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Abstract

We construct and analyse the orbits of the 3-n+1i.e. the (3:n+1)/2 problem in a finite set of the integer n, and we
observe the presence of @ “saturation point” for the 3-n+1 at n=118 (notice 1(97)=118) and for the (3-n+1)/2
formulation at 1(73)=73. The point is a value nq for which I(n) <n, vi>ny where I(n) is the length of the orbit
of the integer n to reach the unit i.e. 1, in the cycle 4>2—1 or 2—1.

Alternatively, we then pose the conjecture that, above the saturation point, for the tree of the inverse orbits
starting at 1 and of depth k, the number of integers not exceeding k present on the tree is equal to k for
k>kowhere Ky, is the depth of the chalice at the saturation point, i.e. k=118 respectively ko =73 in the second
formulation.

We then check the truth of the conjecture in the domain of n in the ranges of k e[118..250] and ke [73..250]
respectively.
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I.  Introduction

The 3-n+lor (3-n+1)/2 problem is characterized by having “only” a very small cycle (probably the
arrival of the orbits of all the integers n) given respectively by 4—2—1—4 and 2—1—2.Infact there is still the
possibility that an infinite number of integers do not fall into the cycle and have an infinite trajectory diverging
to infinity or that a set of integer belongs to a big possible cycle: very very “large”, containing many odd.

See the extensive work of Lagarias for many important contributions, explanations and also results for
sequences related to the 3n+1 [1,2].

A point of interest is that all similar problems i.e. 3-n+a, a odd, have the elementary cycle (multiple of
the above of the 3-n+1 problem), i.e. a—>4-a—2-a—a, arrivals of “all” multiple of 3, (a=3), of “all” multiple of
5(a=5), of “all” multiple of7, and so on, in addition to other possible more large cycles.

In fact, if we look at cycles containing just one odd in the 3-n+a, sequence, where a is an odd integer,
we have to solve the Equation (let a be an integer):

(3n+a) _

O =n )

n-(2*-3)=a 2

with the solution n=a and a =2, i.e. the cycle a—>4a—2a—a. For a=1, a=3, a=5, a=7,....

For a=1, if the conjecture is true one obtains all multiple of 3, of 5, of 7, ..., then all even numbers i.e. all
integers falling into the cycle 1—»>4—2—1.

Numerical studies are very important in few of the fact that it is partly believed (in the scientific community)
that the problem is presently very difficult for a complete solution (it may be for a long time). Keeping this in
mind, additional experiments may still be interesting also for finite sets of integers not necessarily large [3],
reduced - as an example - to a set of a thousand of integers (See Section3).

In fact as for special models of statistical mechanics connected with integers, numerical experiments with very
small number of terms, i.e. N small may suggest interesting additional information about the system under
investigation in the "thermodynamic" limit [ 4].

Now for the 3n+1, Tables of the lengths of the orbits calculated are given explicitly only up to n=250 in
Appendix 1.
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An analysis of the orbits reveals the emergence of a point which we call “saturation point” in such a finite
domain; it is located for the 3-n+1 formulation at n=118 and for the (3-n+1)/2 at n=73.

These saturation points are defined to be such that the length I(n) of the orbit of an integer n reachingl is smaller
or equal to itself, i.e. n, thus I(n)<n ¥n>118 and n>73 (Section 3).

Equivalently, the tree of the inverse orbits of depth k is expected to contain all numbers from 1 to k giving rise
to a conjecture (of course equivalent to the truth of the Collatz conjecture; to the best of our knowledge this
point is new or it was not analysed along our lines given below).

In a more extended analysis [11] we then present the experiment we have performed up to n=1000 to check the
correctness of the conjecture i.e., (but) only for the finite domain above (up to n=1000).

(We have nevertheless controlled that as the intervals of n grows, i.e. from [250..500], [500..750] to [750..1000],
the ratio between the length of the longest orbits over n, i.e. I(n)/n, decreases as a function of the “center” of the
intervals - asymptote - that the conjecture may continue to be true as n increases (See Section 4 for the relative
plots of I(n) as a function of n for some n with the largest I(n) values in the corresponding interval and given
here only for the first one [1-250]).

We then close our note, setting the conjecture and present the leaves of the original chalice (tree of the inverse
orbits in the 3-n+1 formulation) of height k=15 [5].

