝜇)𝑀                                                                                           

𝑑𝑆

𝑑𝑡
= (1 − 𝜃)𝑘 +  𝛼𝑀 − (𝛽𝐼 +  𝜇)𝑆                                                                     

𝑑𝐸

𝑑𝑡
= 𝛽𝐼𝑆 +  𝜏𝛽𝐼𝑅 − (𝜔 +  𝜇)𝐸 −  𝜎𝛽𝐸𝐼                                                       (1) 

𝑑𝐼

𝑑𝑡
= 𝜎𝛽𝐸𝐼 −  𝜔𝐸 − ( 𝜇 + 𝛿 + 𝑟)𝐼                                                                        

𝑑𝑅

𝑑𝑡
= 𝑟𝐼 − ( 𝜇 + 𝜏𝛽𝐼)𝑅                                                                                              

Subject to the following nonnegative initial conditions: 

𝑀(0) ≥ 0 , 𝑆(0) ≥ 0 , 𝐸(0) ≥ 0, 𝐼(0) ≥ 0, 𝑅(0) ≥ 0                                        (2)    
𝑀(0) + 𝑆(0) + 𝐸(0) + 𝐼(0) + 𝑅(0) ≤ 𝑁(0)                                                    (3) 

 

Model Analysis 

The Model analysis begins by showing that all feasible solutions of the model are uniformly bounded in a 

proper subset of Ω. Thus the feasible region 

Ω =  {(𝑀 , 𝑆, 𝐸, 𝐼, 𝑅) ∈ 𝑅5
+: 𝑁 ≤  

𝐾

𝜇
                           (4) 

is considered. Therefore, after differentiation of (2) and (13) and proper substitutions, we have  
𝑑𝑁(𝑡)

𝑑𝑡
= 𝑘 −  𝜇𝑁 ≤ 𝑘 − 𝜇𝑁                                        (5) 

Applying [Birkhof, G. and Rota, G. C., 1989] on the differential inequalities in (5) , we obtained: 

𝑁(𝑡) ≤ 𝑁(0)𝑒−𝜇𝑡 +  
𝑘

𝜇
 ( 1 − 𝑒−𝜇𝑡)                         (6) 

Where 𝑁(0) is the initial populations of the human population. Therefore 0 ≤ 𝑁 ≤  
𝑘

𝜇
 as 𝑡 → ∞. This 

implies that,  
𝑘

𝜇
   is upper bound for 𝑁(𝑡) as long as  𝑁(0) ≤

𝑘

𝜇
. Hence the feasible solution of the model 

equations in (1) enters the region Ω which is a positively invariant set. Thus, the system is mathematically and 

epidemiologically well-posed. Therefore, for an initial starting point 𝑥 ∈ Ω, the trajectory lies in Ω, and so it 

sufficient to restrict our analysis on Ω. Clearly, under the dynamics described by the model equations, the closed 

set Ω is hence a positively invariant set. 

 

Tuberculosis-free equilibrium state 

This occurs in the absence of disease. Thus in the absence of infection, we set M, S, E, I and R to zero in (1) and 

the resulting solution gives the tuberculosis-free equilibrium states given below: 

∅𝑇𝐹𝐸 =  (𝑀∗, 𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) =  (
𝜃𝑘

(𝛼 +  𝜇)
 ,

𝑘(𝛼 + (1 − 𝜃)𝜇)

𝜇(𝛼 + 𝜇)
, 0 , 0 , 0)          (7) 

 

Endemic Equilibrium 

This occurs when the infection persist in the population represented by ∅𝑇𝐸𝐸 =  (𝑀∗, 𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗). 

Thus, 

𝑀∗ =   
𝜃𝑘

(𝛼 +  𝜇)
                                                                        

𝑆∗ =   
𝑘(𝛼 + (1 − 𝜃)𝜇)

𝜇(𝛼 + 𝜇)
                                                            

 𝐸∗ =   
𝛽𝑆𝐼 +  𝜏𝛽𝐼𝑅

(𝜔 + 𝜇 + 𝜎𝛽𝐼)
                                                            (8) 

𝐼∗ =   
−𝜔𝐸

(𝜎𝛽𝐸 − 𝜇 − 𝛿 − 𝑟)
                                                          

𝑅∗ =   
𝑟𝐼

(𝜇 + 𝜏𝛽𝐼)
                                                               

 

Basic Reproduction Number 

The basic reproduction number is one of the critical parameters to examine the long-term behavior of 

an epidemic. It can be defined as number of secondary cases generated by a typical infected in an entirely 

susceptible population. We have used the next-generation matrix technique explained in [Diekmann et al. 2010, 

Peter et al.  2020] to obtain the expression of reproduction number𝑅0. 
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It is defined to be largest eigenvalue or spectral radius of the characteristic equation|𝐹𝑉−1 − 𝜓𝐼| = 0. 

