On Totally $\mathcal{N}g^#$ – Continuous Functions in Neutrosophic Topological Space

Pious Missier S1, Babisha Julit R L2, Martina Jency J3

1(Head & Associate Professor, Department of Mathematics, Don Bosco College of Arts and Science, KeelaEral, Thoothukudi-628 908, (Affiliated to Manonmaniam Sundaranar University, Abishekpati, Tirunelveli- 627 012), Tamil Nadu, India)

2(Research Scholar (Reg.No-19212052092006), Department of Mathematics, G. Venkataswamy Naidu College, Kovilpatti-628 502, (Affiliated to Manonmaniam Sundaranar University, Abishekpati, Tirunelveli- 627 012), Tamil Nadu, India)

3(Assistant Professor, Department of Mathematics, Partician College of Arts and Science, Chennai - 628 908, Tamil Nadu, India)

Abstract:
In this article, we introduce a new concept of Neutrosophic continuous functions called totally $\mathcal{N}g^#$ – continuous functions and study their properties in Neutrosophic topological spaces.

Key Word: $\mathcal{N}g^#$ – closed set, $\mathcal{N}g^#$ – continuous function, totally $\mathcal{N}g^#$ – continuous function.

I. Introduction

Smarandache [4] introduced the idea of Neutrosophic set, and in 2014 Salama et.al. [12] initiated further studies into Neutrosophic closed sets and Neutrosophic continuous functions. Recently Pious Missier et.al.[7],[8], introduced the concept of $\mathcal{N}g^#$ – closed sets, continuous and irresolute mappings, in Neutrosophic Topological Spaces. In this paper, we introduce a new type of continuity in the concept of Neutrosophic topology called totally $\mathcal{N}g^#$ – continuous functions and investigate their properties with necessary examples.

II. Preliminaries

Definition 2.1 [4] A Neutrosophic set $(\mathcal{N}s)\mathcal{A}_x$ is an object having the form

$\mathcal{A}_x = \{ (\mu_{\mathcal{A}_x}(x), \sigma_{\mathcal{A}_x}(x), \gamma_{\mathcal{A}_x}(x)) : x \in X \}$

where $\mu_{\mathcal{A}_x}(x)$, $\sigma_{\mathcal{A}_x}(x)$ and $\gamma_{\mathcal{A}_x}(x)$ represent the degree of membership, degree of indeterminacy and the degree of non-membership respectively of each element $x \in X$ to the set \mathcal{A}_x. A Neutrosophic set $\mathcal{A}_x = \{ (x, \mu_{\mathcal{A}_x}(x), \sigma_{\mathcal{A}_x}(x), \gamma_{\mathcal{A}_x}(x)) : x \in X \}$ can be identified as an ordered triple $(\mu_{\mathcal{A}_x}(x), \sigma_{\mathcal{A}_x}(x), \gamma_{\mathcal{A}_x}(x))$ in $]-1,1+[on X$.

Definition 2.2 [12] For any two Neutrosophic sets $\mathcal{A}_x = \{ (x, \mu_{\mathcal{A}_x}(x), \sigma_{\mathcal{A}_x}(x), \gamma_{\mathcal{A}_x}(x)) : x \in X \}$ and $\mathcal{B}_x = \{ (x, \mu_{\mathcal{B}_x}(x), \sigma_{\mathcal{B}_x}(x), \gamma_{\mathcal{B}_x}(x)) : x \in X \}$ we have

- $\mathcal{A}_x \subseteq \mathcal{B}_x \iff \mu_{\mathcal{A}_x}(x) \leq \mu_{\mathcal{B}_x}(x), \sigma_{\mathcal{A}_x}(x) \leq \sigma_{\mathcal{B}_x}(x) \text{ and } \gamma_{\mathcal{A}_x}(x) \geq \gamma_{\mathcal{B}_x}(x)$.
- $\mathcal{A}_x \cap \mathcal{B}_x = \{ (x, \mu_{\mathcal{A}_x}(x) \wedge \mu_{\mathcal{B}_x}(x), \sigma_{\mathcal{A}_x}(x) \wedge \sigma_{\mathcal{B}_x}(x), \gamma_{\mathcal{A}_x}(x) \vee \gamma_{\mathcal{B}_x}(x)) \}$
- $\mathcal{A}_x \cup \mathcal{B}_x = \{ (x, \mu_{\mathcal{A}_x}(x) \vee \mu_{\mathcal{B}_x}(x), \sigma_{\mathcal{A}_x}(x) \vee \sigma_{\mathcal{B}_x}(x), \gamma_{\mathcal{A}_x}(x) \wedge \gamma_{\mathcal{B}_x}(x)) \}$

