Series of Sobolev Inequalities with Remainder Terms

Sulima Ahmed Mohammed ${ }^{(1)}$, Mohand M. Abdelrahim Mahgob ${ }^{(2)}$,Shawgy Hussein ${ }^{(3)}$

1. Department of Mathematics, College of Sciences and Arts, ArRass, Qassim University, Buraydah, Saudi Arabia
2. Mathematics Department, Faculty of Sciences and Arts-Almikwah-Albaha University- Saudi Arabia Mathematics Department, Faculty of Sciences - Omderman Islamic University-Sudan
3. Sudan University of Science and Technology, College of Science, Department of Math, Sudan

Abstract

The Series of Sobolev inequality in $\mathbb{R}^{3+\epsilon}, \epsilon \geq 0$, asserts that $\left\|\sum \nabla f_{j}\right\|_{2}^{2} \geq \mathbb{S}_{3+\epsilon}\left(\sum\left\|f_{j}\right\|_{\left.\frac{2(3+\epsilon)}{2}\right) \text {, with } \mathbb{S}_{3+\epsilon} \text {, being } 1+\epsilon}\right.$ the sharp constant. This paper is concerned, with functions restricted to bounded domains $\Omega \subset \mathbb{R}^{3+\epsilon}$. Following H. Brezis, E. Lieb [13] two kinds of inequalities are established: (i) If $f_{j}=0$ on $\partial \Omega$, then $\left\|\Sigma \nabla f_{j}\right\|_{2}^{2} \geq$ $\mathbb{S}_{3+\epsilon}\left(\sum\left\|f_{j}\right\|_{\left.\frac{2(3+\epsilon)}{2}\right)}^{1+\epsilon}\right)+C(\Omega)\left(\sum\left\|f_{j}\right\|_{\frac{(3+\epsilon)}{1+\epsilon}, w}^{2}\right)$ and $\Sigma\left\|\nabla f_{j}\right\|_{2}^{2} \geq \mathbb{S}_{3+\epsilon}\left(\sum\left\|f_{j}\right\|_{2^{*}}^{2}\right)+D(\Omega)\left(\sum\left\|f_{j}\right\|_{\frac{3+\epsilon}{2+\epsilon} w}^{2}\right)$. ii) If $f_{j} \neq 0$ on $\partial \Omega$, then $\sum\left\|\nabla f_{j}\right\|_{2}+C(\Omega)\left(\sum\left\|f_{j}\right\|_{\frac{3+\epsilon}{2+\epsilon}, \Omega}\right) \geq S_{3+\epsilon}^{1 / 2}\left(\sum\left\|f_{j}\right\|_{\frac{2(3+\epsilon)}{1+\epsilon}}\right)$ with $\epsilon^{2}+a \epsilon+5=0$. Some further results and open problems in this area are also presented.

Date of Submission: 03-01-2022
Date of Acceptance: 15-01-2022

I. Introduction

The usual Series of Sobolev Sobolev inequality in $\mathbb{R}^{3+\epsilon}, \epsilon \geq 0$, for the L^{2} norm of the gradient is

$$
\begin{equation*}
\left\|\sum \nabla f_{j}\right\|_{2}^{2} \geq S_{3+\epsilon}\left(\sum\left\|f_{j}\right\|_{\frac{2(3+\epsilon)}{2}}^{2+\epsilon}\right), \tag{1.1}
\end{equation*}
$$

for all functions f_{j} with $\sum \nabla \mathrm{f}_{\mathrm{j}} \in \mathrm{L}^{2}$ and with f_{j} vanishing at infinity in the weak sense that means $\left\{\mathrm{x}\left|\left|\mathrm{f}_{\mathrm{j}}(\mathrm{x})\right|>\right.\right.$ $\mathrm{a}<\infty$ for all $\mathrm{a}>O$ (see [12]). The sharp constant $S 3+\epsilon$, is known to be

$$
\begin{equation*}
s_{3+\epsilon}=\pi(3+\epsilon)(1-2)[\Gamma((3+\epsilon) / 2) / \Gamma(3+\epsilon)]^{2 / 3+\epsilon} . \tag{1.2}
\end{equation*}
$$

The constant $S_{3+\epsilon}$, is achieved in (1.1) if and only if

$$
\begin{equation*}
\mathrm{f}_{\mathrm{j}}(\mathrm{x})=\mathrm{a}\left[\varepsilon^{2}+|\epsilon|^{2}\right]^{-(1+\epsilon) / 2} \tag{1.3}
\end{equation*}
$$

for some $\mathrm{a} \in \mathbb{C}, \varepsilon \neq 0$ and $(\mathrm{x}+\epsilon) \in \mathbb{R}^{3+\epsilon}[1,2,6,7,9,11]$.
We consider appropriate modifications of (1.1) when $\mathbb{R}^{3+\epsilon}$ is replaced by a bounded domain $\Omega \subset \mathbb{R}^{3+\epsilon}$. There are two main problems (See [13]):
Problem A. If $\sum \mathrm{f}_{\mathrm{j}}=0$ on $\partial \Omega$, then (1.1) still holds (with $L^{\frac{(3+\epsilon)}{1+\epsilon}}$ norms in Ω, of course), since f_{j} can be extended to be zero outside of Ω. In this case (1.1) becomes a strict inequality when $\sum \mathrm{f}_{\mathrm{j}} \neq 0$ (in view of (1.3). However, $\mathrm{S}_{3+\epsilon}$, is still the sharp constant in (1.1) (since $\sum\left\|\nabla \mathrm{f}_{\mathrm{j}}\right\|_{2} /\left\|\mathrm{f}_{\mathrm{j}}\right\|_{\frac{2(3+\epsilon)}{1+\epsilon}}$ is scale invariant). Our goal, in this case, is to give a lower bound to the difference of the two sides in (1.1) for $\mathrm{f}_{\mathrm{j}} \in \mathrm{H}_{0}^{1}(\Omega)$. In Section II we shall prove the following inequalities (1.4) and (1.6):

$$
\begin{equation*}
\sum\left\|\nabla f_{j}\right\|_{2}^{2} \geq S_{3+\epsilon}\left(\sum\left\|f_{j}\right\|_{2}^{2}\right)+C(\Omega)\left(\sum\left\|f_{j}\right\|_{\frac{3+\epsilon}{1+\epsilon}, \mathrm{w}}^{2}\right) \tag{1.4}
\end{equation*}
$$

Where $\mathrm{C}(\Omega)$ depends on Ω and $3+\epsilon, \frac{3+\epsilon}{1+\epsilon}$, and w denotes the weak $L^{\frac{3+\epsilon}{1+\epsilon}}$ norm defined by

$$
\sum\left\|\mathrm{f}_{\mathrm{j}}\right\|_{\frac{3+\epsilon}{1+\epsilon^{W}}}=\sup _{\mathrm{A}}|\mathrm{~A}|^{-1 /\left(\frac{3+\epsilon}{1+\epsilon}\right)^{\prime}} \int_{\mathrm{A}} \sum\left|\mathrm{f}_{\mathrm{j}}(\mathrm{x})\right| \mathrm{dx},
$$