I1.  Construction of the orbits of the 3-n+1 and of the (3-n+1)/2 in the range n=2-250. (See
Appendix1)
In our studies, we calculatedthe orbits for n comprise between 2 and 250 for 3-n+1 and (3-n+1)/2, respectively.
The tables (in Appendix 1) are created using different ad hoc C and C++ programs.
An example of source code is in the Table 1.

#INCLUDE <IOSTREAM>
H#HINCLUDE <CSTDLIB>

INT MAIN(INT ARGC, CHAR** ARGV) {
I

{

INTN.R, C;
PRINTF("INPUT AN INTEGER 'N");
SCANF("%D", &N);

C=0;

WHILE (N > 1)

{ IFR==0)

{N=N/2;

|

ELSE {

N=N*3+1:}

C=C+l;

PRINTE("T %D", N):

}

PRINTF("N ORBITS: %D\N", C);
RETURN 0:

}

Table 1. A program (C language) to generate the orbits in the (3n+1) problem.

Il. Observation, Saturation of the orbits in the two “cases” (3-n+1 and (3-n+1)/2).

Following the numerical results given in the Appendix1 we give the pointplot of I(n) in the above range
where I(n) is the length of the orbits of n to reach 1 in the cycle 1-4—2—1 (3-n+1). The point (118,118) on the
red line is our saturation point for the (3-n+1) case.
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Fig.1. Pointplot of (n, I(n)) for the (3-n+1) formulation. From n=118 we have plotted points only for arguments n
with the highest I(n); (118,118) is our saturation point. Above n=118, all points up to n=250 are below the line
of Equation y = f(n) = n (in red).
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Fig.2. Pointplot of (n, I(n)) for the (3-n+1)/2 formulation. From n=73 we have plotted only some points with the
highest I(n); (73,73) is our saturation point. Above n=73, all points up to n=250 are below the line of Equation

y=f(n)=n (in red).

Remark 1

The two Figures are of course similar. We notice now that in the case of the 3-n+1, the number of the
odd in the orbit of n=115 is 42 and that of the even is 73; the same as in the case (3-n+1)/2 where the number of
the even is 31 (42+31=73, 73+42=115, (1(73) =115 for the 3-n+1 and I(73) = 73 for the (3-n+1)/2), 115-73 = 42
is equal to the number of the odds in both the formulations).

Remark?2

The possible saturation in both cases 3-n+1 and (3-n+1)/2 are of course related: for n=118, 1(97)=118 in
the 3-n+1 while for n=73, 1(73)=73. Here in the orbit of n=73, there are 42 odd, n, =42 and 31 even, 31+42=73=
[(73). In the 3-n+1, the corresponding orbit is that of n=115 where there are 42 more even then in that of the
(3:n+1)/2, i.e. ne = 73 and 73+42=115=I(73), but following the above strategy, the number of integers for n=115
are only 114 (since 1(97) = 118 in the 3-n+1). With k=118 we have f(118) = 118 and n=97 is included. Notice
that for n=97, we have 1(97)=118 resp. 1(97) = 75; 118-75 = n,= 43 and n, = 75 — 43=32, i.e. 75+43= 118.
Saturation point at: k=118.
Let now N(Kk) be the number of the integers not exceeding k present on a chalice of the inverse orbits of depth k
for the 3-n+1.
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IV.  Some numerical computations

We are here aware that in number theory n~ 250 or n ~ 1000 are “very Small Numbers”. We also agree
that (“as pointed out by some experts in the field”), n=2% is still a Small Number even if it is not (we say) “a
very Small Number”. We nevertheless know (from international Tables on the 3n+1 or on the (3n+1)/2
formulation on the Collatz problem) - up to now- (in a numerical context within stochastic models), that the
maximum of the length of a trajectory of an integer n to reach the cycle 1,4,2,1 or 1,2,1, is expected to have as
upper bound the Lagarias-Weiss Bound given by I(n) < 41-7-log(n); (notice that if this bound if translated into
the 3n+1 formulation, the bound becomes I(n)< 61-log(n), as explained in [5]).
We think that since I(n) < n is a much weaker proposed bound, it will be very difficult to obtain a
counterexample too. In fact, the last number of the Table 4 of Ref [6] (even if not so big) has a low total
stopping time given by: 1(n=13371194527 ) < 2000, and n/log(n) <61 in the (3n+1) formulation.
Notice here that 1(n)<61-log(n)< n for n~358 (n=226 in the (3-n+1)/2 formulation.
It is our opinion that in this context, the problem is very different from that concerning the fluctuations of the
function Li(n) around Pi(n) (with a change of the signum of the difference at very very big arguments {n}.
We also think that the analysis of a new kind of inverse orbits in both the formulations and possibly related to
other systems may be of interest [11].
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Fig.3. N(K) in the range k= 110-120 in the case of the 3-n+1. Pointplot in black, in red the function y= g(k)=k
and the constant functions y=114 and y=118 (in red).

