On Totally $\mathcal{N}g^{\#}$ – Continuous Functions in Neutrosophic Topological Space

Pious Missier S¹, Babisha Julit R L², Martina Jency J ³

¹(Head & Associate Professor, Department of Mathematics, Don Bosco College of Arts and Science, KeelaEral, Thoothukudi-628 908, (Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli- 627 012), Tamil Nadu, India)

²(Research Scholar (Reg.No-19212052092006), Department of Mathematics, G. Venkataswamy

Naidu College, Kovilpatti-628 502, (Affiliated to Manonmaniam Sundaranar University,

Abishekapatti, Tirunelveli- 627 012), Tamil Nadu, India)

²(Assistant Professor, Department of Mathematics, Partician College of Arts and Science, Chennai -628 908, Tamil Nadu, India)

Abstract:

In this article, we introduce a new concept of Neutrosophic continuous functions called totally $Ng^{\#}$ – continuous functions and study their properties in Neutrosophic topological spaces.

Key Word: $\mathcal{N}g^{\#}$ - closed set, $\mathcal{N}g^{\#}$ - continuous function, totally $\mathcal{N}g^{\#}$ -continuous function.

Date of Submission: 13-02-2022	Date of Acceptance: 28-02-2022

I. Introduction

Smarandache [4] introduced the idea of Neutrosophic set, and in 2014 Salama et.al. [12] initiated further studies into Neutrosophic closed sets and Neutrosophic continuous functions. Recently Pious Missier et.al.[7],[8], introduced the concept of $\mathcal{N}g^{\#}$ – closed sets, continuous and irresolute mappings, in Neutrosophic Topological Spaces. In this paper, we introduce a new type of continuity in the consept of Neutrosophic topology called totally $\mathcal{N}g^{\#}$ – continuous functions and investigate their properties with necessary examples.

II. Preliminaries

Definition 2.1 [4] A Neutrosophic set $(\mathcal{NS})\mathcal{A}_{\mathcal{N}}$ is an object having the form

 $\mathcal{A}_{\mathcal{N}} = \{ \langle x, \mu_{\mathcal{A}_{\mathcal{N}}}(x), \sigma_{\mathcal{A}_{\mathcal{N}}}(x), \gamma_{\mathcal{A}_{\mathcal{N}}}(x) \rangle : x \in \mathcal{X} \} \text{ where } \mu_{\mathcal{A}_{\mathcal{N}}}(x), \sigma_{\mathcal{A}_{\mathcal{N}}}(x) \text{ and } \gamma_{\mathcal{A}_{\mathcal{N}}}(x) \text{ represent the degree of membership, degree of indeterminacy and the degree of non- membership respectively of each element <math>x \in \mathcal{X}$ to the set $\mathcal{A}_{\mathcal{N}}$. A Neutrosophic set $\mathcal{A}_{\mathcal{N}} = \{ \langle x, \mu_{\mathcal{A}_{\mathcal{N}}}(x), \sigma_{\mathcal{A}_{\mathcal{N}}}(x), \gamma_{\mathcal{A}_{\mathcal{N}}}(x) \rangle : x \in \mathcal{X} \}$ can be identified as an ordered triple $\langle \mu_{\mathcal{A}_{\mathcal{N}}}(x), \sigma_{\mathcal{A}_{\mathcal{N}}}(x), \gamma_{\mathcal{A}_{\mathcal{N}}}(x) \rangle \text{ in }]-0, 1 + [\text{ on } \mathcal{X}.$

Definition 2.2 [12] For any two Neutrosophic sets $\mathcal{A}_{\mathcal{N}} = \{ \langle x, \mu_{\mathcal{A}_{\mathcal{N}}}(x), \sigma_{\mathcal{A}_{\mathcal{N}}}(x), \gamma_{\mathcal{A}_{\mathcal{N}}}(x) \rangle : x \in \mathcal{X} \}$ and $\mathcal{B}_{\mathcal{N}} = \{ \langle x, \mu_{\mathcal{B}_{\mathcal{N}}}(x), \sigma_{\mathcal{B}_{\mathcal{N}}}(x), \gamma_{\mathcal{B}_{\mathcal{N}}}(x) \rangle : x \in \mathcal{X} \}$ we have

