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Abstract 
We construct and analyse the orbits of the 3·n+1i.e. the (3·n+1)/2 problem in a finite set of the integer  n, and we 

observe the presence of a “saturation point” for the 3·n+1 at n=118 (notice l(97)=118) and for the (3·n+1)/2 

formulation at l(73)=73. The point is a value n0 for which l(n) ≤ n, n≥ n0  where l(n) is the length of the orbit 

of the integer n to reach the unit i.e. 1, in the cycle 421 or 21. 
Alternatively, we then pose the conjecture that, above the saturation point, for the tree of the inverse orbits 

starting at 1 and of depth k, the number of integers not exceeding k present on the tree is equal to k for 

k≥k0where k0. is the depth of the chalice at the saturation point, i.e. k0=118 respectively k0 =73 in the second 

formulation. 

We then check the truth of the conjecture in the domain of n in the ranges of k[118..250] and k [73..250] 
respectively. 

Key words: Collatz problem in the two formulation (3n+1) and (3n+1/2), inverse orbits, total stopping time, 

saturation point, conjecture, stochastic like Fibonacci Sequences, numerical experiment.  
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I. Introduction 
The 3·n+1or (3·n+1)/2 problem is characterized by having “only” a very small cycle (probably the 

arrival of the orbits of all the integers n) given respectively by 4214 and 212.Infact there is still the 
possibility that an infinite number of integers do not fall into the cycle and have an infinite trajectory diverging 

to infinity or that a set of integer belongs to a big possible cycle: very very “large”, containing many odd.  

See the extensive work of Lagarias for many important contributions, explanations and also results for 

sequences related to the 3n+1 [1,2]. 

A point of interest is that all similar problems i.e. 3·n+a, a odd, have the elementary cycle (multiple of 

the above of the 3·n+1 problem), i.e. a4·a2·aa, arrivals of “all” multiple of 3, (a=3), of “all” multiple of 
5(a=5), of “all” multiple of7, and so on, in addition to other possible more large cycles. 

In fact, if we look at cycles containing just one odd in the 3·n+a, sequence, where a is an odd integer, 

we have to solve the Equation (let α be an integer): 
 

       

                                                                                                  (1) 

 

 

                                                                                              (2) 

 

with the solution n=a and α = 2, i.e. the cycle a4a2aa. For a=1, a=3, a=5, a=7,.... 
For a=1, if the conjecture is true one obtains all multiple of 3, of 5, of 7, ..., then all even numbers i.e. all 

integers falling into the cycle 1421. 
Numerical studies are very important in few of the fact that it is partly believed (in the scientific community) 

that the problem is presently very difficult for a complete solution (it may be for a long time). Keeping this in 

mind, additional experiments may still be interesting also for finite sets of integers not necessarily large [3], 

reduced - as  an example - to a set of a thousand of integers (See Section3). 

In fact as for special models of statistical mechanics connected with integers, numerical experiments with very 

small number of terms, i.e. N small may suggest interesting additional information about the system under 

investigation in the "thermodynamic" limit [ 4]. 
Now for the 3n+1, Tables of the lengths of the orbits calculated are given explicitly only up to n=250 in 

Appendix 1. 
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An analysis of the orbits reveals the emergence of a point which we call “saturation point” in such a finite 

domain; it is located for the 3·n+1 formulation at n=118 and for the (3·n+1)/2 at n=73. 

These saturation points are defined to be such that the length l(n) of the orbit of an integer n reaching1 is smaller 

or equal to itself, i.e. n, thus l(n)n ∀n≥118 and n≥73 (Section 3).  
 

Equivalently, the tree of the inverse orbits of depth k is expected to contain all numbers from 1 to k giving rise 

to a conjecture (of course equivalent to the truth of the Collatz conjecture; to the best of our knowledge this 

point is new or it was not analysed along our lines given below). 
In a more extended analysis [11] we then present the experiment we have performed up to n=1000 to check the   

correctness of the conjecture i.e., (but) only for the finite domain above (up to n=1000). 

(We have nevertheless controlled that as the intervals of n grows, i.e. from [250..500], [500..750] to [750..1000], 

the  ratio between the length of the longest orbits over n, i.e. l(n)/n, decreases as a function of the “center” of the 

intervals - asymptote - that the conjecture may continue to be true as n increases (See Section 4 for the relative 

plots of l(n) as a function of n for  some n with the largest l(n) values in the corresponding interval and given 

here only for the first one [1-250]). 