Fig.4. Pointplot of N(K) i.e. the number of integers not exceeaing k ap‘pearing in the tree 6f the inverse orbit of
the (3-n+1, n/2), as a function of the depth of the tree, in the range k € [0..130 ].At k=115, N(115)=114 (Notice
that (1(97) = 118!).
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Fig.5. Pointplot of N(K) i.e. the number of infegers not éxceeding k appearing in the treelof the inverse orbit of
the ((3-n+1)/2, n/2), as a function of the depth of the tree, in the range ke[0..100]). At k=73, N(73)=73.
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Fig.6. The length I(n) of some longest orbits in the 3-n+1as a function of n in the range n=[115..250]. In red the

function y=n.
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Fig. 7. The length I(n)of some longest orbits in the (3-n+1)/2 as a function of n in the range n=[73..250]. In red
the function y=n.
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Remark

We have observed that the largest values of I(n) in the subsequent intervals decrease i.e. I(n)/n is decreasing-let
say- as a function of the “center” of the intervals we have considered i.e. in the range i.e.
[1..250],[250..500],[500..750], [750..1000]; for the 3n+1, we have [(871)/871 = 178/871~ 0.2< 1 and for the
(3n+1)/2 we have 1(871)/871=113/871~ 0.13.

The plots have been given here only for the first interval, i.e. n € [0..250]for both the formulations. To make
contact with important models for the (3:n+1)/2 case we add below the plot of I(n) in the range n=[500.. 1000]
and the bound I(n) =41-7-log(n) of Lagarias-Weiss in their stochastic models [6] (in red).In red also the
function y = n. For some large values of n, I(n) ~36-log(n), see the remark of Applegate and Lagarias about

Vyssotsky [12].
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Fig.8. Some largest values of I(n) in the interval [500-1000]. In red the Lagarias-Weiss bound 41-7-log(n) in
their stochastic models and the function y=n-(in red).

V.  Conjecture

There are at least the first k integers 1,2,3...k on the chalice of depth k,for k>118 in the 3-n+1 and for k
>73 in the (3:n+1)/2formulation. The numbers k=118 resp. k=73 have been called here “saturation points”. An
experiment in the range of n=[119..1000] for the 3-n+1 and in the range n=[74..1000] for the (3:n+1)/2 confirms
100% our conjecture in such a finite domain [11].

Below, we present on the Figure 9 our original chalice [5]of the inverse orbits in the 3-n+1 case of
depth k=15 where N(k=15)=11(i.e. 11 integers<15) (figure 9a) and the chalice in green without the numbers on
it (figure 9b), illustrating the equality of leaves at the top of the chalice with the number of bifurcations inside
the chalice, i.e. the number of all odd on the full chalice (24 leaves, i.e. 24 bifurcations) and the number of the
evens at the level k=15 (18) equal to the number of odds up to the level k-1 = 14, i.e. the cardinality of the
numbers at the level k-1=14 (18). The cardinality of the chalice of depth 15 is equal to 103.
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Fig. 9 a) Chalice of the inverse orbits in the 3-n+1 case of depth k=15 where N(k=15)=11 [5]. b) Chalice of the

inverse orbit for the 3-n+1 of depth k=15 with the 24 leaves in green.