Using the notations in [Van D. P. and Watmough, J. 2002] for the model system (1) , the associated matrices F 

and V for the new infectious terms and the remaining transition terms, evaluated at the disease-free equilibrium 

are respectively given by  

𝐹 =  [
0 𝛽𝑆∗

0 0
]                                                            (9)      

and 

𝑉 =  [
(𝜔 + 𝜇) 0

−𝜔 (𝜇 +  𝛿 + 𝑟)
]                                           (10)            

Therefore, 

𝐹𝑉−1 =  [

𝜔𝛽𝑆∗

(𝜔 + 𝜇)(𝜇 + 𝛿 + 𝑟)

𝛽𝑆∗

(𝜇 + 𝛿 + 𝑟)
0 0

]                    (11)             

Hence, the basic reproduction numbers of the model is given as: 

𝑅0 =  
𝜔𝛽𝑘(𝛼 + 𝜇 − 𝜇𝜃)

𝜇(𝛼 + 𝜇)(𝜔 + 𝜇)(𝜇 + 𝛿 + 𝑟)
                             (12) 

Theorem 1: The disease-free equilibrium is locally asymptotically stable if 𝑅0 < 1, and unstable if 𝑅0 > 1 with 

𝑅0 = max{𝑅0 }. 

 

Stability of disease-free equilibrium 

To obtain the conditions for the global stability for 𝐸0, we used the comparison theorem. 

Theorem 2: The disease-free equilibrium is globally asymptotically stable if 𝑅0 < 1, and unstable if 𝑅0 > 1. 
Proof: By the comparison theorem, the rate of change of the variables representing the infectious classes in the 

model can be compared in the following inequality: 

[
𝐸′

𝐼′ ] ≤ (𝐹 − 𝑉) [
𝐸
𝐼

] − 𝑃1𝜃1 [
𝐸
𝐼

] − 𝑃2𝜃2 [
𝐸
𝐼

] − 𝜃2 [
𝐸
𝐼

]            (13) 

Where F and V are defined (9) and (10) respectively, 𝑃1 = 1 − 
𝑆0

𝑁0 , 𝑃2 = 1 −  
𝑀0

𝑁0 ,   𝜃1, 𝜃2 𝑎𝑛𝑑 𝜃3 are 

nonnegative matrices. And since 𝑆0 ≤  𝑁0, then  𝑀0 ≤  𝑁0.Therefore, from (13) we get: 

[
𝐸′

𝐼′ ] ≤ (𝐹 − 𝑉) [
𝐸
𝐼

]                                                                 (14) 

Therefore the matrix (F - V) is obtained as: 

(𝐹 − 𝑉) =  [
−(𝜔 + 𝜇) 𝛽𝑆∗

𝜔 −(𝜇 + 𝛿 + 𝑟)
]                           (15)   

From the matrix (15), let 𝜆 be an eigenvalue. Then, the characteristic equation |(𝐹 − 𝑉) −  𝜆𝐼| = 0 gives the 

following eigenvalues: 

𝜆1 =  − [(𝜇 +  
1

2
𝛿 +

1

2
𝑟 +

1

2
𝜔) −  

1

2
√4𝛽𝑆∗𝜔 + 𝛿2 − 2𝛿𝜔 + 2𝛿𝑟 + 𝜔2 − 2𝜔𝑟 + 𝑟  2]     (16) 

𝜆1 =  − [(𝜇 +  
1

2
𝛿 +

1

2
𝑟 +

1

2
𝜔) +  

1

2
√4𝛽𝑆∗𝜔 + 𝛿2 − 2𝛿𝜔 + 2𝛿𝑟 + 𝜔2 − 2𝜔𝑟 + 𝑟  2]     (17) 

 Therefore, all the row eigenvalues of the matrix (15) have negative real part, showing that the matrix 

(15) is stable if 𝑅0 < 1. Consequently, using the model equations,  (𝑀, 𝑆) ⇒ (0, 0) as  𝑡 ⇒  ∞. Thus by the 

comparison theorem as used in [Shaban, N. and Hawa, M. 2014] , (𝑀, 𝑆) ⇒ (0, 0) as  𝑡 ⇒  ∞. Evaluating the 

model system at 𝑀 =  𝑆 = 0 gives   𝑀0 =  
𝜃𝑘

(𝛼+ 𝜇)
 , 𝑆0 =  

𝑘(𝛼+(1−𝜃)𝜇)

𝜇(𝛼+𝜇)
 and 𝑅0 ⇒ (0) as 𝑡 ⇒ ∞ for 𝑅0 < 1. 

Hence, the disease-free equilibrium is globally asymptotically stable for 𝑅0 < 1. 

