Domination Polynomial of a Corona Graph

Temesgen Engida Yimer* , J. Baskar Babujee

Department of Mathematics, Anna University Chennai, Madras Institute of Technology Campus -44, India

Abstract: Let the graph \(G = (V,E) \) be a simple undirected graph of order \(|V(G)| = n \). A set \(S \subseteq V(G) \) is a dominating set of \(G \), if every vertex in \(V(G) - S \) is adjacent to at least one vertex in \(S \). A domination polynomial of a graph \(G \) is \(D(G,x) = \sum_{i=\gamma(G)}^{\delta(G)} d(G,i)x^i \), where \(d(G,i) \) is the number of all dominating sets of \(G \) with size \(i \) and \(\gamma(G) \) is the minimum domination number of \(G \). In this paper, we construct the dominating set of \(P_n \circ mK_1 \), and obtain the domination polynomial \(D(P_n \circ mK_1,x) = p_i = \sum_{i=\gamma(P_n \circ mK_1)}^{\delta(P_n \circ mK_1)} d(P_n \circ mK_1,i) \), which we call an ordinary generating function for the dominating sets of graph \(P_n \circ mK_1 \).

Keywords: Dominating sets, Domination polynomials, Corona graph, Ordinary generating function

Mathematics subject classification: 05C30, 05C31, 05C69

I. Introduction and preliminary results

All of the graphs examined in this paper are finite and simple graph. In an undirected graph \(G = (V,E) \), let \(V(G) \) denote the set of all vertices of \(G \) and let \(E(G) \) denote the set of all edges of \(G \). The collected works on the subject of domination parameters in graphs has been discussed in this book [8]. A partition of \(V(G) \) such that each class is a dominating in \(G \) is called a dogmatic partition of \(G \). We have invariant polynomials for graphs in graph theory. For any vertex \(v \in V(G) \), the open neighbourhood of \(v \) is the set \(N(v) = \{ u \in V(G) | uv \in E(G) \} \) and the closed neighbourhood of \(v \) is the set \(N[v] = N(v) \cup v \). For a set \(S \subseteq V(G) \), the open neighborhood of \(S \) is \(N(S) = \bigcup_{v \in S} N(v) \) and the closed neighborhood of \(S \) is \(N(S) = N(S) \cup S \). A subset \(S \subseteq V(G) \) is a dominating set if \(N(S) = V \). In a simple graph \(G \) a dominating set \(S \) is a minimal dominating set in \(G \) if no proper subset \(S \subseteq S \) is a dominating set. The domination number \(\gamma(G) \) is the minimum cardinality of a dominating set in \(G \) [7]. We call such a set a \(\gamma(G) \) -set of \(G \). Let \(D(G,i) \) be the family of dominating sets of a graph \(G \) with cardinality \(i \) and \(d(G,i) = |D(G,i)| \). A domination polynomial of a graph \(G \) is \(D(G,x) = \sum_{i=\gamma(G)}^{\delta(G)} d(G,i)x^i \), where \(d(G,i) \) is the number of all dominating sets of \(G \) with size \(i \) and \(\gamma(G) \) is the minimum domination number of \(G \) [1, 6]. Our objective in this paper is to study the domination sets and its polynomial of the graph \(P_n \circ mK_1 \). The domination polynomial \(D(G,x) \) is an ordinary generating function for the dominating sets of undirected graph \(G \) with respect to their cardinalities. Domination sets and its polynomials of the path, cycles, cubic graphs and some of special graphs were studied by Alikhani and Peng [1, 2, 6]. The mean value for the matching and graph products of dominating polynomial were studied in [4, 8]. The corona of two graphs

\(G_1 \) and \(G_2 \) as defined by Frucht and Harary [10] is the graph \(G = G_1 \uplus G_2 \) formed from one copy of \(G_1 \) and \(|V(G_1)| \) copies of \(G_2 \) where the \(i \)th vertex of \(G_1G_2 \) is adjacent to every vertex in the \(i \)th copy of \(G_2 \). In the following section for the graph \(P_n \circ mK_1 \) the dominating set and its polynomial is driven.

Theorem 1.1. [1] Let \(S \) be a star graph \(n \). Then the domination polynomial is \(D(S_n,x) = x^n + (1 + x)^n \).