We then close our note, setting the conjecture and present the leaves of the original chalice (tree of the inverse 

orbits in the 3n+1 formulation) of height k=15 [5]. 

 

II. Construction of the orbits of the 3·n+1 and of the (3·n+1)/2 in the range n=2-250. (See 

Appendix1) 
In our studies, we calculatedthe orbits for n comprise between 2 and 250 for 3n+1 and (3n+1)/2, respectively. 
The tables (in Appendix 1) are created using different ad hoc C and C++ programs.  

 An example of source code is in the Table 1. 

 

 
Table 1. A program (C language) to generate the orbits in the (3n+1) problem. 

 

III. Observation, Saturation of the orbits in the two “cases” (3·n+1 and (3·n+1)/2). 

Following the numerical results given in the Appendix1 we give the pointplot of l(n) in the above range 

where l(n) is the length of the orbits of n to reach 1 in the cycle 1421 (3·n+1). The point (118,118) on the 
red line is our saturation point for the (3·n+1) case. 
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Fig.1. Pointplot of (n, l(n)) for the (3n+1) formulation. From n=118 we have plotted points only for arguments n 
with the highest l(n); (118,118) is our saturation point. Above n=118, all points up to n=250 are below the line 

of Equation y = f(n) = n (in red). 

 

Fig.2. Pointplot of (n, l(n)) for the (3·n+1)/2 formulation. From n=73 we have plotted only some points with the 
highest l(n); (73,73) is our saturation point. Above n=73, all points up to n=250 are below the line of Equation 

y=f(n)= n (in red). 

 

Remark 1 
The two Figures are of course similar. We notice now that in the case of the 3·n+1, the number of the 

odd in the orbit of n=115 is 42 and that of the even is 73; the same as in the case (3·n+1)/2 where the number of 

the even is 31  (42+31=73, 73+42=115, (l(73) =115 for the 3·n+1 and l(73) = 73 for the (3·n+1)/2), 115-73 = 42 

is equal to the number of the odds in both the formulations). 
 

Remark2 

The possible saturation in both cases 3·n+1 and (3·n+1)/2 are of course related: for n=118, l(97)=118 in 

the 3·n+1 while for n=73, l(73)=73. Here in the orbit of n=73, there are 42 odd, no =42 and 31 even, 31+42=73= 
l(73). In the 3·n+1, the corresponding orbit is that of n=115 where there are 42 more even then in that of the 

(3·n+1)/2, i.e. ne = 73 and 73+42=115=l(73), but following the above strategy, the number of integers for n=115 

are only 114 (since l(97) = 118 in the 3·n+1). With k=118 we have f(118) = 118 and n=97 is included. Notice 

that for n=97, we have l(97)=118 resp. l(97) = 75;  118-75 = no= 43 and ne = 75 – 43=32, i.e. 75+43= 118. 
Saturation point at: k=118. 

Let now N(k) be the number of the integers not exceeding k present on a chalice of the inverse orbits of depth k 

for the 3·n+1. 
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IV. Some numerical computations 
We are here aware that in number theory n~ 250 or n ~ 1000 are “very Small Numbers”. We also agree 

that (“as pointed out by some experts in the field”), n=268 is still a Small Number even if it is not (we say) “a 
very Small Number”. We nevertheless know (from international Tables on the 3n+1 or on the (3n+1)/2 

formulation on the Collatz problem) - up to now- (in a numerical context within stochastic models), that the 

maximum of the length of a trajectory of an integer n to reach the cycle 1,4,2,1 or 1,2,1, is expected to have as 

upper bound the Lagarias-Weiss Bound given by l(n) < 41·7·log(n); (notice that if this bound if translated into 

the 3n+1 formulation, the bound becomes l(n)< 61·log(n), as explained in [5]). 
We think that since l(n) < n is a much weaker proposed bound, it will be very difficult to obtain a 

counterexample too. In fact, the last number of the Table 4 of Ref [6] (even if not so big) has a low total 

stopping time given by: l(n=13371194527 ) < 2000,  and n/log(n) 61 in the (3n+1) formulation. 

Notice here that l(n)<61·log(n)< n for n~358 (n=226 in the (3·n+1)/2 formulation.  
It is our opinion that in this context, the problem is very different from that concerning the fluctuations of the 

function Li(n) around Pi(n) (with a change of the signum of the difference at very very big arguments {n}. 

We also think that the analysis of a new kind of inverse orbits in both the formulations and possibly related to 

other systems may be of interest [11]. 