With A being a set of finite measure $|\mathrm{A}|$.
The inequality (1.4) was motivated by the weaker inequality in [3],

$$
\begin{equation*}
\sum\left\|\nabla f_{j}\right\|_{2}^{2} \geq S_{3+\epsilon}\left(\sum\left\|f_{j}\right\|_{\frac{2(3+\epsilon)}{1+\epsilon}}^{2}\right)+C_{\frac{3+\epsilon}{1+\epsilon}}(\Omega)\left(\sum\left\|f_{j}\right\|_{\frac{3+\epsilon}{1+\epsilon}}^{2}\right), \tag{1.5}
\end{equation*}
$$

which holds for all $\frac{3+\epsilon}{1+\epsilon}$ (with $\mathrm{C}_{\frac{3+\epsilon}{}}^{1+\epsilon}(\Omega) \rightarrow 0$ as $\frac{2(3+\epsilon)}{1+\epsilon}$). The proof of (1.5) in [3] was very indirect compared to the proof of (1.4) given here. Inequality (1.4) is best possible in the sense that (1.5) cannot hold with $\frac{3+\epsilon}{1+\epsilon}$; this can be shown by taking the f_{j} in (1.3), applying a cutoff function to make f_{j} vanish on the boundary, and then expanding the integrals (as in [3]) near $\varepsilon=0$.

An inequality stronger than (1.4), and involving the gradient norm is

$$
\begin{equation*}
\left\|\sum \nabla f_{j}\right\|_{2}^{2} \geq S_{3+\epsilon}\left(\sum\left\|f_{j}\right\|_{\frac{2(3+\epsilon)}{1+\epsilon}}^{2}\right)+D(\Omega)\left(\sum\left\|\nabla f_{j}\right\|_{\frac{3+\epsilon}{2+\epsilon}, \mathrm{w}}^{2}\right), \tag{1.6}
\end{equation*}
$$

with $\frac{3+\epsilon}{2+\epsilon}$. (The reason that (1.6) is stronger than (1.4) is that the Sobolev inequality has an extension to the weak norms, by Young's inequalities in weak $L^{\frac{3+\epsilon}{1+\epsilon}}$ spaces).

Among the open questions concerning (1.4)-(1.6) are the following:
(a) What are the sharp constants in (1.4)-(1.6)? Are they achieved? Except in one case, they are not known, even for a ball. If $\epsilon=0, \Omega$ is a ball of radius R and $\epsilon=2$ in (1.6), then $\mathrm{C}_{2}(\Omega)=\pi^{2} /\left(4 \mathrm{R}^{2}\right)$; however, this constant is not achieved [3].
(b) What can replace the right side of (1.4)-(1.6) when Ω is unbounded, e.g., a half-space?
(c) Is there a natural way to bound $\sum\left\|\nabla \mathrm{f}_{\mathrm{j}}\right\|_{2}^{2}-\mathrm{S}_{3+\epsilon}\left(\sum\left\|\mathrm{f}_{\mathrm{j}}\right\|_{\left.\frac{2(3+\epsilon)}{2}\right)}^{1+\epsilon}\right)$ from below in terms of the "distance" of f_{j} from the set of optimal functions (1.3)?
Problem B. If $\sum \mathrm{f}_{\mathrm{j}} \neq 0$ on $\partial \Omega$, then (1.1) does not hold in Ω (simply take $\sum \mathrm{f}_{\mathrm{j}}=1$ in Ω). Let us assume now that Ω is not only bounded but that $\partial \Omega$ (the boundary of Ω) has enough smoothness. Then (1.1) might be expected to hold if suitable boundary integrals are added to the left side. In Section III we shall prove that for $\sum \mathrm{f}_{\mathrm{j}}=$ constant $\equiv \sum \mathrm{f}_{\mathrm{j}}(\partial \Omega)$ on $\partial \Omega$

$$
\begin{equation*}
\left\|\sum \nabla \mathrm{f}_{\mathrm{j}}\right\|_{2}^{2}+\mathrm{E}(\Omega)\left|\sum \mathrm{f}_{\mathrm{j}}(\partial \Omega)\right|^{2} \geq \mathrm{S}_{3+\epsilon}\left(\sum \mid \mathrm{f}_{\mathrm{j}} \|_{\left.\frac{2(3+\epsilon)}{2}\right)}^{2+\epsilon} .\right. \tag{1.7}
\end{equation*}
$$

On the other hand, if f_{j} is not constant on $\partial \Omega$, then the following two inequalities hold.

$$
\begin{align*}
\left\|\sum \nabla f_{j}\right\|_{2}^{2}+F(\Omega)\left(\left\|\sum f_{j}\right\|_{H^{1 / 2}(\partial \Omega)}^{2}\right. & \geq S_{3+\epsilon}\left(\sum\left\|f_{j}\right\|_{\left.\frac{2(3+\epsilon)}{2}\right)}^{2}\right), \tag{1.8}\\
\left\|\sum \nabla f_{j}\right\|_{2}+G(\Omega)\left(\left\|\sum f_{j}\right\|_{\frac{3+\epsilon}{2+\epsilon} \partial \Omega}\right) & \geq S_{3+\epsilon}^{1 / 2}\left(\sum\left\|f_{j}\right\|_{\frac{2(3+\epsilon)}{1+\epsilon}}\right) \tag{1.9}
\end{align*}
$$

with $\epsilon^{2}+4 \epsilon+5=0$, which is sharp. (Note the absence of the exponent 2 in (1.9)).
In addition to the obvious analogues of questions (a)-(c) for Problem B, one can also ask whether (1.9) can be improved to

$$
\begin{equation*}
\left\|\sum \nabla \mathrm{f}_{\mathrm{j}}\right\|_{2}^{2}+\mathrm{H}(\Omega)\left(\left\|\sum \mathrm{f}_{\mathrm{j}}\right\|_{\frac{3+\epsilon}{2+\epsilon} \partial \Omega}^{2}\right) \geq \mathrm{S}_{3+\epsilon}\left(\sum\left\|\mathrm{f}_{\mathrm{j}}\right\|_{\left.\frac{2(3+\epsilon)}{1+\epsilon}\right)}^{2}\right) . \tag{1.10}
\end{equation*}
$$

We do not know.
If Ω is a ball of radius R, we shall establish that the sharp constant in (1.7) is $\mathrm{E}(\Omega)=\sigma_{3+\epsilon} \mathrm{R}^{1+\epsilon} /(1+\epsilon)$, where $\sigma_{3+\epsilon}$ is the surface area of the ball of unit radius in $\mathbb{R}^{3+\epsilon}$. With this $\mathrm{E}(\Omega)$, (1.7) is a strict inequality. Given this fact, one suspects (in view of the solution to Problem A) that some term could be added to the right side of (1.5). However, such a term cannot be any $L^{\frac{3+\epsilon}{1+\epsilon}}(\Omega)$ norm of f_{j}, as will be shown.