- $\mathcal{A}_{\mathcal{N}} \subseteq \mathcal{B}_{\mathcal{N}} \Leftrightarrow \mu_{\mathcal{A}_{\mathcal{N}}}(x) \leq \mu_{\mathcal{B}_{\mathcal{N}}}(x), \sigma_{\mathcal{A}_{\mathcal{N}}}(x) \leq \sigma_{\mathcal{B}_{\mathcal{N}}}(x) \text{ and } \gamma_{\mathcal{A}_{\mathcal{N}}}(x) \geq \gamma_{\mathcal{B}_{\mathcal{N}}}(x).$
- $\mathcal{A}_{\mathcal{N}} \cap \mathcal{B}_{\mathcal{N}} = \langle x, \mu_{\mathcal{A}_{\mathcal{N}}}(x) \land \mu_{\mathcal{B}_{\mathcal{N}}}(x), \sigma_{\mathcal{A}_{\mathcal{N}}}(x) \land \sigma_{\mathcal{B}_{\mathcal{N}}}(x) \text{ and } \gamma_{\mathcal{A}_{\mathcal{N}}}(x) \lor \gamma_{\mathcal{B}_{\mathcal{N}}}(x) \rangle$
- $\mathcal{A}_{\mathcal{N}} \cup \mathcal{B}_{\mathcal{N}} = \langle x, \mu_{\mathcal{A}_{\mathcal{N}}}(x) \lor \mu_{\mathcal{B}_{\mathcal{N}}}(x), \sigma_{\mathcal{A}_{\mathcal{N}}}(x) \lor \sigma_{\mathcal{B}_{\mathcal{N}}}(x) \text{ and } \gamma_{\mathcal{A}_{\mathcal{N}}}(x) \land \gamma_{\mathcal{B}_{\mathcal{N}}}(x) \rangle$

Definition 2.3 [12] Let $\mathcal{A}_{\mathcal{N}} = \langle \mu_{\mathcal{A}_{\mathcal{N}}}(x), \sigma_{\mathcal{A}_{\mathcal{N}}}(x), \gamma_{\mathcal{A}_{\mathcal{N}}}(x) \rangle$ be a $\mathcal{N}S$ on \mathcal{X} , then the complement $\mathcal{A}_{\mathcal{N}}^{c}$ defined as

•
$$\mathcal{A}_{\mathcal{N}}^{c} = \{ \langle \mathbf{x}, \gamma_{\mathcal{A}_{\mathcal{N}}}(\mathbf{x}), 1 - \sigma_{\mathcal{A}_{\mathcal{N}}}(\mathbf{x}), \mu_{\mathcal{A}_{\mathcal{N}}}(\mathbf{x}) \rangle : \mathbf{x} \in \mathcal{X} \}$$

Note that for any two Neutrosophic sets $\mathcal{A}_{\mathcal{N}}$ and $\mathcal{B}_{\mathcal{N}}$,

•
$$(\mathcal{A}_{\mathcal{N}} \cup \mathcal{B}_{\mathcal{N}})^{c} = \mathcal{A}_{\mathcal{N}}^{c} \cap \mathcal{B}_{\mathcal{N}}^{c}$$

•
$$(\mathcal{A}_{\mathcal{N}} \cap \mathcal{B}_{\mathcal{N}})^{c} = \mathcal{A}_{\mathcal{N}}^{c} \cup \mathcal{B}_{\mathcal{N}}^{c}.$$

Definition 2.4 [12] A Neutrosophic topology (\mathcal{NT}) on a non-empty set \mathcal{X} is a family τ of Neutrosophic subsets in \mathcal{X} satisfies the following axioms:

- 1. $\mathbf{0}_{\mathcal{N}}, \mathbf{1}_{\mathcal{N}} \in \tau$ 2. $R_{N_1} \cap R_{N_2} \in \tau$ for any $R_{N_1}, R_{N_2} \in \tau$ 3. $\cup R_{N_i} \in \tau \quad \forall \quad R_{N_i} : i \in I \subseteq \tau$

Here the empty set $\mathbf{0}_{\mathcal{N}}$ and the whole set $\mathbf{1}_{\mathcal{N}}$ may be defined as follows:

1.
$$\mathbf{0}_{\mathcal{N}} = \{ \langle \mathbf{x}, 0, 0, 1 \rangle : \mathbf{x} \in \mathcal{X} \}$$

2. $\mathbf{1}_{\mathcal{N}} = \{ \langle \mathbf{x}, \mathbf{1}, \mathbf{1}, \mathbf{0} \rangle : \mathbf{x} \in \mathcal{X} \}$

Definition 2.5 [12] Let $\mathcal{A}_{\mathcal{W}}$ be a $\mathcal{N}S$ in $\mathcal{NTSX}_{\mathcal{N}}$. Then

- 1. \mathcal{N} int $(\mathcal{A}_{\mathcal{N}}) = \bigcup \{ G: G \text{ isa } \mathcal{NOS} \text{ in } X_{\mathcal{N}} \text{ and } G \subseteq \mathcal{A}_{\mathcal{N}} \}$ is called a Neutrosophic interior of $\mathcal{A}_{\mathcal{N}}$.
- 2. $\mathcal{N}cl(\mathcal{A}_{\mathcal{N}}) = \cap \{K: K \text{ is a } \mathcal{NCS} \text{ in } X_{\mathcal{N}} \text{ and } \mathcal{A}_{\mathcal{N}} \subseteq K\}$ is called Neutrosophic closure of $\mathcal{A}_{\mathcal{N}}$.