 

III. Sensitivity Analysis of Parameters in the Model 
A sensitivity analysis determines how different values of independent variable affect a particular 

dependent variable under a given set of assumptions [Kalyan et al 2021;Victorr et al. 2020]. The normalized 

forward sensitivity index of a variable to a parameter is the ratio of the relative change in the variable to the 

relative change in the parameter. When variable is a differentiable function of the parameter, the sensitivity 

index may be alternatively defined using partial derivatives. 

Since the basic reproduction number 𝑅0  helps us to predict the future course of the disease, the 

sensitivity analysis is performed to understand which parameters involved in the model effect the value of 𝑅0 

relatively more. We have used the following expression of the sensitivity for 𝑅0 which depends on the 

parameter 𝑣 

𝜓𝑣
𝑅0 =  

𝑣

𝑅0

 ×
𝜕𝑅0

𝜕𝑣
                                                                    (18) 
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A negative index of sensitivity shows that the parameter and 𝑅0are inversely proportional. A positive 

sensitivity index, however, denotes that the value of 𝑅0increases with an increase in the value of the parameter 

concerned.  

The estimated sensitivity indices for 𝑅0 are presented in Table 2. From the values, we can see that an increase 𝜃 

will results in a decrease in the value of 𝑅0 . On the other hand, an increase in the value of 𝛽, 𝑘 and 𝜔 will 

increase the tuberculosis cases. 

 

Table 2   Sensitivity index of parameters 
Parameter Expression of the sensitivity index Value 

𝛽 1 1 

𝑘 1 1 

𝜃 −𝜇𝜃

(𝛼 + 𝜇 − 𝜇𝜃)
 

-0.5454 

𝜔 𝜇

(𝜔 + 𝜇)
 0.9463 

 

IV. Discussion 
The basic reproduction number is a crucial parameter in disease dynamics which gives us major 

information about the disease. To understand the effect of various disease transmission parameters on the basic 

reproduction number, we have obtained the sensitivity indices from  𝑅0 and parameters in Table 1.  The 

sensitivity indices suggest that, the indices with positive signs increases the value of 𝑅0 when the corresponding 

parameters are increased and indices with negative signs decreases the value of 𝑅0 with increase in the 

corresponding parameters. 

 

V. Conclusion 
A non-linear compartmental model has been proposed to understand the transmission dynamics of 

tuberculosis exogenous reinfection and vaccination control. We carried out analysis on the developed model. 

The disease-free equilibrium was found to be both locally and globally asymptotically stable if 𝑅0 < 1 and 

unstable𝑅0 > 1. Sensitivity analysis revealed that, the interventions offer an optimal control on the tuberculosis 

reinfection with increase in the control parameter rates of vaccination and treatment. 

 

References 
[1]. Birkhof, G. and Rota, G. C. (1989) Ordinary Differential Equations. MIT Press, Boston. 

[2]. C.D.C (2000). Report, emergence of mycobacterium tuberculosis with extensive resistance to second-line drugs. JAMA: The 
Journal of the American Medical Association. 

[3]. C.D.C (2010). Infection control and prevention of tuberculosis. Fact sheet. 

[4]. Daley, D. and Gani, J. (2005). Epidemic modelling, an introduction; Cambridge University  Press . 
ISBN 0521640792 

[5]. Diekmann, O., Heesterbeek, J. A. P., and Metz, J. A. J. (1990). On the definition and the computation of the basic reproduction ratio 

R0  in the models of infectious diseases in heterogenous populations. J.Math Biol., 28:365–382. 
[6]. Kalyan D, Reddy KG, Lakshminarayan K (2021) Sensitivity and elasticity analysis of novel corona virus 

transmission model: a mathematical approach. Sensors Int 2(1):100088. 
[7]. Peter O, Viriyapong R, Oguntolu F, Yosyingyong P, Edogbanya H, MO A (2020) Stability and optimal control analysis of an scir 

epidemicmodel. J Math Comput Sci 2020(1):2722–2753 

[8]. Shaban, N. and Hawa, M. (2014) Modeling the Impact of Vaccination and Screening on the Dynamics of Human Papillomavirus 
Infection. International Journal of Mathematical Analysis, 8, 441-454. 

http:doi.org/10.12988/ijma.2014.312302. 
[9]. Van den Driessche, P. and Watmough, J. (2002). Reproduction Numbers and Sub-Threshold Endemic 

[10]. Equilibria for Compartmental Models of Disease Transmission. Mathematical Biosciences, 

180, 29-48. https://doi.org/10.1016/S0025-5564(02)00108-6 
[11]. W.H.O (2010). Infection and transmission of tuberculosis. Fact sheet. 

[12]. W.H.O (2011). Global tuberculosis control. WHO Library Cataloguing-in-Publication Data. 

[13]. Victorr Y, Hasifa N, Julius T (2020) Analysis of the model on the effect of seasonal factors on malaria 
transmission dynamics. J Appl Math 2020(4):19 