To conclude this Introduction, let us mention two' related inequalities. First, if one is willing to replace $S_{3+\epsilon}$, on the right side of (1.10) by the smaller constant $2^{-2 / 3+\epsilon} S_{3+\epsilon}$, then for a ball one can obtain the inequality

$$
\begin{equation*}
\int \sum\left|\nabla \mathrm{f}_{\mathrm{j}}\right|^{2}+\mathrm{I}(\Omega)\left(\sum\left\|\mathrm{f}_{\mathrm{j}}\right\|_{2, \partial \Omega}^{2}\right) \geq \mathrm{S}^{-2 / 3+\epsilon} \mathrm{S}_{3+\epsilon}\left(\sum\left\|\mathrm{f}_{\mathrm{j}}\right\|_{\left.\frac{2(3+\epsilon)}{2}\right)}^{1+\epsilon}\right) \tag{1.11}
\end{equation*}
$$

This is proved in Section (1.1). Inequalities related to (1.11) were derived by Cherrier [4] for general manifolds.
Second, one can consider the doubly weighted Hardy-Littlewood-Sobolev inequality [7,10] which in some sense is the dual of (1.1), namely,

$$
\begin{gather*}
\left.\left|\iint \sum f_{j}(x) f_{j}(x+\epsilon)\right| \epsilon\right|^{-\lambda}|x|^{-\alpha}|x+\epsilon|^{-\alpha} d x d(x+\epsilon) \mid \\
\leq P_{\alpha, \lambda, 3+\epsilon}\left(\sum\left\|f_{j}\right\|_{\frac{3+\epsilon}{1+\epsilon}}^{2}\right), \tag{1.12}
\end{gather*}
$$

with $\left(\frac{3+\epsilon}{1+\epsilon}\right)^{\prime}=23+\epsilon /(\lambda+2 \alpha), 0<\lambda<3+\epsilon, 0 \leq \alpha<3+\epsilon /\left(\frac{3+\epsilon}{1+\epsilon}\right)^{\prime}$. If f_{j} is restricted to have support in a bounded domain Ω and if P is (by definition) the sharp constant in $\mathbb{R}^{3+\epsilon}$, one should expect to be able to add some additional term to the left side of (1.12). When $\epsilon=2$ this is indeed possible, and the additional term is:

$$
\begin{equation*}
J_{n}|\Omega|^{-\lambda / 3+\epsilon}\left\{\int \sum f_{j}(x)|x|^{-\alpha} d x\right\}^{2} \tag{1.13}
\end{equation*}
$$

This was proved in [5] for $n=3, \lambda=2, \alpha=\frac{1}{2}$, and Ω being a ball, but the method easily extends (for a ball) to other $3+\epsilon, \lambda$. The result (1.4) further extends to general Ω (with the same constant $J_{3+\epsilon}$) by using the Riesz rearrangement inequality. On the other hand, when $\epsilon \neq 2$, it does not seem to be easy to find the additional term on the left side of (1.12): at least we have not succeeded in doing so. This is an open problem. In particular, in Section III we prove that when $\epsilon=9, \epsilon=0, \lambda=1, \alpha=0$, one cannot even add $\left\|f_{j}\right\|_{1}^{2}$ to the left side of (1.12).

II. Proof of Inequalities (1.4) and (1.6):

Proof of Inequalities (1.4)(See [13]): By the rearrangement inequality for the L^{2} norm of the gradient we have

$$
\begin{equation*}
\left\|\sum \nabla f_{j}^{*}\right\|_{2} \leq \sum\left\|\nabla f_{j}\right\|_{2} \tag{2.1}
\end{equation*}
$$

(see, e.g., [8]); in addition we have

$$
\begin{align*}
\sum\left\|f_{j}^{*}\right\|_{2^{*}} & =\sum\left\|f_{j}\right\|_{2^{*}} \\
\sum\left\|f_{j}^{*}\right\|_{\frac{3+\epsilon}{1+\epsilon^{\prime}} w} & =\sum\left\|f_{j}\right\|_{\frac{3+\epsilon}{1+\epsilon^{\prime}},}, \tag{2.2}
\end{align*}
$$

Here, f_{j}^{*} denotes the symmetric decreasing rearrangement of the function f_{j} extended to be zero outside Ω. Therefore, it suffices to consider the case in which Ω is a ball of radius R (chosen to have the same volume as the original domain) and f_{j} is symmetric decreasing.

Let $g_{j} \in(\Omega)$ and define u_{j} to be the solution of

$$
\begin{array}{rlrl}
\Delta u_{j} & =g_{j} & & \text { in } \\
u_{j} & =0 & & \Omega, \tag{2.3}\\
\text { on } & & \partial \Omega
\end{array}
$$

Let

$$
\phi_{j}(x)= \begin{cases}f_{j}(x)+u_{j}(x)+\left\|u_{j}\right\|_{\infty} & \text { in } \Omega, \tag{2.4}\\ \left\|u_{j}\right\|_{\infty}(R /|x|)^{n-2} & \text { in } \Omega^{c} .\end{cases}
$$

The Sobolev inequality in all of \mathbb{R}^{n} applied to ϕ_{j} yields

$$
\begin{equation*}
\int_{\Omega} \sum\left|\nabla f_{j}+u_{j}\right|^{2}+\left\|u_{j}\right\|_{\infty}^{2} R^{1+\epsilon}(1+\epsilon) \sigma_{3+\epsilon} \geq S_{3+\epsilon}\left(\sum\left\|f_{j}\right\|_{\frac{2(3+\epsilon)}{2+\epsilon}}^{2}\right) \tag{2.5}
\end{equation*}
$$

Since $\sum f_{j} \geq 0$ and $u_{j}+\left\|u_{j}\right\|_{\infty} \geq 0$. Here

$$
\sigma_{3+\epsilon}=2(\pi)^{3+\epsilon / 2} / \Gamma(3+\epsilon / 2)
$$

is the surface area of the unit ball in $\mathbb{R}^{3+\epsilon}$. Therefore, we find

$$
\begin{equation*}
\int \sum\left|\nabla f_{j}\right|^{2}-2 \int \sum f_{j} g_{j}+\int \sum\left|\nabla u_{j}\right|^{2}+k \sum\left\|u_{j}\right\|_{\infty}^{2} \geq \sum\left\|f_{j}\right\|_{\frac{2(3+\epsilon)}{1+\epsilon}}^{2} \tag{2.6}
\end{equation*}
$$

where $k=R^{1+\epsilon}(1+\epsilon) \sigma_{3+\epsilon}$. Replacing g_{j} by λg_{j} and u_{j} by λu_{j} and optimizing with respect to λ we obtain

$$
\begin{equation*}
\int \sum\left|\nabla f_{j}\right|^{2} \geq S_{3+\epsilon}\left(\sum\left\|f_{j}\right\|_{\frac{2(3+\epsilon)}{1+\epsilon}}^{2}\right)+\sum\left(\int f_{j} g_{j}\right)^{2} /\left[\int\left|\nabla u_{j}\right|^{2}+k\left\|u_{j}\right\|_{\infty}^{2}\right] \tag{2.7}
\end{equation*}
$$