Definition 2.6 [5] A Neutrosophic set $\mathcal{A}_{\mathcal{N}}$ of a $\mathcal{NTS}(\mathcal{X}, \tau)$ is called a neutrosophic $\mathcal{N}\alpha$ gCS if $\mathcal{N}\alpha$ cl $(\mathcal{A}_{\mathcal{N}}) \subseteq$ $\mathcal{U}_{\mathcal{N}}$, whenever $\mathcal{A}_{\mathcal{N}} \subseteq \mathcal{U}_{\mathcal{N}}$ and $\mathcal{U}_{\mathcal{N}}$ is a \mathcal{NOS} in \mathcal{X} . The complement of $\mathcal{N}\alpha$ gCS is $\mathcal{N}\alpha$ gOS.

Definition 2.7 [7] A Neutrosophic set $\mathcal{A}_{\mathcal{N}}$ of a $\mathcal{NTS}(\mathcal{X}, \tau)$ is called a Neutrosophic $g^{\#}$ –closed ($\mathcal{N}g^{\#}CS$) if $\mathcal{N}cl(\mathcal{A}_{\mathcal{N}}) \subseteq \mathcal{Q}_{\mathcal{N}}$ whenever $\mathcal{A}_{\mathcal{N}} \subseteq \mathcal{Q}_{\mathcal{N}}$ and $\mathcal{Q}_{\mathcal{N}}$ is $\mathcal{N}\alpha gOS$ in \mathcal{X} . The complement of $\mathcal{N}g^{\#}CS$ is $\mathcal{N}g^{\#}OS$.

Definition 2.8 [11] Let $\mathcal{A}_{\mathcal{N}}$ be a $\mathcal{N}S$ in $\mathcal{NTS} \mathcal{X}$. Then

- 1. $\mathcal{N}g^{\#}int(\mathcal{A}_{\mathcal{N}}) = \bigcup \{G: G \text{ is a } \mathcal{N}g^{\#}OS \text{ in } \mathcal{X} \text{ and } G \subseteq \mathcal{A}_{\mathcal{N}}\} \text{ is called a Neutrosophic } g^{\#} \text{ interior of } \mathcal{A}_{\mathcal{N}}.$ 2. $\mathcal{N}g^{\#}cl(\mathcal{A}_{\mathcal{N}}) = \cap \{K: K \text{ is a } \mathcal{N}g^{\#}CS \text{ in } \mathcal{X} \text{ and } \mathcal{A}_{\mathcal{N}} \subseteq K\} \text{ is called Neutrosophic } g^{\#} \text{ closure of } \mathcal{A}_{\mathcal{N}}.$

Definition 2.9 [8] A function $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ is said to be $\mathcal{N}g^{\#}$ - continuous function if $f_{\mathcal{N}}^{-1}(\mathcal{V}_{\mathcal{N}})$ is a $\mathcal{N}g^{\#}$ – closed set of (\mathcal{X}, τ) for every neutrosophic closed set $\mathcal{V}_{\mathcal{N}}$ of (\mathcal{Y}, ζ) .

Definition 2.10 [8] A function $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ is said to be Neutrosophic $g^{\#}$ – irresolute function if $f_{\mathcal{N}}^{-1}(\mathcal{V}_{\mathcal{N}})$ is a $\mathcal{N}g^{\#}CS$ of (\mathcal{X}, τ) for every $\mathcal{N}g^{\#}CS$ $\mathcal{V}_{\mathcal{N}}$ of (\mathcal{Y}, ζ) .

Definition 2.11 [11] A Neutrosophic Topological space (\mathcal{X}, τ) is called a $T_{\mathcal{N}}g^{\#}$ – space if every $\mathcal{N}g^{\#}CS$ in (\mathcal{X}, τ) is \mathcal{NCS} in (\mathcal{X}, τ) .

