Secure Dominating Sets of Wheels

K. Lal Gipson¹, Subha T²

¹Assistant Professor, Department of Mathematics, Scott Christian College (Autonomous), Nagercoil-629003, India.

 ²Research Scholar, Reg. No.: 18213112092017, Department of Mathematics, Scott Christian College (Autonomous), Nagercoil-629003, India.
 Affiliated to ManonmaniamSundaranar University, Abishekapatti, Tirunelveli-627012, India.

Abstract:

Let G = (V, E) be a simple graph. A dominating set S of G is a secure dominating set if for each $u \in V - S$ there exists $v \in N(u) \cap S$ such that $(S - \{v\} \cup \{u\})$ is a dominating set. Let W_n be the wheel and $let \mathcal{D}_s(W_n, i)$ denote the family of all secure dominating sets of W_n with cardinality i. In this paper, we obtain all the secure dominating sets of wheels by recursive method.

Key Word: Domination, Secure domination, Secure dominating set, Secure domination number.

Date of Submission: 29-01-2022

Date of Acceptance: 10-02-2022

I. Introduction

By a graph G = (V, E), we mean a finite, undirected graph with neither loops nor multiple edges. The order |V| and the size |E| of G are denoted by n and m respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [2]. For any vertex $v \in V$, the open neighborhood of v is the set $N(v) = \{u \in V : uv \in E\}$ and the closed neighborhood of v is the set $N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V$, the open neighborhood of S is $N(S) = \bigcup_{v \in S} N(v)$ and the closed neighborhood of S is $N[S] = N(S) \cup S$. A set $S \subseteq V$ is a dominating set of G, if N[S] = V, or equivalently, every vertex in V - S is adjacent to at least one vertex in S. A dominating set S of G is a secure dominating set if for each $u \in V - S$ there exists $v \in N(u) \cap S$ such that $(S - \{v\}) \cup \{u\}$ is a dominating set. In this case we say that u is S- defended by v or vS-defends u. The secure domination number $\gamma_s(G)$ is the minimum cardinality of a secure dominating set. The concept secure dominating set is introduced by Cockayne et al [3]. A simple path is a path in which all its internal vertices have degree two, and the end vertices have degree one and is denoted by P_n . A cycle can be defined as a closed path, and is denoted by C_n . A graph G is complete if every pair of distinct vertices of G are adjacent in G. A complete graph on n vertices is denoted by K_n . For $n \ge 4$, the wheel W_n is defined to be the graph $K_1 + C_{n-1}$.

Definition 1.1 [4]

Let X be a dominating set of G. Let $S = \{v \in X : X - \{v\} is a dominating set of G\}$. For $u \in V - X$, let $A(u, X) = \{v \in X : vX - defendsu\}$.

Theorem 1.2 [4]

A secure dominating set *X* is minimal if and only if for each $s \in S$ with $N(s) \cap S \neq \emptyset$, there exists $u_s \in V - X$ such that for each $v \in A(u_s, X) - \{s\}$, one of the following holds:

1. There exists $w \in V - X$ such that $N(w) \cap X = \{v, s\}$ and $u_s \notin N(w)$.

2. $N(s) \cap X = \{v\}$ and $u_s \in N(v) - N(s)$.

Example

The graph W_5

 $S = \{1,5\}$ is a secure dominating set. For, $V = \{1,2,3,4,5\}$; $V - S = \{2,3,4\}$. The sets $\{2,5\}$, $\{1,3\}$, $\{4,5\}$ are also dominating sets.

In the next section, we construct the families of the secure domination sets of the wheels by recursive method.

As usual we use [x] for the largest integer less than or equal to x and [x] for the smallest integer greater than or equal to x. Also, we denote the set $\{1, 2, ..., n\}$ by [n], throughout this paper.

II. Secure Dominating Sets of Wheels

Let $\mathcal{D}_s(W_n, i)$ be the family of secure dominating sets of W_n with cardinality *i*. We need the following lemmas to prove our main results in this section.

Lemma 2.1[4]

Let W_n be the wheel with *n* vertices. Then $\gamma_s(W_n) = \left[\frac{n}{3}\right]$ for $n \ge 5$.

