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Factorization of some Polynomials over GF(q) / < p(x)> - 
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Abstract: Let Let F=GF(q) be a field of  q elements and f(x) = 

0

m
i

i

k

g x
=

 a monic polynomial of degree m over F . 

Let Q = Qi,j  be a square matrix over F in which ith row is represented by xq(i-1) reduced modulo f(x). Here we 

factorized polynomial of type xn - 1 with the help of Berlekamp’s algorithm over the finite field F.  Factorization 

of x10 + 1,  x20 + 1, x20 – 1 & x40 – 1 over GF(3) are obtained. 

Keywords:  Cyclotomic Coset, Monic Polynomial, Finite Field, Multiplicative Order. 

I. Introduction  

In the construction of finite fields, we were required to find certain irreducible factors of xn – 1 where 

n= pm – 1, p a prime. Let p be a prime, n a positive integer not divisible by p and q is a power of p. If F is a finite 

field then by [3], o(F) = pn. To obtain factorization  of xn-1 over GF(q) , we define cyclotomic classes and 

partition the set S={0,1,2,…,n-1} of integers  into cyclotomic classes modulo n over GF(q). Since g.c.d.(n,q)=1, 

there exist a smallest positive integer ‘m’ s.t.   qm ≡ 1 (mod m) [2]. This m is called multiplicative order of q 

modulo n. In S define a relation ‘~’ as follows. For a, b ∈ S, say that a ~ b if a ≡ bqi(mod n)  for some positive 

integer ‘i’. This relation is an equivalence relation. This relation partition S into equivalence classes. Each 

equivalence class is called q-cyclotomic class or coset mod n. The q-cyclotomic coset which contain s ∈ S will 

be Cs={s,qs,…,(qm
s -1}s}, where ms be the least positive integer such that s ≡ qm

s .s (mod n) [ 6]. Also we know 

that  xn-1= 

1
/

( )

d n

d

d n

x

 

 , where ( )d x  is the nth cyclotomic polynomials [7]. If Cs is the cyclotomic 

coset, (mod n) over GF(p), containing the integer s, then, by [6],  ( )
s

i

i C

x 


−  is the minimal polynomial of 

s  over GF(p). Observe that irreducible polynomials of degree n  over ( )GF p , help us in the construction 

of  finite field ( )nGF p . Construction of some finite field GF(33) & GF(34) over GF(3) are studied by Singh 

K.[4]. If xq - x =f(x).g(x), then every element in the field must be a root of f(x) or g(x). The case f(x) = x, g(x) = 

xq-1 - x separate the zero elements from the non zero elements. To separate the non zero elements according to 

their order , a factorization of the polynomial  xq-1- x is needed. Further, whenever a finite field of order pm is 

required then certainly we are in need of some prime polynomial of degree m over GF(p). The above facts 

basically highlight the utility of factor of polynomial xn-1. Then how to find out these factors , is the main 

problem. Factorization of x5 –1 over GF(2) and Factorization of x7 –1, x40 –1, x80 –1, over GF(3) are obtained by 

Singh K. [5] through cyclotomic cosets. 
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 The Berlikamp’s algorithm for the factorization of the polynomials f(x) over finite field is described in this 

paper.  The algorithm is then applied to factorize xn – 1 over GF(q). In the end of paper merits and demerits over 

the factorization by cyclotomic cosets and with the help of Berlikamp’s  algorithm are discussed. 

II. [1] Berlikamp’s Algorithm  (General Case)  for factorizing the polynomials 

Step. 1. Write given polynomial f(x) of degree m over GF(q). 

2. Write [Qij]m×m in which the ith row is represented by xq(i-1) reduced modulo f(x) i.e. xqi ≡ 
1

1, 1

0

mod ( )
m

k

I K

k

Q x f x
−

+ +

=

  ;  1  ≤ i ≤  m-1  

i.e.      xqi ≡(Qi+1,1.1+ Qi+1,2.x + Qi+1,3.x2+…+ Qi+1,m.xm-1)mod f(x) 

i.e.        1 ≡(Q11+ Q12x + Q13x2+…+ Q1mxm-1)mod f(x) 

             xq ≡(Q21+ Q22x + Q23x2+…+ Q2mxm-1)mod f(x) 

            x2q ≡(Q31+ Q32x + Q33x2+…+ Q3mxm-1)mod f(x) 

                  : 

     xq(m-1) ≡(Qm1+ Qm2x + Q33x2+…+ Qmmxm-1)mod f(x) 

Then, 

                         

11 12 1

21 22 2

1 2

...