Definition 2.14 [9] A function $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ is said to be $\mathcal{N}g^{\#}$ – contra continuous if $f_{\mathcal{N}}^{-1}(\mathcal{V}_{\mathcal{N}})$ is a $\mathcal{N}g^{\#}$ – closed set of (\mathcal{X}, τ) for every neutrosophic open set (\mathcal{Y}, ζ) .

Definition 2.15 [9] A function $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ is said to be \mathcal{N} - contra continuous if $f_{\mathcal{N}}^{-1}(\mathcal{V}_{\mathcal{N}})$ is a \mathcal{N} closed set of (\mathcal{X}, τ) for every neutrosophic open set (\mathcal{Y}, ζ) .

Definition 2.16 [10] A function $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ is said to be perfectly $\mathcal{N}g^{\#}$ – continuous if the inverse image of every $\mathcal{N}g^{\#}$ – closed set in (\mathcal{Y},ζ) is Neutrosophic clopen set in (\mathcal{X},τ) .

III. Totally $\mathcal{N}g^{\#}$ – Continuous Functions

In this section, we introduce totally $\mathcal{N}g^{\#}$ – continuous functions and discuss some of their interesting properties.

Definition 3.1 A function $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ is said to be totally $\mathcal{N}g^{\#}$ – continuous if the inverse image of every Neutrosophic closed set in (\mathcal{Y}, ζ) is both $\mathcal{N}g^{\#}CS$ and $\mathcal{N}g^{\#}OS$ (ie, $\mathcal{N}g^{\#}$ – clopen set) in (\mathcal{X}, τ) .

Example 3.2 Let $\mathcal{X} = \{l, m\} = \mathcal{Y}$ Consider the Neutrosophic sets

 $\mathcal{M}_{\mathcal{N}_1} = \{ \langle l, (0.4, 0.3, 0.6) \rangle, \langle m, (0.4, 0.4, 0.6) \rangle \},\$

 $\mathcal{M}_{\mathcal{N}_2} = \{ \langle p, (0.6, 0.7, 0.4) \rangle, \langle q, (0.6, 0.7, 0.4) \rangle \}.$

Now Then $\tau = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathcal{M}_{\mathcal{N}_{2}}, \mathbf{1}_{\mathcal{N}}\}$ and $\zeta = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{2}}, \mathbf{1}_{\mathcal{N}}\}$ are $\mathcal{NT}s$ on \mathcal{X} and \mathcal{Y} respectively. Define $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ by $f_{\mathcal{N}}(l) = l$ and $f_{\mathcal{N}}(m) = m$. Here $\mathcal{N}g^{\#}COS(\mathcal{X}) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathcal{M}_{\mathcal{N}_{2}}, \mathbf{1}_{\mathcal{N}}\}$. Now $\mathcal{M}_{\mathcal{N}_{2}}$ is \mathcal{NCS} in \mathcal{Y} and $f_{\mathcal{N}}^{-1}(\mathcal{M}_{\mathcal{N}_{2}})$ is $\mathcal{N}g^{\#}$ – clopen set in (\mathcal{X}, τ) . Therefore, $f_{\mathcal{N}}$ is totally $\mathcal{N}g^{\#}$ – continuous.

Theorem 3.3 Every perfectly $\mathcal{N}g^{\#}$ – continuous function is totally $\mathcal{N}g^{\#}$ – continuous function but not conversely.

Proof. Let $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ be any neutrosophic function. Let $\mathcal{A}_{\mathcal{N}}$ be a \mathcal{NCS} in (\mathcal{Y}, ζ) . Then $\mathcal{A}_{\mathcal{N}}$ is $\mathcal{N}g^{\#}CS$ in (\mathcal{Y}, ζ) . Since $f_{\mathcal{N}}$ is a perfectly $\mathcal{N}g^{\#}$ – continuous function, $f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})$ is both \mathcal{NCS} and \mathcal{NOS} in (\mathcal{X}, τ) . Which implies $f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})$ is both $\mathcal{N}g^{\#}CS$ and $\mathcal{N}g^{\#}OS$ in (\mathcal{X}, τ) . Hence, $f_{\mathcal{N}}$ is totally $\mathcal{N}g^{\#}$ – continuous function.