Lemma 2.2

Let W_n be the wheel with *n* vertices and $\mathcal{D}_s(W_n, i)$ be the family of secure dominating sets with cardinality *i*. Then $\mathcal{D}_s(W_n, i) \neq \emptyset$ if and only if $\left[\frac{n}{3}\right] \leq i \leq n$. Also $\mathcal{D}_s(W_n, i) = \emptyset$ if and only if $i < \left[\frac{n}{3}\right]$ or i > n.

Proof

By the definition of secure domination number, there is at least one secure dominating set in $\mathcal{D}_s(W_n, i)$ when $i = \gamma_s(W_n) = \left[\frac{n}{3}\right]$. Since all the super set of a secure dominating set is again a secure dominating set. Therefore $\mathcal{D}_s(W_n, i) \neq \emptyset$ if $\left[\frac{n}{3}\right] \le i \le n$.

Suppose $i < \left[\frac{n}{3}\right]$. Then by the definition of $\gamma_s(W_n)$, there is no secure dominating sets in $\mathcal{D}_s(W_n, i)$. Therefore $\mathcal{D}_s(W_n, i) = \emptyset$, if $i < \left[\frac{n}{3}\right]$. Clearly $\mathcal{D}_s(W_n, i) = \emptyset$ if i > n.

Lemma 2.3

If a graph G contains a wheel of order 3k - 1, then every secure dominating set of G must contain at least k vertices of the wheel.

Lemma 2.4

If $Y \in \mathcal{D}_s(W_{n-1}, i-1)$, then $Y \cup \{n\} \in \mathcal{D}_s(W_n, i)$.

Proof

If $Y \in \mathcal{D}_s(W_{n-1}, i-1)$, then at least one vertex labeled n-1 or n-2 or n-3 or n-4 or n-5 is in Y as an end vertex. If $n-1 \in Y$, then $Y \cup \{n\} \in X_1$ (say) securely dominate W_n . Thus $X_1 \in \mathcal{D}_s(W_n, i)$. If $n-2 \in Y$, then $Y \cup \{n\} \in X_2$ (say) securely dominate W_n . Thus $X_2 \in \mathcal{D}_s(W_n, i)$. If $n-3 \in Y$, then $Y \cup \{n\} \in X_3$ (say) securely dominate W_n . Thus $X_3 \in \mathcal{D}_s(W_n, i)$. If $n-4 \in Y$, then $Y \cup \{n\} \in X_4$ (say) securely dominate
$$\begin{split} W_n. \mbox{ Thus } & X_4 \in \mathcal{D}_s(W_n, i). \mbox{ If } n-5 \in Y, \mbox{ then } Y \cup \{n\} \in X_5 \mbox{ (say) securely dominate } W_n. \mbox{ Thus } \\ X_5 \in \mathcal{D}_s(W_n, i). \mbox{ In all the cases, } Y \cup \{n\} \mbox{ securely dominate } W_n. \mbox{ Hence } Y \cup \{n\} \in \mathcal{D}_s(W_n, i), \mbox{ if } Y \in \mathcal{D}_s(W_{n-1}, i-1). \end{split}$$

Lemma 2.5

If $Y \in \mathcal{D}_s(W_{n-4}, i-1)$ and there exists $x \in [n]$ such that $Y \cup \{x\} \in \mathcal{D}_s(W_n, i)$, then $Y \in \mathcal{D}_s(W_{n-3}, i-1)$. **Proof**

Suppose that $Y \notin \mathcal{D}_s(W_{n-3}, i-1)$. Since $Y \in \mathcal{D}_s(W_{n-4}, i-1)$, Y contains at least one vertex labeled n-4 or n-5 or n-6 or n-7 or n-8 as an end vertex. If $n-4 \in Y$ and $Y \cup \{x\} \in \mathcal{D}_s(W_n, i)$ for some $x \in [n]$, then $Y \in \mathcal{D}_s(W_{n-3}, i-1)$, a contradiction. If $n-5 \in Y$ and $Y \cup \{x\} \in \mathcal{D}_s(W_n, i)$ for some $x \in [n]$, then $Y \in \mathcal{D}_s(W_{n-3}, i-1)$, a contradiction. If $n-6 \in Y$ and $Y \cup \{x\} \in \mathcal{D}_s(W_n, i)$ for some $x \in [n]$, then $Y \in \mathcal{D}_s(W_{n-3}, i-1)$, a contradiction. If $n-7 \in Y$ and $Y \cup \{x\} \in \mathcal{D}_s(W_n, i)$ for some $x \in [n]$, then $Y \in \mathcal{D}_s(W_{n-3}, i-1)$, a contradiction. If $n-7 \in Y$ and $Y \cup \{x\} \in \mathcal{D}_s(W_n, i)$ for some $x \in [n]$, then $Y \in \mathcal{D}_s(W_{n-3}, i-1)$, a contradiction. If $n-8 \in Y$, but in this case $Y \cup \{x\} \notin \mathcal{D}_s(W_n, i)$ for any $x \in [n]$, a contradiction. Therefore $Y \in \mathcal{D}_s(W_{n-3}, i-1)$.