Definition 2.3 [12] Let $\mathcal{A}_x = (\mu_{\mathcal{A}_x}(x), \sigma_{\mathcal{A}_x}(x), \gamma_{\mathcal{A}_x}(x))$ be a $\mathcal{N}s$ on X, then the complement \mathcal{A}_x^c defined as

- $\mathcal{A}_x^c = \{ (x, \gamma_{\mathcal{A}_x}(x), 1 - \sigma_{\mathcal{A}_x}(x), \mu_{\mathcal{A}_x}(x)) : x \in X \}$

DOI: 10.9790/5728-1801036468 www.iosrjournals.org
Note that for any two Neutrosophic sets \mathcal{A}_N and \mathcal{B}_N,

- $(\mathcal{A}_N \cup \mathcal{B}_N)^c = \mathcal{A}_N^c \cap \mathcal{B}_N^c$
- $(\mathcal{A}_N \cap \mathcal{B}_N)^c = \mathcal{A}_N^c \cup \mathcal{B}_N^c$.

Definition 2.4 [12] A Neutrosophic topology (\mathcal{N}) on a non-empty set X is a family τ of Neutrosophic subsets in X satisfies the following axioms:

1. $\emptyset, 1_X \in \tau$
2. $R_{N_1} \cap R_{N_2} \in \tau$ for any $R_{N_1}, R_{N_2} \in \tau$
3. $\cup R_{N_i} \in \tau \forall R_{N_i} \subseteq I \subseteq \tau$

Here the empty set \emptyset_N and the whole set 1_N may be defined as follows:

1. $\emptyset_N = \{(x, 0, 0, 1) : x \in X\}$
2. $1_N = \{(x, 1, 1, 0) : x \in X\}$

Definition 2.5 [12] Let \mathcal{A}_N be a $N'S$ in $\mathcal{N}TSX_N$. Then

1. \mathcal{N}int$(\mathcal{A}_N) = \{G : G$ is a $N'OSS$ in X_N and $G \subseteq \mathcal{A}_N\}$ is called a Neutrosophic interior of \mathcal{A}_N.
2. \mathcal{N}cl$(\mathcal{A}_N) = \{K : K$ is a $N'CS$ in X_N and $\mathcal{A}_N \subseteq K\}$ is called Neutrosophic closure of \mathcal{A}_N.

Definition 2.6 [5] A Neutrosophic set \mathcal{A}_N of a $N'TS (X, \tau)$ is called a neutrosophic $NagCS$ if \mathcal{N}agcl$(\mathcal{A}_N) \subseteq \mathcal{U}_N$, whenever $\mathcal{A}_N \subseteq \mathcal{U}_N$ and \mathcal{U}_N is a $N'OS$ in X. The complement of $NagCS$ is $NagOS$.

Definition 2.7 [7] A Neutrosophic set \mathcal{A}_N of a $N'TS (X, \tau)$ is called a Neutrosophic g^*-closed (Nag^*CS) if \mathcal{N}agcl$(\mathcal{A}_N) \subseteq \mathcal{Q}_N$ whenever $\mathcal{A}_N \subseteq \mathcal{Q}_N$ and \mathcal{Q}_N is $NagOS$ in X. The complement of Nag^*CS is Nag^*OS.

Definition 2.8 [11] Let \mathcal{A}_N be a $N'S$ in $N'TS X$. Then

1. $\mathcal{N}g^*int(\mathcal{A}_N) = \{G : G$ is a Nag^*OS in X and $G \subseteq \mathcal{A}_N\}$ is called a Neutrosophic g^*-interior of \mathcal{A}_N.
2. $\mathcal{N}g^*cl(\mathcal{A}_N) = \{K : K$ is a Nag^*CS in X and $\mathcal{A}_N \subseteq K\}$ is called Neutrosophic g^*-closure of \mathcal{A}_N.

Definition 2.9 [8] A function $f_N : (X, \tau) \rightarrow (Y, \xi)$ is said to be Nag^*-continuous function if $f_N^{-1}(\mathcal{V}_N)_{\xi}$ is a Nag^*-closed set of (X, τ) for every Neutrosophic closed set \mathcal{V}_N of (Y, ξ).