Example 3.4 Let $\mathcal{X} = \{l, m\} = \mathcal{Y}$ Consider the Neutrosophic sets

$$\begin{split} \mathcal{M}_{\mathcal{N}_{1}} &= \{ \langle l, (0.4, 0.3, 0.6) \rangle, \langle m, (0.4, 0.4, 0.6) \rangle \}, \\ \mathcal{M}_{\mathcal{N}_{2}} &= \{ \langle p, (0.6, 0.7, 0.4) \rangle, \langle q, (0.6, 0.7, 0.4) \rangle \}, \\ \mathcal{M}_{\mathcal{N}_{3}} &= \{ \langle l, (0.7, 0.8, 0.3) \rangle, \langle m, (0.8, 0.8, 0.3) \rangle \}, \end{split}$$

 $\mathcal{M}_{\mathcal{N}_4} = \{ \langle l, (0.3, 0.2, 0.7) \rangle, \langle m, (0.3, 0.2, 0.8) \rangle \}.$

Now Then $\tau = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathcal{M}_{\mathcal{N}_{2}}, \mathbf{1}_{\mathcal{N}}\}$ and $\zeta = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathbf{1}_{\mathcal{N}}\}$ are $\mathcal{N}Ts$ on \mathcal{X} and \mathcal{Y} respectively. Define $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ by $f_{\mathcal{N}}(l) = l$ and $f_{\mathcal{N}}(m) = m$. Here $\mathcal{N}g^{\#}COS(X) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathcal{M}_{\mathcal{N}_{2}}, \mathbf{1}_{\mathcal{N}}\} = \mathcal{N}COS(\mathcal{X}), \mathcal{N}g^{\#}CS(Y) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{2}}, \mathcal{M}_{\mathcal{N}_{3}}, \mathbf{1}_{\mathcal{N}}\}$. Now $\mathcal{M}_{\mathcal{N}_{2}}$ is $\mathcal{N}CS$ in \mathcal{Y} and $f_{\mathcal{N}}^{-1}(\mathcal{M}_{\mathcal{N}_{2}})$ is $\mathcal{N}g^{\#} - \text{clopen}$ set in (\mathcal{X}, τ) . Therefore, $f_{\mathcal{N}}$ is totally $\mathcal{N}g^{\#} - \text{continuous}$. But $\mathcal{M}_{\mathcal{N}_{3}}$ is $\mathcal{N}g^{\#}CS$ in \mathcal{Y} and $f_{\mathcal{N}}^{-1}(\mathcal{M}_{\mathcal{N}_{3}})$ is not $\mathcal{N} - \text{clopen}$ set in (\mathcal{X}, τ) . Therefore, $f_{\mathcal{N}}$ is not perfectly $\mathcal{N}g^{\#} - \text{continuous}$.

Theorem 3.5 Every totally $\mathcal{N}g^{\#}$ – continuous function is $\mathcal{N}g^{\#}$ – continuous function.

Proof. Let $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ be any neutrosophic function. Let $\mathcal{A}_{\mathcal{N}}$ be a \mathcal{NCS} in (\mathcal{Y}, ζ) . Since $f_{\mathcal{N}}$ is a totally $\mathcal{N}g^{\#} -$ continuous function, $f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})$ is both $\mathcal{N}g^{\#}CS$ and $\mathcal{N}g^{\#}OS$ in (\mathcal{X}, τ) . Which implies $f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})$ is $\mathcal{N}g^{\#}CS$ and in (\mathcal{X}, τ) . Therefore, $f_{\mathcal{N}}$ is $\mathcal{N}g^{\#} -$ continuous function

Example 3.6 Let $\mathcal{X} = \{l, m\} = \mathcal{Y}$ Consider the Neutrosophic sets $\mathcal{M}_{\mathcal{N}_1} = \{\langle l, (0.4, 0.3, 0.6) \rangle, \langle m, (0.4, 0.4, 0.6) \rangle\},\$ $\mathcal{M}_{\mathcal{N}_2} = \{\langle p, (0.6, 0.7, 0.4) \rangle, \langle q, (0.6, 0.7, 0.4) \rangle\},\$ $\mathcal{M}_{\mathcal{N}_3} = \{\langle l, (0.7, 0.8, 0.3) \rangle, \langle m, (0.8, 0.8, 0.3) \rangle\},\$ $\mathcal{M}_{\mathcal{N}_4} = \{\langle l, (0.3, 0.2, 0.7) \rangle, \langle m, (0.3, 0.2, 0.8) \rangle\}.$