Lemma 2.6

i) If $\mathcal{D}_{s}(W_{n-1}, i-1) = \mathcal{D}_{s}(W_{n-3}, i-1) = \emptyset$, then $\mathcal{D}_{s}(W_{n-2}, i-1) = \emptyset$.

- ii) If $\mathcal{D}_s(W_{n-1}, i-1) \neq \emptyset$ and $\mathcal{D}_s(W_{n-3}, i-1) \neq \emptyset$, then $\mathcal{D}_s(W_{n-2}, i-1) \neq \emptyset$.
- iii) If $\mathcal{D}_{s}(W_{n-1}, i-1) = \mathcal{D}_{s}(W_{n-2}, i-1) = \mathcal{D}_{s}(W_{n-3}, i-1) = \emptyset$, then $\mathcal{D}_{s}(W_{n}, i) = \emptyset$.

Proof

i)

Since
$$\mathcal{D}_{s}(W_{n-1}, i-1) = \emptyset$$
, by Lemma 2.2, $i-1 > n-1$ or $i-1 < \left\lceil \frac{n-1}{3} \right\rceil$
> $n-2$.

$$\Rightarrow i - 1 > n - 2 (1)$$

Since $\mathcal{D}_{s}(W_{n-3}, i - 1) = \emptyset$, by Lemma 2.2, $i - 1 > n - 3$ or $i - 1 < \left\lceil \frac{n-3}{3} \right\rceil$
$$< \left\lceil \frac{n-2}{3} \right\rceil$$

$$\implies i - 1 < \left\lceil \frac{n-2}{3} \right\rceil \quad (2)$$

From (1) and (2), we have $i - 1 < \left[\frac{n-2}{3}\right]$ or i - 1 > n - 2. By Lemma 2.2, $\mathcal{D}_s(W_{n-2}, i - 1) = \emptyset$. Suppose $\mathcal{D}_s(W_{n-2}, i - 1) = \emptyset$, by Lemma 2.2, we have i - 1 > n - 2 or $i - 1 < \left[\frac{n-2}{3}\right]$.

- If i-1 > n-2 > n-3, then i-1 > n-3. Therefore $\mathcal{D}_s(W_{n-3}, i-1) = \emptyset$, a contradiction. If $i-1 < \left[\frac{n-2}{3}\right] < \left[\frac{n-1}{3}\right]$, then $i-1 < \left[\frac{n-1}{3}\right]$. Therefore $\mathcal{D}_s(W_{n-1}, i-1) = \emptyset$, a contradiction. Thus $\mathcal{D}_s(W_{n-2}, i-1) \neq \emptyset$.
- iii) Suppose that $\mathcal{D}_s(W_n, i) \neq \emptyset$. Let $Y \in \mathcal{D}_s(W_n, i)$. Then by Lemma 2.4, $Y \{n\} \in \mathcal{D}_s(W_{n-1}, i-1)$ for some $Y \in \mathcal{D}_s(W_n, i)$, a contradiction. Therefore $\mathcal{D}_s(W_n, i) = \emptyset$.