Concluding remark
This work represents an attempt to understand more the truthfulness of Collatz’s hypothesis, in agreement to
other some recent studies [7, 8, 9, 10].
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Appendix 1

The next two tables present the orbits calculated for n comprise between 2 and 250 for 3-n+1 and (3-n+1)/2,
respectively. The tables are calculated using different ad hoc C and C++ programs.
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n Orbits n Orhits n Orhits n Orhits n Orhits
1 51 24 101 25 151 15 201 18
2 1 52 11 102 25 152 23 202 26
3 7 53 11 103 BY 153 36 203 35
4 2 54 112 104 12 154 23 204 26
5 5 55 112 105 3B 155 B5 205 26
& B 5E 19 106 12 156 36 206 BE
7 16 57 32 10 100 157 36 20 BRE
B 3 SE 19 108 113 158 36 20 13
g 15 5% 32 105 113 155 54 205 35
H & H 15 110 113 160 10 210 35
11 14 61 15 111 &5 161 5B 211 35
12 g g2 107 112 0 162 23 212 13
13 g B3 107 113 12 163 23 213 13
14 17 o ] 114 33 164 111 214 101
15 17 65 27 115 33 165 111 215 101
16 4 &6 27 116 0 166 111 216 114
17 12 &7 27 117 0 167 &7 217 26
18 0 EB 14 118 33 168 0 218 114
15 0 B0 14 115 33 169 44 219 52
0 7 0 14 120 0 170 0 220 114
21 7 71 102 121 o5 171 124 221 114
22 15 72 22 122 0 172 31 222 0
23 15 73 115 123 46 173 31 223 0
24 0 74 22 124 108 174 31 224 21
25 23 75 14 125 108 175 D 225 52
26 0 76 22 126 108 176 18 226 13
27 111 77 22 127 46 177 31 227 13
2B 1B 7B 35 128 7 178 31 228 34
25 1B 75 35 125 121 175 31 229 34
H 1B H] g 130 38 180 1B 230 34
31 DG El 22 131 28 182 1B 232 127
32 5 B2 110 132 2B 182 g3 232 21
33 26 B3 110 133 2B 183 g3 233 B3
34 13 B4 g 134 2B 184 1B 234 21
35 13 B5 9 135 4] 185 44 235 127
36 21 Bt 0 136 15 186 1B 236 34
37 21 E7 0 137 o0 187 44 237 34
3B 21 BB 17 138 15 188 106 238 34
35 34 Bo 1] 135 41 189 106 239 52
D B ol 17 140 15 180 106 240 21
41 105 g1 g2 141 15 181 44 241 21
42 B 52 17 142 103 152 13 242 o6
43 25 93 17 143 103 153 115 243 )
44 16 o4 105 144 23 154 115 244 21
45 16 o5 105 145 116 185 115 245 21
46 16 OB 12 146 116 196 26 246 47
a7 104 o7 118 147 116 197 26 247 a7
4R 11 CRB 25 148 23 158 26 248 105
45 24 o9 25 145 23 155 115 245 47
50 24 100 25 150 15 200 26 250 109

Table 2. The orbits of the 3-n+1, n =[2..250]
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n Orbits n Orhits n Orhits n Orhits n Orhits

1 51 17 101 1B 151 12 201 14
2 1 52 g 102 1B 152 17 202 15
3 5 53 5 103 56 153 25 203 27
4 2 G4 71 104 10 154 17 204 19
5 4 55 71 105 26 155 55 205 19
] ] 56 14 106 10 156 25 206 57
7 11 57 22 10 64 157 25 20 57
B 3 5B 14 108 72 158 25 208 11
5 13 55 22 109 72 159 36 209 27

0 5 D 14 110 72 160 g 210 27
11 10 Bl 14 111 45 161 B3 211 27
12 7 B2 BB 112 15 182 17 212 11
13 7 B3 &E 113 10 163 17 213 11
14 12 54 & 114 23 164 71 214 65
15 12 &5 15 115 23 165 71 215 &5
16 4 66 15 115 15 166 71 216 73
17 g &7 19 117 15 167 44 217 19
18 14 BE 11 118 23 168 g 218 73
15 14 &g 11 115 23 165 33 215 35

0 & 0 11 120 15 170 5 220 73
21 & 71 &5 121 Bl 171 75 221 73
22 11 72 16 122 15 172 22 222 46
23 11 73 73 123 31 173 22 223 46
24 B 74 16 124 Eo 174 22 224 16
25 16 75 11 125 65 175 52 225 35
26 B 76 16 126 65 176 14 226 11
27 0 77 16 127 31 177 22 227 11
2B 13 7B 24 128 7 178 22 228 24
29 13 74 24 129 77 179 22 229 24