Definition 2.10 [8] A function $f_N : (X, \tau) \rightarrow (Y, \xi)$ is said to be Neutrosophic g^* - irresolute function if $f_N^{-1}(\mathcal{V}_N)_{\xi}$ is a Nag^*CS of (X, τ) for every Nag^*CS of (Y, ξ).

Definition 2.11 [11] A Neutrosophic Topological space (X, τ) is called a T_Nag^*-space if every Nag^*CS in (X, τ) is NCS in (X, τ).

Definition 2.14 [9] A function $f_N : (X, \tau) \rightarrow (Y, \xi)$ is said to be Nag^* - contra continuous if $f_N^{-1}(\mathcal{V}_N)_{\xi}$ is a Nag^*-closed set of (X, τ) for every Neutrosophic open set (Y, ξ).

Definition 2.15 [9] A function $f_N : (X, \tau) \rightarrow (Y, \xi)$ is said to be Nag^* - contra continuous if $f_N^{-1}(\mathcal{V}_N)_{\xi}$ is a Nag^*-closed set of (X, τ) for every Neutrosophic open set (Y, ξ).

Definition 2.16 [10] A function $f_N : (X, \tau) \rightarrow (Y, \xi)$ is said to be perfectly Nag^*-continuous if the inverse image of every Nag^*-closed set in (Y, ξ) is both Nag^*CS and Nag^*OS (i.e., Nag^* – clopen set) in (X, τ).

III. Totally Nag^* – Continuous Functions

In this section, we introduce totally Nag^* – continuous functions and discuss some of their interesting properties.

Definition 3.1 A function $f_N : (X, \tau) \rightarrow (Y, \xi)$ is said to be totally Nag^* – continuous if the inverse image of every Neutrosophic closed set in (Y, ξ) is both Nag^*CS and Nag^*OS (i.e., Nag^* – clopen set) in (X, τ).
Example 3.2 Let $X = \{l, m\} = \mathcal{Y}$. Consider the Neutrosophic sets

\begin{align*}
\mathcal{M}_{N_1} &= \{(l, (0, 0.4, 0.6)), (m, (0, 0.4, 0.6))\}, \\
\mathcal{M}_{N_2} &= \{(p, (0, 0.6, 0.7, 0.4)), (q, (0, 0.6, 0.7, 0.4))\}.
\end{align*}

Now $\tau = \{0_N, \mathcal{M}_{N_1}, \mathcal{M}_{N_2}, 1_N\}$ and $\xi = \{0_N, \mathcal{M}_{N_1}, 1_N\}$ are NTSs on X and \mathcal{Y} respectively.

Define $f_N : (X, \tau) \rightarrow (\mathcal{Y}, \xi)$ by $f_N(l) = l$ and $f_N(m) = m$. Here $\mathcal{N}g^\#(X) = \{0_N, \mathcal{M}_{N_1}, \mathcal{M}_{N_2}, 1_N\}$. Now \mathcal{M}_{N_2} is NCS in \mathcal{Y} and $f_N^{-1}(\mathcal{M}_{N_2})$ is $\mathcal{N}g^\#$ - clopen set in (X, τ). Therefore, f_N is totally $\mathcal{N}g^\#$ - continuous.

Theorem 3.3 Every perfectly $\mathcal{N}g^\#$ - continuous function is totally $\mathcal{N}g^\#$ - continuous function but not conversely.

Proof. Let $f_N : (X, \tau) \rightarrow (\mathcal{Y}, \xi)$ be any neutrosophic function. Let \mathcal{A}_X be a NCS in (\mathcal{Y}, ξ). Then \mathcal{A}_X is $\mathcal{N}g^\#CS$ in (\mathcal{Y}, ξ). Since f_N is a perfectly $\mathcal{N}g^\#$ - continuous function, $f_N^{-1}(\mathcal{A}_X)$ is both NCS and NOS in (X, τ). Which implies $f_N^{-1}(\mathcal{A}_X)$ is both $\mathcal{N}g^\#CS$ and $\mathcal{N}g^\#OS$ in (X, τ). Hence, f_N is totally $\mathcal{N}g^\#$ - continuous function.