Theorem 1.2. [1] If a graph \(G \) consists of \(m \) components \(G_1, G_2, \ldots, G_m \), then \(D(G,x) = D(G_1,x)D(G_2,x)\ldots D(G_m,x) \).

Theorem 1.3. [6] For every natural number \(n \), \(D(K_n,x) = (1 + x)^{n-1} \).

Theorem 1.4. [2, 6] Let \(G \) be a graph with \(|V(G)| = n \). Then

(i). If \(G \) is connected, then \(d(G,n) = 1 \) and \(d(G,n) = n \), where \(d(G,n) \) is number of dominating set in graph \(G \).

(ii). \(d(G,i) = 0 \) if and only if \(i < \gamma(G) \) or \(i > n \).

(iii). \(D(G,x) \) has no constant term.

(iv). \(D(G,x) \) is a strictly increasing function in \([0,\infty]\).

(v) Zero is a root of \(D(G,x) \), with multiplicity \(\gamma(G) \).
II. Main Results

Definition 2.1. A $P_n \circ mK_1$ is a graph obtained by taking the corona of a path P_n with mK_1 and has $n(m + 1)$ vertices, where m is the number of pendant vertices in each vertex of the path P_n.

Lemma 2.1. If $P_n \circ mK_1$ be a graph with $m(n + 1)$ vertices, then $\gamma(P_n \circ mK_1) = n$, for all $m, n \in N$.

Proof: Let S be the dominating set of $P_n \circ mK_1$. Then by definition, for all $i, v_i \in S$, where $n \leq i \leq mn$. This implies that $|S| \geq n$. If S is γ-set of $P_n \circ mK_1$, then S exactly contain all vertices of the path P_n. Therefore, $\gamma(P_n \circ mK_1) = n$, for $m, n \in N$.

Theorem 2.1. Let $P_n \circ mK_1$ be a graph with $2(m + 1)$ vertices. Then $D(P_n \circ mK_1, x) = x^2(1 + x)^{2m} + 2x^{m+1}[1 + x((1 + x)^m - 1)] + x^{2m}$.

Proof: Let $P_n \circ mK_1$ be a graph and $D(P_n \circ mK_1, i)$ be a family of dominating set with cardinality $i, 2 \leq i \leq 2(m + 1)$. Let $V = \{v_1, v_2, u_1, u_2, \ldots, u_1m, u_2, u_2, \ldots, u_2m\}$ be the vertex set of G, where v_1 and v_2 are the vertices of P_2 and m is the number of pendant vertices to the vertices of path P_2. Since every pendant vertices of $P_2 \circ mK_1$ are adjacent to either v_1 or v_2. Hence, for $i = 2$ or $\{v_1, v_2\}$ the $\gamma(P_2 \circ mK_1) = 2$ and its polynomial is x^2. For the cardinality $i = 3$ the family of dominating set $D(P_2 \circ mK_1, 3)$ is obtained by selecting vertices v_1, v_2 and one vertex from $\{u_1, u_2, \ldots, u_1m, u_2, u_2, \ldots, u_2m\}$. Thus $D(P_2 \circ mK_1, 3) = \binom{2m}{1}x^3$ and the domination polynomial term $\binom{2m}{1}x^3$. If we proceed like this for the remaining cardinality $i, 4 \leq i \leq 2(m + 1)$. Then the domination polynomial of the graph is

$$D(G_1, x) = x^2 + \binom{2m}{1}x^3 + \ldots + \binom{2m}{1}x^{2m+2}$$

$$= x^2 + \binom{2m}{1}x + \ldots + \binom{2m}{1}x^{2m}$$

$$= x^2(1 + x)^{2m}$$

The family of dominating set $D(P_2 \circ mK_1, i)$ is obtained also by selecting one of vertex from path P_2 and the remaining vertices taken from the other of the pendant vertices. Let us take vertex v_1, and all pendant vertices to v_2, which are dominating the graph $P_2 \circ mK_1$ and choose the remaining dominating vertices from the $\{v_2, u_1, u_2, \ldots, u_{1m}\}$ and similarly we can take for vertex v_2 and all pendant vertices to v_1 which are dominating the graph $P_2 \circ mK_1$. For the cardinality i, such that $m + 1 \leq i \leq 2(m + 1)$ the number of dominating set for $i = m + 1, m + 2$ are 1 and $\binom{m}{1}$ respectively. In general, the domination polynomial of the graph is