Lemma 2.7

ii)

If $\mathcal{D}_{s}(W_{n}, i) \neq \emptyset$, then

- i) $\mathcal{D}_s(W_{n-1}, i-1) = \mathcal{D}_s(W_{n-2}, i-1) = \emptyset$ and $\mathcal{D}_s(W_{n-3}, i-1) \neq \emptyset$ if and only if n = 3k and i = k for every $k \ge 3$;
- ii) $\mathcal{D}_s(W_{n-2}, i-1) = \mathcal{D}_s(W_{n-3}, i-1) = \emptyset$ and $\mathcal{D}_s(W_{n-1}, i-1) \neq \emptyset$ if and only if i = n;
- iii) $\mathcal{D}_s(W_{n-1}, i-1) = \emptyset, \mathcal{D}_s(W_{n-2}, i-1) \neq \emptyset$ and $\mathcal{D}_s(W_{n-3}, i-1) \neq \emptyset$ if and only if n = 3k+2and $i = \left[\frac{3k+2}{3}\right]$ for some $k \ge 3$;

iv)
$$\mathcal{D}_s(W_{n-1}, i-1) \neq \emptyset, \mathcal{D}_s(W_{n-2}, i-1) \neq \emptyset$$
 and $\mathcal{D}_s(W_{n-3}, i-1) = \emptyset$ if and only if $i = n - 1$;

v) $\mathcal{D}_s(W_{n-1}, i-1) \neq \emptyset, \mathcal{D}_s(W_{n-2}, i-1) \neq \emptyset \text{ and } \mathcal{D}_s(W_{n-3}, i-1) \neq \emptyset \text{ if and only if } \left[\frac{n-1}{3}\right] + 1 \le i \le n-2.$

Proof

i) (
$$\Rightarrow$$
) Since $\mathcal{D}_s(W_{n-1}, i-1) = \mathcal{D}_s(W_{n-2}, i-1) = \emptyset$, by Lemma 2.2, $i-1 > n-1$ or $i-1 < \left\lceil \frac{n-2}{3} \right\rceil$. If $i-1 > n-1$, then $i > n$. By Lemma 2.2, $\mathcal{D}_s(W_n, i) = \emptyset$, a contradiction. Therefore $i-1 < \left\lceil \frac{n-2}{3} \right\rceil$.
 $\Rightarrow i < \left\lceil \frac{n-2}{3} \right\rceil + 1$ (3)
Since $\mathcal{D}_s(W_n, i) \neq \emptyset$, by Lemma 2.2, $\left\lceil \frac{n}{3} \right\rceil \le i \le n \Rightarrow \left\lceil \frac{n}{3} \right\rceil \le i(4)$

From (3) and (4), we have n = 3k and i = k for some $k \ge 3$. (\Leftarrow) Suppose n = 3k and i = k for some $k \ge 3$. Now $\gamma_s(W_{n-1}) = \left[\frac{n-1}{3}\right]$ $=\left[\frac{3k-1}{3}\right]$ $=\left[k-\frac{1}{3}\right]$ $=\left[i-\frac{\tilde{1}}{2}\right]$ > i - 1By Lemma 2.2, $\mathcal{D}_{s}(W_{n-1}, i-1) = \emptyset$. Similarly, we can prove $\mathcal{D}_{s}(W_{n-2}, i-1) = \emptyset$. Now $\gamma_s(W_{n-3}) = \left[\frac{n-3}{3}\right]$ $= \left[\frac{3k-3}{3}\right]$ = [k-1]= [i-1]By Lemma 2.2, $\mathcal{D}_s(W_{n-3}, i-1) \neq \emptyset$. (⇒) Since $\mathcal{D}_{s}(W_{n-2}, i-1) = \mathcal{D}_{s}(W_{n-3}, i-1) = \emptyset$, by Lemma 2.2, $i-1 < \left[\frac{n-3}{3}\right]$ or i-1 > 0n - 2. If $i - 1 < \left[\frac{n-3}{3}\right]$ $<\left[\frac{n-1}{3}\right]$ $\Rightarrow i - 1 < \left[\frac{n - 2}{3}\right]$ By Lemma 2.2, $\mathcal{D}_s(W_{n-1}, i-1) = \emptyset$, a contradiction. So $i-1 > n-2 \Longrightarrow i > n-1$. (5)Lemma 2.2, $\left[\frac{n-1}{2}\right] \le i-1 \le n-1 \Longrightarrow i \le n.$ $\mathcal{D}_{s}(W_{n-1}, i-1) \neq \emptyset$, by Since (6) From (5) and (6), we have $n - 1 < i \le n$ which implies i = n. (\Leftarrow) Suppose i = n. Then i-1 = n-1 > n-2. Therefore i-1 > n-2. By Lemma 2.2, $\mathcal{D}_s(W_{n-2}, i-1) = \emptyset$. Similarly, we can prove $\mathcal{D}_s(W_{n-3}, i-1) = \emptyset$. Since i - 1 = n - 1, by Lemma 2.2, $\mathcal{D}_s(W_{n-1}, i - 1) \neq \emptyset$. (⇒) Since $\mathcal{D}_{s}(W_{n-1}, i-1) = \emptyset$, by Lemma 2.2, $\left[\frac{n-1}{3}\right] > i-1$ or i-1 > n-1. If i - 1 > n - 1> n - 2 $\Rightarrow i - 1 > n - 2$ By Lemma 2.2, $\mathcal{D}_s(W_{n-2}, i-1) = \emptyset$, a contradiction. So $i - 1 < \left[\frac{n-1}{3}\right]$ $\Rightarrow i < \left[\frac{n-1}{3}\right] + 1$ (7) Since $\mathcal{D}_s(W_{n-2}, i-1) \neq \emptyset$, by Lemma 2.2, $\left\lfloor \frac{n-2}{3} \right\rfloor \le i-1 \le n-2$. $\Rightarrow \left[\frac{n-2}{3}\right] + 1 \le i(8)$ From (7) and (8), we have n = 3k + 2 and i = k + 1 for some $k \ge 3$. (\Leftarrow) Suppose n = 3k + 2 and i = k + 1 for some $k \ge 3$. Now $\gamma_s(W_{n-1}) = \left\lceil \frac{n-1}{3} \right\rceil$ $= \left\lceil \frac{3k+2-1}{3} \right\rceil$ $= \left\lceil k + \frac{1}{3} \right\rceil$