...

: : ... :

...

m

m

m m mm

Q Q Q

Q Q Q
Q

Q Q Q

 
 
 =
 
 
 

 

3. Take g(x)= 

1

0

m
i

i

k

g x
−

=

 , any general polynomial of degree m-1. 

Find g0, g1, g2,  …   gm-1  s.t. (g0, g1, g2,  ….  gm-1)(Q-I)= O 

4. Find . . .( ( ), ( ) ) 0
s F

g c d f x g x s


− =  ,  which will be factorization of f(x). 

Example. 2.1. Let f(x) = 1+x + x2 + x6 +x7+x8+x12  

i.e. f(x) = 111 000 111 0001 

Here F= {0,1}= GF(2) 

For matrix  Q12×12  we need x2(i-1) ≡ ( - ) (mod f(x)) ; 1  ≤ i ≤  12  

i.e.    1  ≡ 1 (mod f(x)),      x2  ≡ x2   (mod f(x)),       x4  ≡ x4   (mod f(x)),…, 

 x20  ≡ (1+ x+ x4 + x7 +x8 +x9 )   (mod f(x)), 

x22  ≡ ( x2+ x3 + x6 +x9 +x10 +x11 )   (mod f(x)) 

We can write 

1  = 100000000000,          x   = 010000000000,               x2  = 001000000000 

x4  = 000010000000,       x6  = 000000100000,               x8  = 000000001000 

x10  = 000000000010,     x12  = 111000111000,             x14  = 001110001110 

x16  = 111011011011,     x18  = 101010010010,            x20  = 110010011100 

x22  = 001100100111 
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Hence, 

 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 1 1 1 0 0 0

0 0 1 1 1 0 0 0 1 1 1 0

1 1 1 0 1 1 0 1 1 0 1 1

1 0 1 0 1 0 0 1 0 0 1 0

1 1 0 0 1 0 0 1 1 1 0 0

0 0 1 1 0 0 1 0 0 1 1 1

Q Q I

 
 
 
 
 
 
 
 
 

= − =
 
 
 
 
 
 
 
 
  

0 1 1 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0

1 1 1 0 0 0 0 1 1 0 0 0

0 0 1 1 1 0 0 1 1 1 1 0

1 1 1 0 1 1 0 1 0 0 1 1

1 0 1 0 1 0 0 1 0 1 1 0

1 1 0 0 1 0 0 1 1 1 1 0

0 0 1 1 0 0 1 0 0 1 1 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

Operate C7 → C7 +C4  ;  C9 → C2 +C3 + C5 +C9 ; C11 → C11 +C6  on Q I− , we obtain,   

 

0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

1 1 1 0 0 0 0 1 1 0 0 0

0 0 1 1 1 0 1 1 1 1 1 0

1 1 1 0 1 1 0 1 1 0 0 1

1 0 1 0 1 0 0 1 0 1 1 0

1 1 0 0 1 0 0 1 1 1 1 0

0 0 1 1 0 0 0 0 1 1 1 0

Q I

 
 
 
 
 
 
 
 
 

− =
 
 
 
 
 
 
 
 
  

 

 

Now let, g(x) = g0 + g1x + g2x2 +...+ g11x11 be a polynomial of degree 11 

To find coefficient of polynomial g(x), we have  
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0 , 1 2, 11

0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0
, ..., .

1 1 1 0 0 0 0 1 1 0 0 0

0 0 1 1 1 0 1 1 1 1 1 0

1 1 1 0 1 1 0 1 1 0 0 1

1 0 1 0 1 0 0 1 0 1 1 0

1 1 0 0 1 0 0 1 1 1 1 0

0 0 1 1 0 0 0 0 1 1 1 0

g g g g

 
 
 
 
 
 
 
 
     
 
 
 
 
 


 

O=





 

 

Which gives, g2 = g5 = g7 = g8 = g10 = 0  and g1 = g9 = g11  ;  g3 = g4 = g6  

Hence,  g(x) = g0 + g1x +  g3x3 + g4x4 + g6x6 + g9x9 + g11x11 

i.e. g(x) = B + Ax +  Ax3 + Ax4 + Ax6 + Ax9 + Ax11  ; where A,B ∈ GF(2) . 