$$D(G_2, x) = 2 [x^{m+1} + \binom{m}{1}x^{m+2} + \ldots + \binom{m}{1}x^{2m+2}]$$

$$= 2x^{m+1} + 2x^{m+2}[(1 + x)^m - 1]$$

$$= 2x^{m+1}[1 + x((1 + x)^m - 1)]$$

For none of the vertices of the path P_2 are dominating set and for the cardinality $i = 2m$. Hence the domination polynomial of the graph is

$$D(G_3, x) = x^{2m}$$

Therefore, from the equation (3), (6) and (7) we get the domination polynomial of $D(P_2 \circ mK_1) = D(G_1, x) + D(G_2, x) + D(G_3, x)$ and this completes the proof.

Theorem 2.2. Let $P_n \circ mK_1$ be graph with $n(m + 1)$ vertices. Then

$$D(P_n \circ mK_1, x) = x^n(1 + x)^{nm} + (1 + x)x^{m+n-1}\sum_{i=1}^{n}(1 + x)^{n(n-i)} + \ldots + x^{nm}$$

Proof: Let $G = P_n \circ mK_1$ be a graph and $D(G, i)$ be a family of dominating set with cardinality $i, n \leq i \leq n(m + 1)$. Let the vertex set $V(G)$ is
Domination Polynomial of a Corona Graph

\[{v_1,v_2,\ldots,v_n},{u_{1,1},u_{1,2},\ldots,u_{1,m}},{u_{2,1},u_{2,2},\ldots,u_{2,m}},\ldots,{u_{n,1},u_{n,2},\ldots,u_{n,m}}\], where \{{v_1,v_2,\ldots,v_n}\} are the vertices of the path \(P_n\) and \(nm\) is the number of pendant vertices to the vertices of path \(P_n\). Since every \(nm\) number of pendant vertices of \(G\) are adjacent to either vertices of \(P_n\). Hence, for the cardinality \(i = n\) the \(\gamma(G) = n\) and its polynomial is \(x^n\). The next family of dominating set is \(D(G,n+1) = \{v_1,v_2,\ldots,v_n,v_j\}\) such that the vertex \(u_{j,k}\) is chosen from \(nm\) numbers of pendant vertices of the path \(P_n\), where \(1 \leq j \leq n\) and \(1 \leq k \leq m\). Hence \(d(G,n+1) = \binom{nm}{1}\) and its domination polynomial term is \(\binom{nm}{1}x^{n+1}\). By proceeding this way for the remaining cardinality \(i\) such that \(n + 2 \leq i \leq n(m + 1)\), then the domination polynomial of the graph yields,

In the other case one of the vertices of the path \(P_n\) is not contained in the domination set of \(G\). Suppose \(v_1 \in V(P_n)\) is not contained in dominating sets of the graph \(G\). This is provided by combining \({v_2,v_3,\ldots,v_n}\) with \(m\) pendant vertices which has minimum cardinality \(i = m + n - 1\) and hence \(d(g_2,m + n - 1) = 1\), and the domination polynomial of the term \(x^{m+n-1}\). For the proceeding cardinality \(i = m + n - 1\) we choose one vertex from the pendant vertices except the vertices pendant to the vertex of \(v_1\). Thus, the domination polynomial of the term is \(\binom{nm}{1}x^{m+n}\). Therefore, the domination polynomial for \(v_1\) is

\[
D(G_1,x) = x^n + \binom{nm}{1}x^{n+1} + \ldots + \binom{nm}{nm}x^{nm+n}
\]

Hence

\[
D(G_1,x) = x^n\left[1 + \binom{nm}{1}x + \ldots + \binom{nm}{nm}x^{n}\right]
\]

\[
= x^n(1 + x)^{nm}
\]

\[\] (8)

\[\] (9)

\[\] (10)