Now Then $\tau = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathcal{M}_{\mathcal{N}_{4}}, \mathbf{1}_{\mathcal{N}}\}$ and $\zeta = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathbf{1}_{\mathcal{N}}\}$ are $\mathcal{N}\mathcal{T}s$ on \mathcal{X} and \mathcal{Y} respectively. Define $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ by $f_{\mathcal{N}}(l) = l$ and $f_{\mathcal{N}}(m) = m$. Here $\mathcal{N}g^{\#}COS(X) = \{\mathbf{0}_{\mathcal{N}}, \mathbf{1}_{\mathcal{N}}\}, \mathcal{N}g^{\#}CS(X) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{2}}, \mathcal{M}_{\mathcal{N}_{3}}, \mathbf{1}_{\mathcal{N}}\}$. Now $\mathcal{M}_{\mathcal{N}_{2}}$ is $\mathcal{N}\mathcal{C}S$ in \mathcal{Y} and $f_{\mathcal{N}}^{-1}(\mathcal{M}_{\mathcal{N}_{2}})$ is $\mathcal{N}g^{\#}CS$ in (\mathcal{X}, τ) . Therefore, $f_{\mathcal{N}}$ is $\mathcal{N}g^{\#}$ – continuous. But $\mathcal{M}_{\mathcal{N}_{2}}$ is $\mathcal{N}\mathcal{C}S$ in \mathcal{Y} and $f_{\mathcal{N}}^{-1}(\mathcal{M}_{\mathcal{N}_{2}})$ is not $\mathcal{N}g^{\#}$ – clopen set in (\mathcal{X}, τ) . Therefore, $f_{\mathcal{N}}$ is not totally $\mathcal{N}g^{\#}$ – continuous.

Theorem 3.7 Let $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ be totally $\mathcal{N}g^{\#}$ – continuous function and (\mathcal{Y}, ζ) be $T_{\mathcal{N}}g^{\#}$ – spaces. Then $f_{\mathcal{N}}$ is $\mathcal{N}g^{\#}$ – irresolute function.

Proof. Let $\mathcal{A}_{\mathcal{N}}$ be any $\mathcal{N}g^{\#}CS$ in (\mathcal{Y},ζ) . Since (\mathcal{Y},ζ) is $T_{\mathcal{N}}g^{\#}$ – space, $\mathcal{A}_{\mathcal{N}}$ is $\mathcal{N}CS$ in (\mathcal{Y},ζ) . Since $f_{\mathcal{N}}$ is totally $\mathcal{N}g^{\#}$ – continuous, $f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})$ is both $\mathcal{N}g^{\#}CS$ and $\mathcal{N}g^{\#}OS$ in (\mathcal{X},τ) . $f_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})$ is $\mathcal{N}g^{\#}CS$ in (\mathcal{X},τ) . Therefore, $f_{\mathcal{N}}$ is $\mathcal{N}g^{\#}$ – irresolute.

Remark 3.8 Composition of two totally $\mathcal{N}g^{\#}$ – continuous functions need not be a totally $\mathcal{N}g^{\#}$ – continuous.

Example 3.9 Let $\mathcal{X} = \{p, q\} = \mathcal{Y} = \mathcal{Z}$. Consider the Neutrosophic sets $\mathcal{M}_{\mathcal{N}_1} = \{\langle p, (0.4, 0.5, 0.6) \rangle, \langle q, (0.3, 0.4, 0.7) \rangle\},\$ $\mathcal{M}_{\mathcal{N}_2} = \{\langle p, (0.6, 0.5, 0.4) \rangle, \langle q, (0.7, 0.6, 0.3) \rangle\},\$ $\mathcal{M}_{\mathcal{N}_3} = \{\langle p, (0.3, 0.4, 0.7) \rangle, \langle q, (0.4, 0.5, 0.6) \rangle\},\$ $\mathcal{M}_{\mathcal{N}_4} = \{\langle p, (0.7, 0.6, 0.3) \rangle, \langle q, (0.6, 0.5, 0.4) \rangle\}.$