 Take A=1 and B is arbitrary. Now we shall find the g.c.d. of (f(x), g(x)) and (f(x), g(x)-I), we have  

(f(x), g(x)) = 10011101 and (f(x), g(x)-I) = 111101. Hence, 

 f(x) = (100111010)( 111101) = (1+ x3 + x4 +x5+x7 )( 1+x + x2 + x3+x5 )  

 

Example 2.2   Let  f(x) = x5 + 1 over GF(3) 

The successive power of x needed for Q- matrix obtained by taking x3(i-1) modulo f(x) for 1  ≤ i ≤  5  are 1, x3, x6, 

x9, x12 

Hence 

1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 1 0

0 1 0 0 1 0 1 1 0 1

0 0 0 0 1 0 0 0 1 1

0 0 1 0 0 0 0 1 0 1

Q Q I

   
   

−
   
   = − − = − −
   

− − −   
   −   

 

 

Now let, g(x) = g0 + g1x + g2x2 + g3x3+ g4x4  s.t. (g0 , g1 , g2 , g3 , g4 )(Q - I) = O  , we obtain g1 = - g2 = g3 = - g4  

and g0 is any arbitrary element of GF(3). Take g0 = g1=g3 = 1 & g2 = g4 = - 1. Now find out g.c.d. (f(x) , g(x)-

s )  ;   s ∈ GF(3) 

For  s = 0,    (f(x) , g(x)-s ) = x- 2  

        s = 1,    (f(x) , g(x)-s ) = 1   

        s = 2,   (f(x) , g(x)-s )  =  x4 + 2x3 + x2 + 2x + 1 

   x5 + 1 = (x+1)(x4 + 2x3 + x2 + 2x + 1) 
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Example 2.3 Let  f(x) = x10 + 1 over GF(3) 

The successive power of x needed for Q- matrix obtained by taking x3(i-1) modulo f(x) for 1  ≤ i ≤  10  are 1, x3, 

x6, x9, x15, x18, x21, x24,  x27 

 

1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

Q

 
 
 
 
 
 
 −

=  
− 

 −
 
 
 
 
  

 

 

0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 1

0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 1 0 1 0

0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 1

Q I

 
 

−
 
 −
 

− 
 − −

− =  
− 

 − −
 

− 
 −
 
 − 

 

Let g(x)= 

9

0

i

i

k

g x
=

    s.t. (g0, g1, g2, …,g8, g9 )(Q - I) = O  i.e.  

g1 = g3 = g7 ; g2 = -g4 = g6= -g8 = g9 and g5=0. Taking  

g0 =  g1 = g3 = g7 = g6= g2 = g9 = 1 ; g4 = g8 = -1 and g5 = 0 

  g(x) = 1+x +x2 +x3 – x4 +x6 +x7 – x8 +x9 

Now find out g.c.d. (f(x) , g(x)-s )  ;   s ∈ GF(3) 

For  s = 0,    (f(x) , g(x)-s ) = x6 + 2x5 + x4 + x2 +x + 1  

        s = 1,    (f(x) , g(x)-s ) = x4 + x3 – x + 1   

        s = 2,   (f(x) , g(x)-s )  = 1 

   x10 + 1 = (x6 + 2x5 + x4 + x2 + x + 1) (x4 + x3 – x + 1  ) 

Example 2.4.   Let  f(x) = x20 + 1 over GF(3) 
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The successive power of x needed for Q- matrix obtained by taking x3(i-1) modulo f(x) for 1  ≤ i ≤  20  are 1, x3, 

x6, x9, x12, x15, x18, x21, x24,  x27, x30, x33, x36, x39,  x42, x43, x48, x51,  x54, x57 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
Q

−

−

−
=

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

−

−

−

−

0 0 0 0 0 0 1 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0
Q I

−

−

−

−

−

−

− −

− − −

− =
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0

− −

−

− −

− −

− −

−

−

−

−

0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −
 

− 

Let g(x)= 

19

0

i

i

k

g x
=

    s.t. (g0, g1, g2, …,g18, g19 )(Q - I) = O i.e.  

   g1 = g3 = - g7 = g9  ; g2 = g14 = g6= -g18  ;  g4 = - g8 = - g12 = - g16  ; g11 = - g13 = g17= -g19   ; g5 = g15  and   g10 = 0. 