\(V(P_n)\) is not contained in dominating sets of the graph \(G\). This is provided by combining \({v_2,v_3,\ldots,v_n}\) with \(m\) pendant vertices which has minimum cardinality \(i = m + n - 1\) and hence \(d(g_2,m + n - 1) = 1\), and the domination polynomial of the term \(x^{m+n-1}\). For the proceeding cardinality \(i = m + n\) we choose one vertex from the pendant vertices except the vertices pendant to the vertex of \(v_1\). Thus, the domination polynomial of the term is \(\binom{nm}{1}x^{m+n}\). Therefore, the domination polynomial for \(v_1\) is

\[
D(G_2,x) = x^{m+n-1} + \binom{m(n-1)+1}{1}x^{m+n} + \ldots + \binom{m(n-1)+1}{m(n-1)+1}x^{m(n+1)}
\]

Hence

\[
D(G_2,x) = x^{m+n-1}\left[1 + \binom{m(n-1)+1}{1}x + \ldots + \binom{m(n-1)+1}{m(n-1)+1}x^{m(n+1)+1}\right]
\]

\[
= x^{m+n-1}(1 + x)^{m(n-1)+1}
\]

\[\] (11)

\[\] (12)

\[\] (13)

From equation (13), we generate for the overall domination polynomial cases that are obtained by investigating the situations of each \(n\) vertices of the path \(V(P_n) = \{v_1,v_2,\ldots,v_n\}\). Therefore, the general domination polynomial of the second case is given as,

For the remaining third case we suppose that none of the vertices of \(V(P_n) = \{v_1,v_2,\ldots,v_n\}\) is contained in the dominating set of the graph \(G\). Hence, for cardinality \(i = nm\) the family of dominating set \(D(G,nm) = 1\) and

\[
D(G_3,x) = (1 + x)x^{m+n-1}+\sum_{i=1}^{n}(1 + x)^{m(n-i)}
\]

the domination polynomial term of this case is

\[
D(G_3,x) = x^{nm}
\]

Therefore, the equation (10), (14) and (15) above completes the proof.

Definition: 2.2. [7] A graph \(C_m\) is a simple corona graph with \(m(n + 1)\) order of vertices. The vertex set \({v_1,v_2,v_3,\ldots,v_n}\) of a cycle \(C_m\) is joined with \(m\) number of pendant vertices to each vertex of the cycle \(C_m\), where \(m > 1\) and the sets \({u_{1,1},u_{1,2},\ldots,u_{1,m}},{u_{2,1},u_{2,2},\ldots,u_{2,m}},\ldots,{u_{n,1},u_{n,2},\ldots,u_{n,m}}\) are pendant vertices

Theorem 2.3 If \(C_m\) is the graph with \(3(m + 1)\) vertices, then \(D(C_m)\) is the family of dominating set with cardinality \(i\) such that \(3 \leq i \leq 3(n + 1)\).

\[
\text{Proof: Let } H = \text{ be the family of dominating set with cardinality } i \text{ such that } 3 \leq i \leq 3(n + 1).
\]

DOI: 10.9790/5728-1802014751 www.iosrjournals.org 49 Page
Let the vertex set $V(H)$ of the graph H is $\{v_1, v_2, v_3, \{u_{1,1}, u_{1,2}, \ldots, u_{1,m}\}, \{u_{2,1}, u_{2,2}, \ldots, u_{2,m}\}, \ldots, \{u_{n,1}, u_{n,2}, \ldots, u_{n,m}\}\}$ and $3m$ number of pendant vertices to the graph of H. Herewith, we proceed four cases to prove the theorem.

Case-1. Let consider the vertices v_1, v_2, and v_3 of the cycle C_3 and it belongs to the dominating set of the graph H. Hence, for the size $i = 3$ the $d(H, 3) = 1$ and its polynomial term is x^3. For the preceding size $i = 4$, the $d(H, 4)$ is obtained by considering all vertices of the cycle C_3 and selecting one vertex from $3m$ number of pendant vertices to the vertices of cycle C_3. Thus, the dominating sets and its polynomial are $|D(H, 4)| = \left(\frac{3m}{1}\right)$ and $\left(\frac{3m}{1}\right)x^4$ respectively. Similarly, we can proceed for the remaining cardinality i such that $5 \leq i \leq 3(m + 1)$. Therefore, the ordinary generating function of the graph case-1 yields,