In inequality (2.7) we can obviously maximize the right side with respect to g_{j}. In view of the definition of the weak norm we shall in fact restrict our attention to $g_{j}=1_{A}$, namely, the characteristic function of some set A in Ω. We shall now establish some simple estimates for all the quantities in (2.7) in which $C_{3+\epsilon}$, generically denotes constants depending only on $3+\epsilon$,

$$
\begin{gather*}
\int \sum f_{j} g_{j}=\int_{A} \sum f_{j} \tag{2.8}\\
\int \sum\left|\nabla u_{j}\right|^{2} \leq C_{3+\epsilon}|A|^{1+2 / 3+\epsilon} \tag{2.9}\\
\left\|u_{j}\right\|_{\infty} \leq C_{3+\epsilon}|A|^{2 / 3+\epsilon}
\end{gather*}
$$

Indeed we have, by multiplying (2.3) by u_{j} and using Hölder's inequality,

$$
\begin{align*}
& \int \sum\left|\nabla u_{j}\right|^{2}=-\int_{A} \sum u_{j} \leq \sum\left\|u_{j}\right\|_{\frac{2(3+\epsilon)}{1+\epsilon}}|A|^{\frac{5}{2(3+\epsilon)}} \\
& \leq S_{3+\epsilon}^{-1 / 2}\left(\sum\left\|\nabla u_{j}\right\|_{2}|A|^{\frac{5}{2(3+\epsilon)}}\right) \tag{2.11}
\end{align*}
$$

which implies (2.9). Next we have, by comparison with the solution in $\mathbb{R}^{3+\epsilon}$,

$$
\begin{align*}
\left|u_{j}\right| & \leq C_{3+\epsilon}|x|^{-(1+\epsilon)} *\left(1_{A}\right) \\
& \leq C_{3+\epsilon}^{\prime}|A|^{2 / 3+\epsilon} \tag{2.12}
\end{align*}
$$

since the function $|x|^{-(1+\epsilon)}$ belongs to $L_{w}^{-\frac{3+\epsilon}{11+\epsilon}}$. Since $|A| \leq|\Omega|=\sigma_{3+\epsilon} R^{3+\epsilon} / 3+\epsilon$ we obtain

$$
\begin{equation*}
\int \sum\left|\nabla u_{j}\right|^{2}+k \sum\left\|u_{j}\right\|_{\infty}^{2} \leq C_{3+\epsilon}|A|^{4 / 3+\epsilon} R^{1+\epsilon} \tag{2.13}
\end{equation*}
$$

Hence (1.4) has been proved (for all Ω) with a constant

$$
\begin{equation*}
C(\Omega)=C_{3+\epsilon}|\Omega|^{-\frac{1+\epsilon}{3+\epsilon}} \tag{2.14}
\end{equation*}
$$

Proof of Inequality (1.6)(See [13]): To a certain extent the previous proof can be imitated except for one important ingredient, namely, the rearrangement technique cannot be used since it is not true that $\left\|\sum \nabla f_{j}\right\|_{\frac{3+\epsilon}{2+\epsilon},} \leq \sum\left\|\nabla f_{j}^{*}\right\|_{\frac{3+\epsilon}{2+\epsilon}, w}$. (However, it is still true that we can replace f_{j} by $\left|f_{j}\right|$ without changing any of the norms in (1.6), and thus we may and still assume that $\sum f_{j} \geq 0$). Consequently we have to use a direct approach and the constant $D(\Omega)$ in (1.6) will not depend only on $|\Omega|$; it will in fact depend on the capacity of Ω. It is an open question whether (1.6) holds with $D(\Omega)$ depending only on $|\Omega|$. Our result is that:

$$
\begin{equation*}
D(\Omega)=C_{3+\epsilon} / \operatorname{cap}(\Omega) \tag{2.15}
\end{equation*}
$$

We begin as before with (2.3), but (2.4) is replaced by:

$$
\phi_{j}= \begin{cases}f_{j}+u_{j}+\left\|u_{j}\right\|_{\infty} & \text { in } \Omega \tag{2.16}\\ \left\|u_{j}\right\|_{\infty} v_{j} & \text { in } \Omega^{c}\end{cases}
$$

Where v_{j} is the solution of

$$
\begin{align*}
\Delta v_{j} & =0 \quad \text { in } \quad \Omega^{c}, \\
v_{j} & =1 \quad \text { on } \quad \partial \Omega, \tag{2.17}
\end{align*}
$$

With $v_{j} \rightarrow 0$ at infinity. By definition,

$$
\begin{equation*}
\operatorname{cap}(\Omega)=\int \sum\left|\nabla v_{j}\right|^{2} \tag{2.18}
\end{equation*}
$$

Inequality (2.7) still holds but with the constant k replaced by $k=\operatorname{cap}(\Omega)$. Also we note that (2.7) can be written as

$$
\begin{equation*}
\int \sum\left|\nabla f_{j}\right|^{2} \geq S_{3+\epsilon}\left(\sum\left\|f_{j}\right\|_{\frac{2(3+\epsilon)}{1+\epsilon}}^{2}\right)+\sum\left(\int \nabla f_{j} \cdot \nabla u_{j}\right)^{2} /\left[\int\left|\nabla u_{j}\right|^{2}+k\left\|u_{j}\right\|_{\infty}^{2}\right] \tag{2.19}
\end{equation*}
$$

which holds for any $u_{j} \in C_{0}^{\infty}(\Omega)$. By density, (2.19) still holds for every u_{j} in $H_{0}^{1} \cap L^{\infty}$ (the reason is that for every such u_{j} there is a sequence $\left(u_{j}\right)_{j_{0}} \in C_{0}^{\infty}(\Omega)$ with $\left(u_{j}\right)_{j_{0}} \rightarrow u_{j}$ in H_{0}^{1} and $\left.\left\|\left(u_{j}\right)_{j_{0}}\right\|_{\infty} \rightarrow\left\|u_{j}\right\|_{\infty}\right)$.