Example 3.4 Let $X = \{l, m\} = \mathcal{Y}$. Consider the Neutrosophic sets

\begin{align*}
\mathcal{M}_{N_1} &= \{(l, (0, 0.4, 0.3, 0.6)), (m, (0, 0.4, 0.4, 0.6))\}, \\
\mathcal{M}_{N_2} &= \{(p, (0, 0.6, 0.7, 0.4)), (q, (0, 0.6, 0.7, 0.4))\}, \\
\mathcal{M}_{N_3} &= \{(l, (0, 0.7, 0.8, 0.3)), (m, (0, 0.8, 0.8, 0.3))\}, \\
\mathcal{M}_{N_4} &= \{(l, (0, 0.3, 0.2, 0.7)), (m, (0, 0.3, 0.2, 0.8))\}.
\end{align*}

Now $\tau = \{0_N, \mathcal{M}_{N_1}, \mathcal{M}_{N_2}, \mathcal{M}_{N_3}, 1_N\}$ and $\xi = \{0_N, \mathcal{M}_{N_1}, 1_N\}$ are NTSs on X and \mathcal{Y} respectively.

Define $f_N : (X, \tau) \rightarrow (\mathcal{Y}, \xi)$ by $f_N(l) = l$ and $f_N(m) = m$. Here $\mathcal{N}g^\#(X) = \{0_N, \mathcal{M}_{N_1}, \mathcal{M}_{N_2}, \mathcal{M}_{N_3}, 1_N\}$. Now \mathcal{M}_{N_2} is NCS in \mathcal{Y} and $f_N^{-1}(\mathcal{M}_{N_2})$ is $\mathcal{N}g^\#$ - clopen set in (X, τ). Therefore, f_N is totally $\mathcal{N}g^\#$ - continuous. But \mathcal{M}_{N_3} is $\mathcal{N}g^\#CS$ in \mathcal{Y} and $f_N^{-1}(\mathcal{M}_{N_3})$ is not $\mathcal{N}g^\#$ - clopen set in (X, τ). Therefore, f_N is not perfectly $\mathcal{N}g^\#$ - continuous.

Theorem 3.5 Every totally $\mathcal{N}g^\#$ - continuous function is $\mathcal{N}g^\#$ - continuous function.

Proof. Let $f_N : (X, \tau) \rightarrow (\mathcal{Y}, \xi)$ be any neutrosophic function. Let \mathcal{A}_X be a NCS in (\mathcal{Y}, ξ). Since f_N is a totally $\mathcal{N}g^\#$ - continuous function, $f_N^{-1}(\mathcal{A}_X)$ is both $\mathcal{N}g^\#CS$ and $\mathcal{N}g^\#OS$ in (X, τ). Which implies $f_N^{-1}(\mathcal{A}_X)$ is both $\mathcal{N}g^\#CS$ and $\mathcal{N}g^\#OS$ in (X, τ). Therefore, f_N is totally $\mathcal{N}g^\#$ - continuous function.

Example 3.6 Let $X = \{l, m\} = \mathcal{Y}$. Consider the Neutrosophic sets

\begin{align*}
\mathcal{M}_{N_1} &= \{(l, (0, 0.4, 0.3, 0.6)), (m, (0, 0.4, 0.4, 0.6))\}, \\
\mathcal{M}_{N_2} &= \{(p, (0, 0.6, 0.7, 0.4)), (q, (0, 0.6, 0.7, 0.4))\}, \\
\mathcal{M}_{N_3} &= \{(l, (0, 0.7, 0.8, 0.3)), (m, (0, 0.8, 0.8, 0.3))\}, \\
\mathcal{M}_{N_4} &= \{(l, (0, 0.3, 0.2, 0.7)), (m, (0, 0.3, 0.2, 0.8))\}.
\end{align*}

Now $\tau = \{0_N, \mathcal{M}_{N_1}, \mathcal{M}_{N_2}, \mathcal{M}_{N_3}, 1_N\}$ and $\xi = \{0_N, \mathcal{M}_{N_1}, 1_N\}$ are NTSs on X and \mathcal{Y} respectively.

Define $f_N : (X, \tau) \rightarrow (\mathcal{Y}, \xi)$ by $f_N(l) = l$ and $f_N(m) = m$. Here $\mathcal{N}g^\#(X) = \{0_N, 1_N\}$. Now \mathcal{M}_{N_2} is NCS in \mathcal{Y} and $f_N^{-1}(\mathcal{N}g^\#)$ is $\mathcal{N}g^\#$ - clopen set in (X, τ). Therefore, f_N is totally $\mathcal{N}g^\#$ - continuous. But \mathcal{M}_{N_2} is NCS in \mathcal{Y} and $f_N^{-1}(\mathcal{M}_{N_2})$ is not $\mathcal{N}g^\#$ - clopen set in (X, τ). Therefore, f_N is not totally $\mathcal{N}g^\#$ - continuous.