0 13 D B 130 20 1E0 14 230 24
31 &7 Bl 16 131 20 182 14 232 Bl
32 5 B2 0 132 20 182 0 232 16
33 18 B3 0 133 20 183 0 233 54
34 0 B4 B 134 20 184 14 234 16
35 0 BG B 135 2B 185 1] 235 Bl
36 15 BB 21 136 12 1B6 14 236 24
37 15 B7 21 137 SE 187 1] 237 24
3B 15 BB 13 138 12 1B8 &B 238 24
35 23 BS 21 135 2B 189 &B 239 35

0 7 ] 13 140 12 150 &B 240 26
41 Eo o1 54 141 12 181 30 241 16
42 7 g2 13 142 66 192 11 242 B2
43 0 g3 13 143 ) 183 76 243 62
44 12 o4 &7 144 17 154 76 244 16
45 12 85 &7 145 74 185 76 245 16
46 12 S 10 145 74 156 15 245 32
47 66 o7 75 147 74 197 15 247 32
48 g OB 18 148 17 1498 19 248 0
44 17 o9 1B 149 17 199 76 249 32
50 17 100 1B 150 12 200 15 250 0

Table 3. The orbits for the (3-n+1)/2, n=2-250.

Appendix 2: Table of the formation of the integers from 1 to n in the tree of the inverse orbits of the 3-n+1
In the Table 4, we write in the horizontal lines from the left to the right the ordered natural numbers appeared in
the chalice as a function of the height or depth k starting with k=0.
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10 1.23.4,5.6, .10, 12,13 16 2021, 24

k

0 1

1 1.2

2 1.2, 4,

3 1.2, 4, 8.

4 1.2, 4, 8, 16

5 12, 4.5 8. 16

6 1.2, 4,5, 8 .10, 16

7 1.2,34,5, .8, .10, 16 ,20.21
8 12,34, 56, 8 .10, 16 2021
9 123.4.56, 8 .10, 12,13 16 2021

8
11 123.4.56. 8. .10, 1213 16 120,21 24
12 1234.56. 8. .10. .1213. . 1617 2021 24
13 1234.56 8, .0. .1213, . 1617 2021 24
14 1234, 56 8, .0, 11,1213 . 1617  .2021 24
15  1234,56 .8, ,10, 11,1213 . 1617 2021222324
16 1234, 56.78. .0,11.1213 . 1617  .2021,22.2324
17 1234, 56.78, .10,11.12,13.14,15, 1617  .20,21,22.23.24
18 1234, 56.7.8. .10,11.12,13.14,15, 16,17  .20,21,22.23.24
19 1234, 56.7.8.9.10.11.12.13.14.15.16.17 .20.21.22.23.24
20. 1234, 56.7.8.9.10,11,12,13.14,15.16.17,18,19.20,21.22.23 24
21. 24, .,26*28 .29,30, *,32, .34,35.36.37.38., .40.% 42,43, 44,4546 48

22. 24, 26* .28 .,29,30, *,32, .34,35,36, 37.38,.40.% 42,43, 44,45,46 48

23. 24,25.26 *, 28 ,29,30, *,32, .34,35.36, 37 .38.. 40, % 42,43, 44,45,46, 48 51

24 24,2526 * 28 ,29.30, *32. .34,35,36.37.38, .40, .42, 43, 44.45.46.48.49.50,51
25 24,25.26,*,28 ,29.30,%32, ,34,35,36.37.38,, 40.* 42, 43, 44,45,46,48,49,50
26 24,25 26.% 28 ,29.30,%32, 33 ,34,35.36, 37, 38, ., 40.* 42, 43, 44,45.46.48,49,50
27 2425 26.% 28 .20.30.%32.33 34,35,36. 37,38, *40* 42 43 444546484950
28 24,25 26,* 28 ,29,30,%32, 33 .34,35.36, 37,38.39,40.,* .42, 43, 44,45.46,48,49,50
Notice:

27,31, 41 long orbit: 1(27)=111, 1(31)=106.1(41)=109, ....and 1(97)= 118.

Table 4. Inverse Orbits starting from the 0.

________________________________________________________________

. Danilo Merlini, et. al. "Saturation in the 3sn+1 problem and a conjecture." IOSR Journal of
| Mathematics (IOSR-JM), 18(1), (2022): pp. 01-10.
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