We now choose u_{j} to be the solution of (2.3) with

$$
\begin{equation*}
\sum g_{j}=\frac{\partial}{\partial x_{i}}\left[\sum\left(\operatorname{sgn} \frac{\partial f_{j}}{\partial x_{i}}\right) 1_{A}\right] \tag{2.20}
\end{equation*}
$$

This function u_{j} is in L^{∞} as we now verify. We can write

$$
u_{j}=w_{j}+h_{j}
$$

where w_{j} satisfies $\Delta w_{j}=g_{j}$ in all of $\mathbb{R}^{3+\epsilon}$, namely,

$$
\begin{equation*}
w_{j}=C_{3+\epsilon}|x|^{-(1+\epsilon)} * g_{j} \tag{2.21}
\end{equation*}
$$

Clearly h_{j} is harmonic and $h_{j}=-w_{j}$ on $\partial \Omega$ therefore $\left\|\sum h_{j}\right\|_{\infty} \leq\left\|\sum w_{j}\right\|_{\infty, \partial \Omega} \leq\left\|\sum w_{j}\right\|_{\infty}$ and hence $\sum\left\|u_{j}\right\|_{\infty} \leq$ $2 \sum\left\|w_{j}\right\|_{\infty}$. On the other hand, and thus

$$
w_{j}=C_{3+\epsilon} \sum\left(\frac{\partial}{\partial x_{i}}|\mathrm{x}|^{-(1+\epsilon)}\right) *\left[\left(\operatorname{sgn} \frac{\partial f_{j}}{\partial x_{i}}\right) 1_{A}\right],
$$

and thus

$$
\begin{equation*}
\left|w_{j}\right| \leq C_{3+\epsilon}(1+\epsilon)|x|^{-(2+\epsilon)} * 1_{A} . \tag{2.22}
\end{equation*}
$$

Since $|x|^{-(2+\epsilon)} \in L_{w_{j}}^{3+\epsilon / 2+\epsilon}$ we obtain

$$
\begin{equation*}
\left\|\sum u_{j}\right\|_{\infty} \leq 2 \sum\left\|w_{j}\right\|_{\infty} \leq C_{3+\epsilon}^{\prime}|A|^{1 / 3+\epsilon} . \tag{2.23}
\end{equation*}
$$

Next, let us estimate $\int \Sigma\left|\nabla u_{j}\right|^{2}$. Multiplying (2.3) by u_{j} we have

$$
\int \sum\left|\nabla u_{j}\right|^{2}=\int \sum\left(\operatorname{sgn} \partial f_{j} / \partial x_{i}\right) 1_{A}\left(\partial u_{j} / \partial x_{i}\right) \leq\left[\int \sum\left|\nabla u_{j}\right|^{2}\right]^{1 / 2}|A|^{1 / 2}
$$

and thus

$$
\begin{equation*}
\int \sum\left|\nabla u_{j}\right|^{2} \leq|A| \tag{2.24}
\end{equation*}
$$

Finally, since $\sum f_{j}=0$ on $\partial \Omega$,

$$
\begin{equation*}
\int \sum \nabla f_{j} \cdot \nabla u_{j}=-\int \sum f_{j} \Delta u_{j}=\int \sum\left|\partial f_{j} / \partial x_{i}\right| 1_{A} \tag{2.25}
\end{equation*}
$$

Using these estimates (2.19) we find

Since $|A|^{1-(2 / 3+\epsilon)} \leq|\Omega|^{1-(2 / 3+\epsilon)} \leq S_{3+\epsilon}^{-1} \operatorname{cap}(\Omega)$ by Sobolev's inequality applied to the function $\widetilde{v}_{J}=v_{j}$ in Ω^{c} and $\widetilde{v}_{J}=1$ in Ω. This completes the proof of (1.6) with the constants given in (2.15).

III. Proofs of (1.7)-(1.9) and Related Matters

Proof of (1.8)(See [13]): Let us define:

$$
\phi_{j}= \begin{cases}f_{j} & \text { in } \quad \Omega \tag{3.1}\\ w_{j} & \text { in } \Omega^{c}\end{cases}
$$

Where w_{j} is the harmonic function that vanishes at infinity and agrees with f_{j} on $\partial \Omega$. Using ϕ_{j} in (1.1) we find:

$$
\begin{equation*}
\int_{\Omega} \sum\left|\nabla f_{j}\right|^{2}+\int_{\Omega^{c}} \sum\left|\nabla w_{j}\right|^{2} \geq S_{3+\epsilon}\left(\sum\left\|f_{j}\right\|_{\frac{2(3+\epsilon)}{2}}^{1+\epsilon}\right) \tag{3.2}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\int_{\Omega^{c}} \sum\left|\nabla w_{j}\right|^{2} \sim \sum\left\|f_{j}\right\|_{H^{1 / 2}(\partial \Omega)}^{2} \tag{3.3}
\end{equation*}
$$

This concludes the proof of (1.8).
Proof of (1.7)(See [13]): Now suppose that f_{j} is a constant on $\partial \Omega$. We shall first investigate the case that Ω is a ball of radius R centered at zero. In this case $w_{j}(x)=f_{j}(\partial \Omega) R^{(3+\epsilon)-2}|x|^{2-(3+\epsilon)}$. Above Inequality (3.2), then yields (1.7) with:

$$
\begin{equation*}
E(\Omega)=\operatorname{cap}(\Omega)=\sigma_{3+\epsilon} R^{1+\epsilon} / 1+\epsilon=\frac{(3+\epsilon)|\Omega|}{1+\epsilon}\left\{\frac{\sigma_{3+\epsilon}}{(3+\epsilon)|\Omega|}\right\}^{2 / 3+\epsilon} \tag{3.4}
\end{equation*}
$$

Furthermore, (1.7) is a strict inequality with this $E(\Omega)$ because the function ϕ_{j} is not of the form (1.3). Also, $E(\Omega)$ given by the sharp constant. To see this we apply (1.9) with $f_{j}=\left(f_{j}\right)_{\varepsilon}$, given by (1.3) with $a=1$ and $x+\epsilon=0=$ center of the ball. We have:

$$
\int_{\mathbb{R}^{3+\epsilon}} \sum\left|\nabla\left(f_{j}\right)_{\varepsilon}\right|^{2}=S_{3+\epsilon}\left(\sum\left\|\left(f_{j}\right)_{\varepsilon}\right\|_{\frac{2(3+\epsilon)}{1+\epsilon}, \mathbb{R}^{3+\epsilon}}^{2}\right) .
$$

On the other hand, as $\varepsilon \rightarrow 0$

$$
\begin{align*}
\int_{\mathbb{R}^{3+\epsilon}} \sum\left|\nabla\left(f_{j}\right)_{\varepsilon}\right|^{2}= & \int_{\Omega} \sum\left|\nabla\left(f_{j}\right)_{\varepsilon}\right|^{2}+\int_{\Omega^{c}} \sum\left|\nabla\left(f_{j}\right)_{\varepsilon}\right|^{2} \\
& =\int_{\Omega} \sum\left|\nabla\left(f_{j}\right)_{\varepsilon}\right|^{2}+\operatorname{cap}(\Omega)\left(\sum\left|\left(f_{j}\right)_{\varepsilon}(\partial \Omega)\right|^{2}\right)+o(1) \tag{3.6}
\end{align*}
$$