Theorem 3.7 Let $f_N : (X, \tau) \rightarrow (\mathcal{Y}, \xi)$ be totally $\mathcal{N}g^\#$ - continuous function and (\mathcal{Y}, ξ) be $\mathcal{T}_2g^\#$ - spaces. Then f_N is $\mathcal{N}g^\#$ - irresolute function.

Proof. Let \mathcal{A}_X be any $\mathcal{N}g^\#CS$ in (\mathcal{Y}, ξ). Since (\mathcal{Y}, ξ) is $\mathcal{T}_2g^\#$ - space, \mathcal{A}_X is NCS in (\mathcal{Y}, ξ). Since f_N is totally $\mathcal{N}g^\#$ - continuous, $f_N^{-1}(\mathcal{A}_X)$ is both $\mathcal{N}g^\#CS$ and $\mathcal{N}g^\#OS$ in (X, τ). Therefore, $f_N^{-1}(\mathcal{A}_X)$ is $\mathcal{N}g^\#CS$ in (X, τ). Therefore, f_N is $\mathcal{N}g^\#$ - irresolute function.
Remark 3.8 Composition of two totally $\mathcal{N}g^# -$ continuous functions need not be a totally $\mathcal{N}g^# -$ continuous.

Example 3.9 Let $X = \{p, q\} = Y = Z$. Consider the Neutrosophic sets

$\mathcal{M}_{N_1} = \{(p, (0, 4, 0.5, 0.6)), (q, (0, 3, 0.4, 0.7))\},$

$\mathcal{M}_{N_2} = \{(p, (0, 6, 0.5, 0.4)), (q, (0.7, 0.6, 0.3))\},$

$\mathcal{M}_{N_3} = \{(p, (0, 3, 0.4, 0.7)), (q, (0, 4.0, 5, 0.4))\},$

$\mathcal{M}_{N_4} = \{(p, (0.7, 0.6, 0.3)), (q, (0.6, 0.5, 0.4))\}.$

Now $(X, \tau) = \{0_{N_1}, \mathcal{M}_{N_1}, \mathcal{M}_{N_2} : 1_{N_1}\}, (Y, \zeta) = \{0_{N_2}, \mathcal{M}_{N_3}, \mathcal{M}_{N_4} : 1_{N_2}\} = (Z, \eta)$ are Neutrosophic topological spaces. Then $\tau = \{0_{N_1}, \mathcal{M}_{N_1}, \mathcal{M}_{N_2} : 1_{N_1}\}, \zeta = \{0_{N_2}, \mathcal{M}_{N_3}, \mathcal{M}_{N_4} : 1_{N_2}\}$ and $\eta = \{0_{N_2}, \mathcal{M}_{N_3}, 1_{N_2}\}$ are Neutrosophic topologies on X, Y and Z respectively. Define a function $f_{N_1} : (X, \tau) \rightarrow (Y, \zeta)$ by $f_{N_1}(p) = q$ and $f_{N_1}(q) = p$ and define a function $g_{N_2} : (Y, \zeta) \rightarrow (Z, \eta)$ by $g_{N_2}(p) = p$ and $g_{N_2}(q) = q$. Then f_{N_1} and g_{N_2} are $\mathcal{N}g^# -$ contra continuous functions. Now define a function $g_{N_2} \circ f_{N_1} : (X, \tau) \rightarrow (Z, \eta)$ by $g_{N_2} \circ f_{N_1}(p) = p$ and $g_{N_2} \circ f_{N_1}(q) = q$. Here \mathcal{M}_{N_3} is a $\mathcal{N}CS$ in (Z, η). But $(g_{N_2} \circ f_{N_1})^{-1}(\mathcal{M}_{N_4})$ is not a $\mathcal{N}g^#COS$ in (X, τ). Hence $(g_{N_2} \circ f_{N_1})$ is not totally $\mathcal{N}g^# -$ continuous function.

Theorem 3.10 Let $f_{N_1} : (X, \tau) \rightarrow (Y, \zeta)$ be a $\mathcal{N}g^# -$ irresolute function. Let $g_{N_2} : (Y, \zeta) \rightarrow (Z, \eta)$ be a totally $\mathcal{N}g^# -$ continuous function. Then $(g_{N_2} \circ f_{N_1}) : (X, \tau) \rightarrow (Z, \eta)$ is totally $\mathcal{N}g^# -$ continuous function.