Now $(\mathcal{X}, \tau) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathcal{M}_{\mathcal{N}_{2}}, \mathbf{1}_{\mathcal{N}}\}, (\mathcal{Y}, \zeta) = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{3}}, \mathcal{M}_{\mathcal{N}_{4}}, \mathbf{1}_{\mathcal{N}}\} = (\mathcal{Z}, \eta)$ are Neutrosophic topological spaces. Then $\tau = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{1}}, \mathcal{M}_{\mathcal{N}_{2}}, \mathbf{1}_{\mathcal{N}}\}, \zeta = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{3}}, \mathcal{M}_{\mathcal{N}_{4}}, \mathbf{1}_{\mathcal{N}}\}$ and $\eta = \{\mathbf{0}_{\mathcal{N}}, \mathcal{M}_{\mathcal{N}_{3}}, \mathbf{1}_{\mathcal{N}}\}$ are Neutrosophic topologies on \mathcal{X}, \mathcal{Y} and \mathcal{Z} respectively. Define a function $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ by $f_{\mathcal{N}}(p) = q$ and $f_{\mathcal{N}}(q) = p$ and define a function $g_{\mathcal{N}}: (\mathcal{Y}, \zeta) \to (\mathcal{Z}, \eta)$ by $g_{\mathcal{N}}(p) = p$ and $g_{\mathcal{N}}(q) = q$. Then $f_{\mathcal{N}}$ and $g_{\mathcal{N}}$ are $\mathcal{N}g^{\#}$ – contra continuos functions. Now define a function $g_{\mathcal{N}} \circ f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Z}, \eta)$ by $g_{\mathcal{N}} \circ f_{\mathcal{N}}(p) = p$ and $g_{\mathcal{N}} \circ f_{\mathcal{N}}(q) = q$. Here $\mathcal{M}_{\mathcal{N}_{3}}$ is a \mathcal{NCS} in (\mathcal{Z}, η) . But $(g_{\mathcal{N}} \circ f_{\mathcal{N}})^{-1}(\mathcal{M}_{\mathcal{N}_{4}})$ is not a $\mathcal{N}g^{\#}COS$ in (\mathcal{X}, τ) . Hence $(g_{\mathcal{N}} \circ f_{\mathcal{N}})$ is not totally $\mathcal{N}g^{\#}$ – continuous function.

Theorem 3.10 Let $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ be a $\mathcal{N}g^{\#}$ – irresolute function. Let $g_{\mathcal{N}}: (\mathcal{Y}, \zeta) \to (\mathcal{Z}, \eta)$ be a totally $\mathcal{N}g^{\#}$ – continuous function. Then $(g_{\mathcal{N}} \circ f_{\mathcal{N}}): (\mathcal{X}, \tau) \to (\mathcal{Z}, \eta)$ is totally $\mathcal{N}g^{\#}$ – continuous function.

Proof. Let $\mathcal{W}_{\mathcal{N}}$ be a \mathcal{NCS} in (\mathcal{Z}, η) . Since $g_{\mathcal{N}}$ is totally $\mathcal{Ng}^{\#}$ – continuous, $g_{\mathcal{N}}^{-1}(\mathcal{W}_{\mathcal{N}})$ is $\mathcal{Ng}^{\#}CS$ and $\mathcal{Ng}^{\#}OS$ in (\mathcal{Y}, ζ) . Since $f_{\mathcal{N}}$ is $\mathcal{Ng}^{\#}$ – irresolute, $f_{\mathcal{N}}^{-1}(g_{\mathcal{N}}^{-1}(\mathcal{W}_{\mathcal{N}}))$ is $\mathcal{Ng}^{\#}CS$ and $\mathcal{Ng}^{\#}OS$ in (\mathcal{X}, τ) . Hence $g_{\mathcal{N}} \circ f_{\mathcal{N}}(\mathcal{W}_{\mathcal{N}})$ is totally $\mathcal{Ng}^{\#}$ – continuous function.

Theorem 3.11 Let $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ be a totally $\mathcal{N}g^{\#}$ – continuous function. Let $g_{\mathcal{N}}: (\mathcal{Y}, \zeta) \to (\mathcal{Z}, \eta)$ be a \mathcal{N} – continuous function. Then $(g_{\mathcal{N}} \circ f_{\mathcal{N}}): (\mathcal{X}, \tau) \to (\mathcal{Z}, \eta)$ is totally $\mathcal{N}g^{\#}$ – continuous function.

Proof. Let $\mathcal{W}_{\mathcal{N}}$ be a \mathcal{NCS} in (\mathcal{Z}, η) . By hypothesis, $g_{\mathcal{N}}^{-1}(\mathcal{W}_{\mathcal{N}})$ is a \mathcal{NCS} in (\mathcal{Y}, ζ) . Since $f_{\mathcal{N}}$ is totally $\mathcal{Ng}^{\#}$ – continuous, $f_{\mathcal{N}}^{-1}(g_{\mathcal{N}}^{-1}(\mathcal{W}_{\mathcal{N}}))$ is a $\mathcal{Ng}^{\#}CS$ and $\mathcal{Ng}^{\#}OS$ in (\mathcal{X}, τ) . Hence $g_{\mathcal{N}} \circ f_{\mathcal{N}}(\mathcal{W}_{\mathcal{N}})$ is totally $\mathcal{Ng}^{\#}$ – continuous function.

Theorem 3.12 Let $f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Y}, \zeta)$ and $g_{\mathcal{N}}: (\mathcal{Y}, \zeta) \to (\mathcal{Z}, \eta)$ be totally $\mathcal{N}g^{\#}$ – continuous function and (\mathcal{Y}, ζ) be $T_{\mathcal{N}}g^{\#}$ – spaces. Then $g_{\mathcal{N}} \circ f_{\mathcal{N}}: (\mathcal{X}, \tau) \to (\mathcal{Z}, \eta)$ is totally $\mathcal{N}g^{\#}$ – continuous function.