Here we have to note that as $\varepsilon \rightarrow 0$ for $|x|>R$

$$
\left(f_{j}\right)_{\varepsilon}(x) \rightarrow|x|^{-(1+\epsilon)}
$$

in the appropriate topologies. On the other hand,

$$
\int_{\mathbb{R}^{3+\epsilon}} \sum\left|\left(f_{j}\right)_{\varepsilon}\right|^{\frac{2(3+\epsilon)}{1+\epsilon}}-\int_{\Omega} \sum\left|\left(f_{j}\right)_{\varepsilon}\right|^{\frac{2(3+\epsilon)}{1+\epsilon}}=\int_{\Omega^{c}} \sum\left|\left(f_{j}\right)_{\varepsilon}\right|^{\frac{2(3+\epsilon)}{1+\epsilon}} \rightarrow C
$$

Thus

$$
\begin{equation*}
\sum\left\|\left(f_{j}\right)_{\varepsilon}\right\|_{\frac{2(3+\epsilon)}{1+\epsilon}, \mathbb{R}^{3+\epsilon}}^{2}=\sum\left\|\left(f_{j}\right)_{\varepsilon}\right\|_{\frac{2(3+\epsilon)}{1+\epsilon}, \Omega}^{2}+o(1) \tag{3.7}
\end{equation*}
$$

This proves that $E(\Omega)$ in (1.7) is greater than or equal to $\operatorname{cap}(\Omega)$ when Ω is a ball, and thus that (3.4) is sharp.
The same calculation with $\left(f_{j}\right)_{\varepsilon}$, as above shows that if Ω is a ball there is no inequality of the type:

$$
\begin{equation*}
\int_{\Omega} \sum\left|\nabla f_{j}\right|^{2}+\operatorname{cap}(\Omega)\left(\sum\left|f_{j}(\partial \Omega)\right|^{2}\right) \geq S_{3+\epsilon}\left(\sum\left\|f_{j}\right\|_{\frac{2(3+\epsilon)}{1+\epsilon}}^{2}\right)+d \sum\left\|f_{j}\right\|_{1}^{2} \tag{3.8}
\end{equation*}
$$

with $\epsilon \geq 0$, because the additional term $\sum\left\|\left(f_{j}\right)_{\varepsilon}\right\|_{1}=O(1)$ as $\varepsilon \rightarrow 0$.
Now we consider a general domain with $f_{j}(\partial \Omega)=$ constant $=C$. We can assume $C \geq 0$ and note that we can also assume $f_{j} \geq C$ in Ω. (This is so because replacing f_{j} by If $\sum\left|f_{j}-C\right|+C \geq \sum f_{j}$ does not decrease the $L^{\frac{2(3+\epsilon)}{1+\epsilon}}$ norm and leaves $\left\|\sum \nabla f_{j}\right\|_{2}$ invariant.) Consider the function $g_{j}=\sum f_{j}-C \geq 0$ which vanishes on $\partial \Omega$ and hence can be extended to be zero on Ω^{c}. Apply to g_{j} the rearrangement inequality for the L^{2} norm of the
gradient, as was done in Section II. Finally considers $\tilde{f}_{j}=g_{j}^{*}+C$ in the ball Ω^{*} whose volume is $|\Omega|$. Since $\tilde{f}_{j}\left(\partial \Omega^{*}\right)=C=f_{j}(\partial \Omega)$ we have

$$
\int_{\Omega^{*}} \sum\left|\nabla \tilde{f}_{j}\right|^{2}+E\left(\Omega^{*}\right)\left(\sum\left|f_{j}(\partial \Omega)\right|^{2}\right) \geq S_{n}\left(\sum\left\|\tilde{f}_{j}\right\|_{\frac{2(3+\epsilon)}{2}+\Omega^{*}}^{2+\epsilon}\right),
$$

As we remarked, $\left\|\sum \nabla f_{j}\right\|_{2} \geq\left\|\Sigma \nabla \tilde{f}_{j}\right\|_{2}$. Also since $f_{j} \geq C$, it is easy to check that $\sum\left\|f_{j}\right\|_{\frac{2(3+\epsilon)}{1+\epsilon}}=\sum\left\|\tilde{f}_{j}\right\|_{\frac{2(3+\epsilon)}{1+\epsilon}}$.
The conclusion to be drawn from this exercise is that (1.7) holds for general Ω with $E(\Omega)$ given by (3.4), namely, $\operatorname{cap}\left(\Omega^{*}\right)$. We also note that (1.7), with this $E(\Omega)$, is strict, since it is strict for a ball.

Question: Is $E(\Omega)$ given by (3.4) the sharp constant in general?
Proof of (1.9)(See [13]): Given f_{j} in Ω we consider the harmonic function h_{j} in Ω which equals f_{j} on $\partial \Omega$ We write

$$
\begin{equation*}
f_{j}=h_{j}+u_{j} \tag{3.9}
\end{equation*}
$$

With $\mathrm{u}_{j}=0$ on $\partial \Omega$ and thus

$$
\begin{equation*}
\int \sum\left|\nabla u_{j}\right|^{2} \geq S_{3+\epsilon}\left(\sum\left\|u_{j}\right\|_{\left.\frac{2(3+\epsilon)}{1+\epsilon}\right)}^{2}\right) \tag{3.10}
\end{equation*}
$$

On the one hand

$$
\begin{equation*}
\int \sum\left|\nabla u_{j}\right|^{2}=\int \sum\left|\nabla\left(f_{j}-h_{j}\right)\right|^{2}=\int \sum\left|\nabla f_{j}\right|^{2}-\int \sum\left|\nabla h_{j}\right|^{2} \tag{3.11}
\end{equation*}
$$

(note that $\int_{\Omega} \Sigma\left|\nabla h_{j}\right|^{2}=\int_{\partial \Omega} \sum h_{j}\left(\partial h_{j} / \partial 3+\epsilon\right)=\int_{\partial \Omega} \sum f_{j}\left(\partial h_{j} / \partial 3+\epsilon\right)=\int_{\Omega} \Sigma\left(\nabla f_{j} \nabla h_{j}\right)$). On the other hand, by the triangle inequality,

$$
\begin{equation*}
\sum\left\|u_{j}\right\|_{\frac{2(3+\epsilon)}{1+\epsilon}} \geq \sum\left\|f_{j}\right\|_{\frac{2(3+\epsilon)}{1+\epsilon}}-\sum\left\|h_{j}\right\|_{\frac{2(3+\epsilon)}{1+\epsilon}} . \tag{3.12}
\end{equation*}
$$