ii)

iii)

> i - 1By Lemma 2.2, $\mathcal{D}_s(W_{n-1}, i-1) = \emptyset$. Now $\gamma_s(W_{n-2}) = \left\lfloor \frac{n-2}{3} \right\rfloor$ $= \left[\frac{3k+2-2}{3}\right]$ = [k]= i - 1By Lemma 2.2, $\mathcal{D}_{s}(W_{n-2}, i-1) \neq \emptyset$. Similarly, we can prove $\mathcal{D}_{s}(W_{n-3}, i-1) \neq \emptyset$. (\Rightarrow) Since $\mathcal{D}_s(W_{n-3}, i-1) = \emptyset$, by Lemma 2.2, $\left[\frac{n-3}{3}\right] > i-1$ or i-1 > n-3. iv) If $i - 1 < \left[\frac{n-3}{3}\right]$. $<\left[\frac{n-1}{3}\right]$ By Lemma 2.2, $\mathcal{D}_s(W_{n-1}, i-1) = \emptyset$, a contradiction. So $i - 1 > n - 3 \implies i > n - 2$. Therefore i = n - 1 or n. Suppose i = n. Since $\mathcal{D}_{\mathfrak{s}}(W_{n-2}, i-1) \neq \emptyset$, by Lemma 2.2, $i-1 \leq n-2$ which implies $i \leq n-1$, a contradiction. Hence i = n - 1. (⇐) Suppose i = n - 1. By Lemma 2.2, $\mathcal{D}_s(W_{n-1}, i-1) \neq \emptyset$, $\mathcal{D}_s(W_{n-2}, i-1) \neq \emptyset$ and v) $\mathcal{D}_{s}(W_{n-3}, i-1) = \emptyset .$ $(\Rightarrow) \text{ Since } \mathcal{D}_{s}(W_{n-1}, i-1) \neq \emptyset, \ \mathcal{D}_{s}(W_{n-2}, i-1) \neq \emptyset \text{ and } \mathcal{D}_{s}(W_{n-3}, i-1) \neq \emptyset, \text{ by Lemma} \\ 2.2, \left\lfloor \frac{n-1}{3} \right\rfloor \le i-1 \le n-1, \left\lfloor \frac{n-2}{3} \right\rfloor \le i-1 \le n-2 \text{ and } \left\lfloor \frac{n-3}{3} \right\rfloor \le i-1 \le n-3. \\ \text{Therefore } \left\lfloor \frac{n-1}{3} \right\rfloor \le i-1 \le n-3 \text{ which implies } \left\lfloor \frac{n-1}{3} \right\rfloor + 1 \le i \le n-2.$ $(\Leftarrow) \text{ Suppose } \left[\frac{n-1}{3}\right] + 1 \le i \le n-2.$ $\text{Now } \left[\frac{n-1}{3}\right] + 1 \le i \Rightarrow \left[\frac{n-1}{3}\right] \le i-1$ $\Rightarrow \gamma_s(W_{n-1}) \le i-1$ Also $i \le n-2 \Rightarrow i-1 \le n-3 \le n-1.$ Thus $\gamma_{s}(W_{n-1}) \leq i - 1 \leq n - 1$. By Lemma 2.2, $\mathcal{D}_{s}(W_{n-1}, i - 1) \neq \emptyset$. Similarly, we can prove $\mathcal{D}_{s}(W_{n-2}, i-1) \neq \emptyset$ and $\mathcal{D}_{s}(W_{n-3}, i-1) \neq \emptyset$. Theorem 2.8 For every $n \ge 9$ and $i \ge \left|\frac{n}{2}\right|$ If $\mathcal{D}_s(W_{n-1}, i-1) = \mathcal{D}_s(W_{n-2}, i-1) = \emptyset$ and $\mathcal{D}_s(W_{n-3}, i-1) \neq \emptyset$, then i) $\mathcal{D}_{s}(W_{n}, i)$ $= \{X\}$ if n−7 is the end vertex of X $|X \in \mathcal{D}_{s}(W_{n-3}, i-1)\}$ If $\mathcal{D}_s(W_{n-2}, i-1) = \mathcal{D}_s(W_{n-3}, i-1) = \emptyset$ and $\mathcal{D}_s(W_{n-1}, i-1) \neq \emptyset$, then $\mathcal{D}_s(W_n, i) = \{[n]\}$ ii) iii) $X_1 \in$ $/X_2 \in$ $\mathcal{D}s(Wn-3,i-1)$.