 

 
Fig.3. N(k) in the range k= 110-120 in the case of the 3·n+1. Pointplot in black, in red the function y= g(k)=k 

and the  constant  functions  y=114 and y=118 (in red). 

 

 
Fig.4. Pointplot of N(k) i.e. the number of integers not exceeding k appearing in the tree of the inverse orbit of 

the   (3·n+1, n/2), as a function of the depth of the tree, in the range k ϵ [0..130 ].At k=115, N(115)=114 (Notice 
that (l(97) = 118!). 
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Fig.5. Pointplot of N(k) i.e. the number of integers not exceeding k appearing in the tree of the inverse orbit of 

the ((3·n+1)/2, n/2), as a function of the depth of the tree, in the range kϵ[0..100]). At k=73, N(73)=73. 
 

 
Fig.6. The length l(n) of some longest orbits in the 3·n+1as a function of n in the range n=[115..250]. In red the 

function y=n. 

 
Fig. 7. The length l(n)of some longest orbits in the (3·n+1)/2 as a function of n in the range n=[73..250]. In red 

the function y=n. 
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Remark  

We have observed that the largest values of l(n) in the subsequent intervals decrease i.e. l(n)/n  is decreasing-let 

say- as a function of  the “center” of the intervals we have considered i.e. in the range i.e. 

[1..250],[250..500],[500..750], [750..1000]; for the 3n+1, we  have  l(871)/871 = 178/871~  0.2< 1 and for the 

(3n+1)/2 we have l(871)/871=113/871~ 0.13. 
The plots have been given here only for the first interval, i.e. n ϵ [0..250]for both the formulations. To make 

contact with important models for the (3·n+1)/2 case we add below the plot of l(n) in the range n=[500.. 1000] 

and the  bound  l(n) =41·7·log(n) of Lagarias-Weiss in their stochastic models [6] (in red).In red also the 

function y = n. For some large values of n, l(n) 36·log(n), see the remark of Applegate and Lagarias about 
Vyssotsky [12]. 

 

 
Fig.8. Some largest values of l(n) in the interval [500-1000]. In red the Lagarias-Weiss bound 41·7·log(n) in 

their stochastic models and the function y=n(in red). 

 

V. Conjecture 
There are at least the first k integers 1,2,3...k on the chalice of depth k,for k≥118 in the 3·n+1 and for k 

≥73 in the (3n+1)/2formulation.The numbers k=118 resp. k=73 have been called here “saturation points”. An 

experiment in the range of n=[119..1000] for the 3n+1 and in the range n=[74..1000] for the (3n+1)/2 confirms 
100% our conjecture in such a finite domain [11]. 

Below, we present on the Figure 9 our original chalice [5]of the inverse orbits in the 3·n+1 case of 

depth k=15 where N(k=15)=11(i.e. 11 integers15) (figure 9a) and  the chalice in green without the  numbers on 
it (figure 9b), illustrating the equality of leaves at the top of the chalice with the number of  bifurcations inside  

the chalice, i.e. the number of all odd on  the full chalice (24 leaves, i.e. 24 bifurcations) and the number of the 

evens at the level k=15 (18) equal to the   number of odds up to the level k-1 = 14, i.e. the cardinality of  the 

numbers at the level k-1=14 (18). The cardinality of the chalice of depth 15 is equal to 103. 
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a)                                                                  b) 

Fig. 9 a) Chalice of the inverse orbits in the 3·n+1 case of depth k=15 where N(k=15)=11 [5]. b) Chalice of the 

inverse orbit for the 3n+1 of depth k=15 with the 24 leaves in green. 

 

Concluding remark  
This work represents an attempt to understand more the truthfulness of Collatz’s hypothesis, in agreement to 

other some recent studies [7, 8, 9, 10]. 
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Appendix 1 

The next two tables present the orbits calculated for n comprise between 2 and 250 for 3n+1 and (3n+1)/2, 
respectively. The tables are calculated using different ad hoc C and C++ programs.   
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Table 2. The orbits of the 3·n+1, n =[2..250] 
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Table 3. The orbits for the (3·n+1)/2, n=2-250. 

 

Appendix 2: Table of the formation of the integers from 1 to n in the tree of the inverse orbits of the 3·n+1  

In the Table 4, we write in the horizontal lines from the left to the right the ordered natural numbers appeared in 
the chalice as a function of the height or depth k starting with k=0. 
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Table 4.  Inverse Orbits starting from the 0. 
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