Inserting (3.11) and (3.12) in (3.10) we obtain

$$
\begin{equation*}
\sum\left\|\nabla f_{j}\right\|_{2}+\sum\left\|h_{j}\right\|_{\frac{2(3+\epsilon)}{1+\epsilon}} \geq S_{3+\epsilon}^{1 / 2}\left(\sum\left\|f_{j}\right\|_{\left.\frac{2(3+\epsilon)}{1+\epsilon}\right)}\right) \tag{3.13}
\end{equation*}
$$

Next we claim that

$$
\begin{equation*}
\sum\left\|h_{j}\right\|_{\frac{2(3+\epsilon)}{1+\epsilon}} \leq G(\Omega)\left(\sum\left\|f_{j}\right\|_{\frac{3+\epsilon}{2+\epsilon}, \partial \Omega}\right) \tag{3.14}
\end{equation*}
$$

with $\epsilon^{2}+4 \epsilon+5=0$, which will complete the proof of (1.9). The proof is a standard duality argument. Indeed, let ψ_{j} be the solution of

$$
\begin{array}{rll}
\Delta \psi_{j}=Y & \text { in } \quad \Omega \\
\psi_{j}=0 & \text { on } & \partial \Omega \tag{3.15}
\end{array}
$$

where Y is some arbitrary function in L^{t}. We have, by multiplying by h_{j} and integrating by parts,

$$
\begin{equation*}
\int_{\Omega} \sum h_{j} Y=\int_{\partial \Omega} \sum f_{j} \frac{\partial \psi_{j}}{\partial(3+\epsilon)} \tag{3.16}
\end{equation*}
$$

However, the $L^{\frac{3+\epsilon}{1+\epsilon}}$ regularity theory shows that $\psi_{j} \in W^{2, t}$ with $\left\|\sum \psi_{j}\right\|_{W^{2, t}(\Omega)} \leq C\|Y\|_{t}$. In particular, $\left\|\Sigma \nabla \psi_{j}\right\|_{W^{1, t}(\Omega)} \leq C\|Y\|_{t}$ and, by trace inequalities,

$$
\begin{equation*}
\left\|\sum \frac{\partial \psi_{j}}{\partial 3+\epsilon}\right\|_{\frac{t(2+\epsilon)}{(3+\epsilon)-t^{\prime}} \partial \Omega} \leq C\|Y\|_{t} \tag{3.17}
\end{equation*}
$$

Therefore, by (3.16) and Hölder's inequality,

$$
\begin{equation*}
\left|\int \sum h_{j} Y\right| \leq C \sum\left\|f_{j}\right\|_{\frac{3+\epsilon}{2+\epsilon}, \partial \Omega}\|Y\|_{t} \tag{3.19}
\end{equation*}
$$

Since (3.19) holds for all Y we conclude that

$$
\left\|\sum h_{j}\right\|_{2^{*}} \leq C \sum\left\|f_{j}\right\|_{\frac{3+\epsilon}{2+\epsilon} \partial \Omega^{\prime}}
$$

when $\epsilon^{2}+4 \epsilon+5=0$.
Finally, we claim that there is no inequality of the type (1.9) with $\epsilon^{2}+4 \epsilon+5=0$. Indeed, suppose (1.9) holds with some such $\frac{3+\epsilon}{2+\epsilon}$. We choose $f_{j}=\left(f_{j}\right)_{\varepsilon}$, as in (1.3) with $a=1$ and $(x+\epsilon) \in \partial \Omega$. It is obvious that as $\varepsilon \rightarrow 0$

$$
\begin{gathered}
\sum \int_{\Omega}\left|\nabla\left(f_{j}\right)_{\varepsilon}\right|^{2} / \int_{\mathbb{R}^{3+\epsilon}}\left|\nabla\left(f_{j}\right)_{\varepsilon}\right|^{2}=1 / 2+o(1) \\
\sum \int_{\Omega}\left|\left(f_{j}\right)_{\varepsilon}\right|^{\frac{2(3+\epsilon)}{1+\epsilon}} / \int_{\mathbb{R}^{3+\epsilon}}\left|\left(f_{j}\right)_{\varepsilon}\right|^{\frac{2(3+\epsilon)}{1+\epsilon}}=1 / 2+o(1)
\end{gathered}
$$

while

$$
\begin{aligned}
& \int_{\mathbb{R}^{3+\epsilon}} \sum\left|\nabla\left(f_{j}\right)_{\varepsilon}\right|^{2}=S_{3+\epsilon}\left(\sum\left\|\left(f_{j}\right)_{\varepsilon}\right\|_{\frac{2(3+\epsilon)}{1+\epsilon}, \mathbb{R}^{3+\epsilon}}^{2}\right) \\
& \text { and } \sum\left\|\left(f_{j}\right)_{\varepsilon}\right\|_{\frac{3+\epsilon}{2+\epsilon}, \partial \Omega} /\left\|\left(f_{j}\right)_{\varepsilon}\right\|_{\frac{2(3+\epsilon)}{1+\epsilon}}=o(1)
\end{aligned}
$$

This contradicts (1.9).
Remark. The last exercise with $\left(f_{j}\right)_{\varepsilon}$ given above shows that it is not possible to apply rearrangement techniques when f_{j} is not constant on $\partial \Omega$, even if Ω is a ball. It also shows that there is no inequality for all $f_{j} \in H^{1}$ of the type

$$
\left\|\sum \nabla f_{j}\right\|_{2}^{2}+C \sum\left\|f_{j}\right\|_{\frac{3+\epsilon}{2+\epsilon^{N}}}^{2} \geq S_{3+\epsilon}\left(\sum\|f\|_{\frac{2(3+\epsilon)}{1+\epsilon}}^{2}\right)
$$

with $\epsilon>-3$.
Proof of (1.11)(See [13]): Let Ω be a ball of radius R centered at zero. For simplicity, assume $R=1$. Define

$$
g_{j}(x)= \begin{cases}f_{j}(x), & |x| \leq 1 \tag{3.20}\\ |x|^{-(1+\epsilon)} f_{j}\left(x|x|^{-2}\right) & |x| \geq 1\end{cases}
$$

and apply the usual Sobolev inequality (1.1) to g_{j}. We note (by a change of variables) that

$$
\begin{align*}
& \int_{\Omega} \sum g_{j}^{\frac{2(3+\epsilon)}{1+\epsilon}}=\int_{\Omega^{c}} \sum g_{j}^{\frac{2(3+\epsilon)}{1+\epsilon}} \\
& \int_{\Omega} \sum\left|\nabla g_{j}\right|^{2}=\int_{\Omega^{c}} \sum\left|\nabla g_{j}\right|^{2}-(1+\epsilon)\left\|f_{j}\right\|_{2, \partial \Omega}^{2} \tag{3.21}
\end{align*}
$$

Inserting (3.21) into (1.1) yields (1.11) with $I(\Omega)=(1+\epsilon) / 2$.