DOI: 10.9790/5728-1801032126

$$\begin{split} \text{iv)} & \text{If } \mathcal{D}_{s}(W_{n-1}, i-1) \neq \emptyset, \mathcal{D}_{s}(W_{n-2}, i-1) \neq \emptyset \text{ and } \mathcal{D}_{s}(W_{n-3}, i-1) = \emptyset, \text{ then} \\ \mathcal{D}_{s}(W_{n}, i) = \{[n] - \{x\}/x \in [n]\}. \\ \text{v)} & \text{If } \mathcal{D}_{s}(W_{n-1}, i-1) \neq \emptyset, \mathcal{D}_{s}(W_{n-2}, i-1) \neq \emptyset \text{ and } \mathcal{D}_{s}(W_{n-3}, i-1) \neq \emptyset, \text{ then} \\ \begin{cases} \{n\} & \text{if } n-1 \text{ or } n-2 \text{ or } n-3 \text{ or } n-4 \text{ or } n-5 \text{ is the end vertex of } X_1 \\ \{n-2\} & \text{if } n-3 \text{ or } n-4 \text{ or } n-5 \text{ is the end vertex of } X_1 \\ \{n-3\} & \text{if } n-4 \text{ or } n-5 \text{ is the end vertex of } X_1 \\ \{n-4\} & \text{if } n-5 \text{ is the end vertex of } X_1 \\ \{n-4\} & \text{if } n-5 \text{ is the end vertex of } X_1 \\ \end{bmatrix} \\ & \bigcup \begin{cases} \{n, -1\} & \text{if } n-2 \text{ is the end vertex of } X_2 \\ \{n-1\} & \text{if } n-3 \text{ or } n-5 \text{ or } n-6 \text{ is the end vertex of } X_2 \\ \{n-2\} & \text{if } n-4 \text{ or } n-6 \text{ is the end vertex of } X_2 \\ \{n-2\} & \text{if } n-4 \text{ or } n-6 \text{ is the end vertex of } X_2 \\ \{n-4\} & \text{if } n-5 \text{ or } n-6 \text{ is the end vertex of } X_2 \\ \{n-4\} & \text{if } n-6 \text{ is the end vertex of } X_2 \\ \{n-4\} & \text{if } n-6 \text{ is the end vertex of } X_2 \\ \{n-4\} & \text{if } n-6 \text{ is the end vertex of } X_3 \\ \{n-2,n-3\} & \text{if } n-6 \text{ is the end vertex of } X_3 \\ \{n-2,n-4\} & \text{if } n-6 \text{ is the end vertex of } X_3 \\ \{n-3,n-4\} & \text{if } n-7 \text{ is the end vertex of } X_3 \\ \{n-3,n-4\} & \text{if } n-7 \text{ is the end vertex of } X_3 \\ \{n-3,n-4\} \text{ if } n-7 \text{ is the end vertex of } X_3 \\ \{n-3,n-4\} \text{ if } n-7 \text{ is the end vertex of } X_3 \\ \{n-3,n-4\} \text{ if } n-7 \text{ is the end vertex of } X_3 \\ \{n-3,n-4\} \text{ if } n-7 \text{ is the end vertex of } X_3 \\ \{n-3,n-4\} \text{ if } n-7 \text{ is the end vertex of } X_3 \\ \{n-3,n-4\} \text{ if } n-7 \text{ is the end vertex of } X_3 \\ \{n-3,n-4\} \text{ if } n-7 \text{ is the end vertex of } X_3 \\ \{n-3,n-4\} \text{ if } n-7 \text{ is the end vertex of } X_3 \\ \{n-3,n-4\} \text{ if } n-7 \text{ is the end vertex of } X_3 \\ \{n-3,n-4\} \text{ if } n-7 \text{ is the end vertex of } X_3 \\ \{n-3,n-4\} \text{ if } n-7 \text{ is the end vertex of } X_3 \\ \{n-3,n-4\} \text{ if } n-7 \text{ is the end vertex of } X_3 \\ \{n-3,n-4\} \text{ if } n-7 \text{ is the end vertex of } X_3 \\ \{n-3,n-4\} \text{ if } n$$