Proof. Let $\mathcal{A}_{\mathcal{N}}$ be any \mathcal{NCS} in (\mathcal{Z}, η) . Since $g_{\mathcal{N}}$ is totally $\mathcal{N}g^{\#}$ – continuous, $g_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})$ is both $\mathcal{N}g^{\#}CS$ and $\mathcal{N}g^{\#}OS$ in (\mathcal{Y}, ζ) . Since (\mathcal{Y}, ζ) is $T_{\mathcal{N}}g^{\#}$ – spaces, $g_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})$ is \mathcal{NCS} in (\mathcal{Y}, ζ) . Since $f_{\mathcal{N}}$ is totally $\mathcal{N}g^{\#}$ – continuous, $f_{\mathcal{N}}^{-1}(g_{\mathcal{N}}^{-1}(\mathcal{A}_{\mathcal{N}})) = (g_{\mathcal{N}} \circ f_{\mathcal{N}})^{-1}(\mathcal{A}_{\mathcal{N}})$ is both $\mathcal{N}g^{\#}CS$ and $\mathcal{N}g^{\#}OS$ in (\mathcal{X}, τ) . Therefore, $g_{\mathcal{N}} \circ f_{\mathcal{N}}$ is totally $\mathcal{N}g^{\#}$ – continuous function.

IV. Conclusion

In this article we introduced a new class of continuous function in Neutrosophic Topological space called totally $Ng^{#}$ – continuous functions. Moreover, characterizations of totally $Ng^{#}$ – continuous functions are analyzed and studied their properties.

References

[1]. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, (1986), 20, 87-96.

[2]. C. L. Chang, Fuzzy topological spaces, J.Math.Anal.Appl., (1968), 24, 182-190.

- [3]. R. Dhavaseelan and S. Jafari, Generalized Neutrosophic closed sets, New trends in Neutrosophic theory and applications (2018), 2, 261-273.
- [4]. Floretin Smarandache, Neutrosophic Set:- A Generalization of Intuitionistiic Fuzzy set, Journal of Defense Resourses Management, (2010), 1, 107–116.
- [5]. D. Jayanthi, On α Generalized closed sets in Neutrosophic topological spaces, International Conference on Recent Trends in Mathematics and Information Technology, (2018), pecial Issue March, 88-91.
- [6]. N.Levine, Generalized closed set in topology, Rend.Circ.Mat Palermo, (1970), 19, 89-96.
- [7]. S. Pious Missier, R.L. Babisha Julit, On Neutrosophic generalized closed sets, Punjab University Journal of Mathematics (Submited)
- [8]. S. Pious Missier, R.L. Babisha Julit ,On Neurtosophic g[#] Continuous Functions and Neurtosophic g[#] Irresolute Functions,Abstract Proceedings of 24th FAI-ICDBSMD 2021 Vol. 6(i), pp.49(2021)

- [9]. S. Pious Missier, R.L. Babisha Julit, On Ng[#]- Contra Continuous Functions in Neutrosophic Topological Space, Design Engineering, (2021), 6, 8606-8614.
- [10]. S. Pious Missier, R.L. Babisha Julit, New Type of Continuous Functions in Neutrosophic Topological Space (submitted)
- [11]. S. Pious Missier, R.L. Babisha Julit ,On Ng[#] Interior and Ng[#] Closure in Neutrosophic Topological Space,Conference Proceedings of NCAGT , (2021), pp.122-133.
- [12]. Salama A. A. and Alblowi S. A., Neutrosophic set and Neutrosophic topological spaces, IOSR Jour. of Mathematics, (2012), 3(4), 31-35.
- [13]. Salama A. A., Florentin Smarandache and Valeri Kroumov, Neutrosophic Closed set and Neutrosophic Continuous Function, Neutrosophic Sets and Systems, (2014), 4, 4–8.
- [14]. Wadei Al-Omeri and Saeid Jafari, On Generalized Closed Sets and Generalized Pre-Closed in Neutrosophic Topological Spaces, Mathematics MDPI, (2018), 7,01-12.
- [15]. Zadeh L. A., Fuzzy sets, Information and control, (1965), 8, 338-353.

Pious Missier S, et. al. " On Totally Ng⁺- Continuous Functions in Neutrosophic Topological Space." *IOSR Journal of Mathematics (IOSR-JM)*, 18(1), (2022): pp. 64-68.