Remark on the Hardy-Littlewood-Sobolev Inequality

Consider the inequality (in \mathbb{R}^{3})

$$
\begin{equation*}
\sum I\left(f_{j}\right) \leq P\left(\sum\left\|f_{j}\right\|_{6,5}^{2}\right) \tag{3.22}
\end{equation*}
$$

with

$$
\begin{equation*}
\sum_{i \neq 1} I\left(f_{j}\right)=\iint \sum \mathrm{f}_{j}(x) f_{j}(x+\epsilon)|\epsilon|^{-1} d x d(x+\epsilon) \geq 0 \tag{3.23}
\end{equation*}
$$

The sharp constant P is known to be [7]

$$
\begin{equation*}
P=4^{5 / 3} /\left[3 \pi^{1 / 3}\right] . \tag{3.24}
\end{equation*}
$$

Let Ω be a ball of radius one centered at zero and assume that $\sum f_{j}=0$ outside Ω. In this case, (3.22) is strict because the only functions that give equality in (3.22) are of the form [7]

$$
\begin{equation*}
\sum\left(f_{j}\right)_{\varepsilon}(x)=a\left[\varepsilon^{2}+|\epsilon|^{2}\right]^{-5 / 2} \tag{3.25}
\end{equation*}
$$

For $\sum f_{j}=0$ outside Ω, we ask whether (3.22) can be improved to

$$
\begin{equation*}
C\left(\sum\left\|f_{j}\right\|_{1}^{2}\right)+\sum I\left(f_{j}\right) \leq P\left(\sum\left\|f_{j}\right\|_{6 / 5}^{2}\right) \tag{3.26}
\end{equation*}
$$

Our conclusion is that (3.26) fails for any $C>0$.
Take $f_{j}=\left(\widetilde{f}_{J}\right)_{\varepsilon}=\left(f_{j}\right)_{\varepsilon} 1_{\Omega}$ with $\left(f_{j}\right)_{\varepsilon}$ given by (3.25) and with $x+\epsilon=0$ and with $a=a_{\varepsilon}$ chosen so that $\sum\left\|\left(f_{j}\right)_{\varepsilon}\right\|_{6 / 5, \mathbb{R}^{3}}=1$. The function $\left(f_{j}\right)_{\varepsilon}$ satisfies the following (Euler) equation on \mathbb{R}^{3},

$$
\begin{equation*}
\sum \frac{1}{|x|} *\left(f_{j}\right)_{\varepsilon}=P\left(\sum\left(f_{j}\right)_{\varepsilon}^{1 / 5}\right) \tag{3.27}
\end{equation*}
$$

However, for $|x|<1$

$$
\begin{equation*}
\sum\left(\frac{1}{|x|} *\left(\widetilde{f}_{J}\right)_{\varepsilon}\right)(x)+K_{\varepsilon}=\sum\left(\frac{1}{|x|} *\left(f_{j}\right)_{\varepsilon}\right)(x), \tag{3.28}
\end{equation*}
$$

where K_{ε} is a constant bounded above by $D_{\varepsilon}=\int_{|x|>1} \sum\left(f_{j}\right)_{\varepsilon}$. Multiply (3.27) by $\left(\widetilde{f}_{J}\right)_{\varepsilon}$ and integrate over Ω. Then

$$
\begin{align*}
& \sum I\left(\widetilde{f}_{J}\right)_{\varepsilon}+T_{\varepsilon}\left(\sum\left\|\left(\widetilde{f}_{J}\right)_{\varepsilon}\right\|_{1}^{2}\right) \geq \sum I\left(\widetilde{f}_{J}\right)_{\varepsilon}+K_{\varepsilon} \int \sum\left(\widetilde{f}_{J}\right)_{\varepsilon} \\
&=P\left(\sum\left\|\left(\widetilde{f}_{J}\right)_{\varepsilon}\right\|_{6 / 5}^{6 / 5}\right) \geq \mathrm{P}\left(\sum\left\|\left(\widetilde{f}_{J}\right)_{\varepsilon}\right\|_{6 / 5}^{2}\right) \tag{3.29}
\end{align*}
$$

where $\mathrm{T}_{\varepsilon}=\mathrm{D}_{\varepsilon} / \int \sum\left(\tilde{\mathrm{f}}_{\mathrm{J}}\right)_{\varepsilon}$. From (3.29), we see that (3.26) fails if $\mathrm{C}>\mathrm{T}_{\varepsilon}$ for any $\varepsilon>0$. However, it is obvious that $\mathrm{T}_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$.

References

[1]. H. BREZIS , E H. LIEB , Sobolev Inequalities with Remainder Terms, Journal of Functional Analysis 62, 73-86 (1985)
[2]. A. Cotsiolis and N. K. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl. 295(2004), 225-236..
[3]. G. Liu, Sharp k-order Sobolev inequalities in Euclidean space Rn and the sphere Sn, preprint 2006..
[4]. J. Dolbeault and G. Toscani. Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities. Int. Math. Res. Not. IMRN, (2):473-498, 2016.
[5]. M. Fathi, E. Indrei, and M. Ledoux. Quantitative logarithmic Sobolev inequalities and stability estimates. Discrete Contin. Dyn. Syst., 36(12):6835-6853, 2016.
[6]. N. Fusco, F. Maggi, and A. Pratelli. The sharp quantitative Sobolev inequality for functions of bounded variation. J. Funct. Anal., 244(1):315-341, 2007.
[7]. A. Figalli, F. Maggi, and A. Pratelli. Sharp stability theorems for the anisotropic Sobolev and log-Sobolev inequalities on functions of bounded variation. Adv. Math., 242:80-101, 2013.
[8]. A. Figalli and R. Neumayer. Gradient stability for the Sobolev inequality: the case p 2 2. J.Eur. Math. Soc. (JEMS), 21(2):319-354, 2019..
[9]. F. Gazzola and T. Weth. Remainder terms in a higher order Sobolev inequality. Arch. Math. (Basel), 95(4):381-388, 2010..
[10]. E. Indrei and D. Marcon. A quantitative log-Sobolev inequality for a two parameter family of functions. Int. Math. Res. Not., (20):5563-5580, 2014..
[11]. V. Ra- dulescu, D. Smets, M. Willem, Hardy-Sobolev inequalities with remainder terms, Topol. Meth. Nonlinear Anal. 20 (2002) 145-149..
[12]. A. Cianchi, N. Fusco, F. Maggi, and A. Pratelli. The sharp Sobolev inequality in quantitative form. Journal of the European Mathematical Society, 11(5):1105\{1139, 2009.
[13]. H. Brezis, E. Lieb, Sobolev inequalities with remainder terms, J. Funct. Anal. 62 (1985), 73-86.
[14]. Francesco Maggi and Cdric Villani. Balls have the worst best Sobolev inequalities. Journal of Geometric Analysis, 15(1):83\{121, 2005.

Sulima Ahmed Mohammed, et. al. "Series of Sobolev Inequalities with Remainder Terms." IOSR Journal of Mathematics (IOSR-JM), 18(1), (2022): pp. 47-54.