Proof. Let W_{N_1} be a $\mathcal{N}CS$ in (Z, η). Since g_{N_2} is totally $\mathcal{N}g^# -$ continuous, $g_{N_2}^{-1}(W_{N_1})$ is $\mathcal{N}g^#CS$ and $\mathcal{N}g^#OS$ in (Y, ζ). Since f_{N_1} is $\mathcal{N}g^# -$ irresolute, $g_{N_2}^{-1}(g_{N_2}^{-1}(W_{N_1}))$ is $\mathcal{N}g^#CS$ and $\mathcal{N}g^#OS$ in (X, τ). Hence $g_{N_2} \circ f_{N_1}$ is totally $\mathcal{N}g^# -$ continuous function.

Theorem 3.11 Let $f_{N_1} : (X, \tau) \rightarrow (Y, \zeta)$ be a totally $\mathcal{N}g^# -$ continuous function. Let $g_{N_2} : (Y, \zeta) \rightarrow (Z, \eta)$ be a $\mathcal{N} -$ continuous function. Then $(g_{N_2} \circ f_{N_1}) : (X, \tau) \rightarrow (Z, \eta)$ is totally $\mathcal{N}g^# -$ continuous function.

Proof. Let W_{N_1} be a $\mathcal{N}CS$ in (Z, η). By hypothesis, $g_{N_2}^{-1}(W_{N_1})$ is a $\mathcal{N}CS$ in (Y, ζ). Since f_{N_1} is totally $\mathcal{N}g^# -$ continuous, $g_{N_2}^{-1}(g_{N_2}^{-1}(W_{N_1}))$ is a $\mathcal{N}g^#CS$ and $\mathcal{N}g^#OS$ in (X, τ). Hence $g_{N_2} \circ f_{N_1}$ is totally $\mathcal{N}g^# -$ continuous function.

Theorem 3.12 Let $f_{N_1} : (X, \tau) \rightarrow (Y, \zeta)$ and $g_{N_2} : (Y, \zeta) \rightarrow (Z, \eta)$ be totally $\mathcal{N}g^# -$ continuous function and (Y, ζ) be $T_Ng^# -$ spaces. Then $g_{N_2} \circ f_{N_1} : (X, \tau) \rightarrow (Z, \eta)$ is totally $\mathcal{N}g^# -$ continuous function.

Proof. Let \mathcal{A}_{N_1} be any $\mathcal{N}CS$ in (Z, η). Since g_{N_2} is totally $\mathcal{N}g^# -$ continuous, $g_{N_2}^{-1}(\mathcal{A}_{N_1})$ is both $\mathcal{N}g^#CS$ and $\mathcal{N}g^#OS$ in (Y, ζ). Since (Y, ζ) is $T_Ng^# -$ spaces, $g_{N_2}^{-1}(\mathcal{A}_{N_1})$ is a $\mathcal{N}CS$ in (Y, ζ). Since f_{N_1} is totally $\mathcal{N}g^# -$ continuous, $f_{N_1}^{-1}(g_{N_2}^{-1}(\mathcal{A}_{N_1})) = (g_{N_2} \circ f_{N_1})^{-1}(\mathcal{A}_{N_1})$ is both $\mathcal{N}g^#CS$ and $\mathcal{N}g^#OS$ in (X, τ). Therefore, $g_{N_2} \circ f_{N_1}$ is totally $\mathcal{N}g^# -$ continuous function.

IV. Conclusion

In this article we introduced a new class of continuous function in Neutrosophic Topological space called totally $\mathcal{N}g^# -$ continuous functions. Moreover, characterizations of totally $\mathcal{N}g^# -$ continuous functions are analyzed and studied their properties.

References

[7]. S. Pious Missier, R.L. Babisha Julit , On Neutrosophic generalized closed sets, Punjab University Journal of Mathematics (Submitted)
[8]. S. Pious Missier, R.L. Babisha Julit , On Neutrosophic $g^# -$ Continuous Functions and Neutrosophic $g^# -$ Irresolute Functions, Abstract Proceedings of 24th FAI-ICDBSMD 2021 Vol. 6(i), pp.49(2021)
On Totally N^g- Continuous Functions in Neutrosophic Topological Space

[10]. S. Pious Missier, R.L. Babisha Julit, New Type of Continuous Functions in Neutrosophic Topological Space (submitted)