$$
x^3 + \left(\frac{3m}{1}\right)x^4 + \ldots + \left(\frac{3m}{3m}\right)x^{3m+3}$$

$$= x^3 \left[1 + \sum_{i=1}^{3m} \left(\frac{3m}{i}\right)x^i \right] \quad (16)$$

$$= x^3 (1 + x)^{3m} \quad (17)$$

$$\{v_2, v_3, \{u_{2,1}, u_{2,2}, \ldots, u_{2,m}\}, \ldots, \{u_{3,1}, u_{3,2}, \ldots, u_{3,m}\}\}. \ \text{Hence the } d(H, m + 3) = \left(\frac{2m+2}{1}\right). \ \text{In the same way}$$

$$3 \left[x^{m+2} + \left(\frac{2m+2}{1}\right)x^{m+3} + \ldots + \left(\frac{2m+2}{2m+2}\right)x^{3(m+1)} \right] \quad (19)$$

$$= 3x^{m+2} \left[1 + \sum_{i=1}^{2(m+1)} \left(\frac{2(m+1)}{i}\right)x^i \right] \quad (20)$$

$$= 3x^{m+2}(1 + x)^{2(m+1)} \quad (21)$$

we can find the family dominating sets by avoiding the vertex v_2 or v_3. Therefore, the domination polynomial given by:

$$3 \left[x^{2m+1} + \left(\frac{m+1}{1}\right)x^{2m+2} + \ldots + \left(\frac{m+1}{m+1}\right)x^{3m+3} \right]$$

$$= 3x^{2m+1} \left[1 + \sum_{i=1}^{m+1} \left(\frac{m+1}{i}\right)x^i \right] \quad (22)$$

$$= 3x^{2m+1}(1 + x)^{m+1} \quad (23)$$

Case-2. Let for the vertex set $\{v_1, v_2, v_3\}$ of the cycle C_3 one of the vertex is not contained in the dominating sets of the graph H. Suppose v_3 is not contained in the dominating sets. Now by combining the vertex set $\{v_2, v_3\}$ and the m number of pendant vertices to the vertex v_1 to find the dominating set for the cardinality $m + 2 \leq i \leq 3(m + 1)$. Let for $i = m + 2$ the $d(H, m + 2) = 1$ and its polynomial term is x^{m+2}. For the size $i = m + 3$ the $d(H, m + 3)$ is computed by choosing one vertex from $2m + 2$ the dominating number is obtained by choosing one vertex from $\{v_3, u_{3,1}, u_{3,2}, \ldots, u_{3,m}\}$. Thus, the $d(H, 2m + 2) = \left(\frac{m+1}{1}\right)$ and its term of polynomial is $\left(\frac{m+1}{1}\right)x^{2m+2}$. Since we have three distinct possible ways to avoid two vertices from the vertex set $\{v_1, v_2, v_3\}$ in the dominating sets. Therefore, the domination polynomial is given as,
Case-4. None of the vertex set \(\{v_1, v_2, v_3\} \) of the cycle \(C_3 \) are contained in the dominating sets of the graph \(H \). Hence, for cardinality \(i = 3m \) the family of dominating set \(D(H, 3m) = 1 \) and the domination polynomial term of this case is;

\[
D(H', x) = x^{3m}
\]

(25)

Therefore, from the equation (18), (21), (24) and (25) we get the domination polynomial of the graph \(H = C_3 \circ mK_3 \) and this completes the proof.

III. Conclusion

In this paper, we have shown that for a simple connected graph \(P_n \circ mK_2 \) the dominating sets and its ordinary generating function. Along the way, we found the domination polynomial for the corona product of the graphs \(P_2 \circ mK_1 \) and \(C_3 \circ mK_1 \).

Acknowledgments

The authors would like to express their heartfelt appreciation to the referee for carefully reading the manuscript and providing insightful comments, and wish to acknowledge the financial support given to the first author to carry out the research work provided by the Minister of Education of the Federal Democratic Republic of Ethiopia.

References

[4]. L. Arocha and Bernardo Llano, Mean value for the matching and dominating polynomial, Discussiones Mathematicae Graph Theory, 20(1), (2000), 57–70.