III. Conclusion

This paper discusses and analyses the secure dominating sets of wheels. Using recursive method, we constructed the secure dominating sets of wheels.

References

- [1]. S. Alikhani and Y-H. Peng, Dominating Sets and Domination Polynomials of Paths, *International Journal of Mathematics and Mathematical Sciences*, Vol.2009, 2009, Article ID 542040.
- [2]. G. Chartrand and L. Lesniak (2005), Graphs & Digraphs, Fourth Edition, Champman \& Hall / CRC.
- [3]. E.J. Cockayne, P.J.P. Grobler, W.R. Grundlingh J. Munganga and J.H. Van Vuuren, Protection of a graph, Util., Math., 67(2005),19-32.
- [4]. S.V. Divya Rashmi, S. Arumugam and Ibrahim Venkat, Secure Domination in Graphs, Int. J. Advance. Soft Comput. Appl., 8(2) (2016), 79-83.
- [5]. Frank Harary, Graph Theory, Addison-Wesley Publishing Company, Inc.
- [6]. J. Gross and J. Yellen, Handbook of Graph Theory, CRC Press (2004).
- [7]. T W Haynes, S T Hedetniemi and P.J Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [8]. K. Lal Gipson, Subha T, Secure Domination Polynomials Of Paths, International Journal of Scientific & Technology Research, Volume 9, Issue 2(Feb 2020), 6517-6521.
- [9]. Sahib Sh. Kahat, Abdul Jalil M. Khalaf and RoslanHasni, Dominating Sets and Domination Polynomial of Wheels, *Asian Journal of Applied Sciences*, Volume 02-Issue 03, June 2014, 287-290.
- [10]. A. Vijayan and K. Lal Gipson, Dominating Sets and Domination Polynomials of Square of Paths, Open Journal of Discrete Mathematics, 2013, 3, 60-69.
- [11]. A. Vijayan and K. Lal Gipson, Dominating Sets and Domination Polynomials of Square Of Cycles, IOSR Journal of Mathematics (IOSR-JM), Volume 3, Issue 4. Sep-Oct 2012, PP 04-14.

K. Lal Gipson, et. al. "Secure Dominating Sets of Wheels." *IOSR Journal of Mathematics (IOSR-JM)*, 18(1), (2022): pp. 21-26.

DOI: 10.9790/5728-1801032126