Taking  

g0 = g1 = g2 = g3 = g4= g5 = g6 = g9= g10 = g11 = g12 = g14 = g15 = g17 = g18 = g19 = 1 ; g7 = g8 = g13 = g16 =  -1 and g10 

= 0 

  g(x) = 1+x +x2 +x3 + x4 + x5 +x6 - x7 – x8 +x9 + x11 +x12 – x13 + x14 +x15 – x16 + x17 +x18 + +x19 

Now find out g.c.d. (f(x) , g(x)-s )  ;   s ∈ GF(3) 

For  s = 0,    (f(x) , g(x) -s ) = x8 – x7 + x6 – x4- x3 +x2 +1 

        s = 1,    (f(x) , g(x) -s ) = x4 + x2 – x + 1   

        s = 2,   (f(x) , g(x) -s )  = x8 + x7 - x6 – x5 + x4 - x3 +x +1 

Hence, 

x20 + 1 = (x8 –x7 + x6 –x4- x3 +x2+1)( x4 + x2 – x + 1 )( x8 + x7 - x6 – x5 + x4 - x3 +x +1) 

 

III. [1]Berlikamp’s Algorithm  (Special Case)  for factorizing the polynomials xn-1 over GF(q) 

Step. 1. Write given polynomial f(x) = xn -1 

2.Write down all cyclotomic classes over mod n and count the number of classes , let these be m. 

3. In this step we find out polynomial g(x) which will be g(x)= a1 + a2 + [(x)first element of second class + (x)second element of 

second class +…] +a3 [… ] + a4 [… ] +… where ai ∈ GF(q). 

4. Find g.c.d. (f(x), g(x)) by taking different value of a1, a2, a3,…  
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5. xn-1 = . . .( ( ), ( ))g c d f x g x  

Example. 3.1 Let f(x) = x3-1 over GF(2) 

The 2-cyclotomic cosets mod 3 are  

                                            C0={0},   C1={1,2} 

Therefore, x3-1 factors as a product of x-1and one irreducible factor of degree 2. The factor of x3-1 are among 

the H.C.F. of x3-1 with a+b(x+x2) ; a,b ∈ GF(2). 

Take a=b=1 in above and then apply Euclid’ s algorithm, we obtain 

(x3-1)÷ (1+x+x2) = x-1 

Hence,  

(x3-1)= (1+x+x2) (x+1) 

 

Example.3.2  Let f(x) = x5-1 over GF(3) 

The 3-cyclotomic cosets mod 5 are C0={0}, C1={1,3,4,2} 

Therefore, x5-1 factors as a product of x-1and one irreducible factor of degree 4. The factor of x5-1 are among 

the H.C.F. of x5-1 with a+b(x+x2+x3+x4 ); a,b ∈ GF(3). 

Take a=b=1 in above and then apply Euclid’ s algorithm, we obtain 

(x5-1)÷ (1+x+x3+x4) = x-1 

Hence,  

(x5 - 1)= (1+ x - 2x2 + x3 + x4) (x - 1) 

 

Example. 3.3.  Let f(x) = x7-1 over GF(2) 

The 3-cyclotomic cosets mod 7 are C0={0}, C1={1,2,4},  C3=3,6,5} 

Therefore, x7-1 factors as a product of x-1and two irreducible factor of degree 3. The factor of x7-1 are among 

the H.C.F. of x7-1 with a+b(x+x2+x4 ) + c(x3+x5+x6 ); a,b ∈ GF(2). 

Take a=b=1, c=0 in above and then apply Euclid’ s algorithm, we obtain 

(x7-1)÷ (1+x+x2+x4) = x3 - x- 1 

  g.c.d.( x7-1 ,  1+x+x2+x4 ) = 1+x+x2+x4 

But we know that x7 - 1 has two irreducible factor of degree 3 each.  

1+x+x2+x4 will be reducible and one factor will be x-1 , other factor will be found by actual division i.e, 

(1+x+x2+x4) ÷ (x – 1) = x3 +x2+1 

Hence,  

(x7 - 1)=  (x3 +x2+1) (x3 – x - 1) (x - 1) 

 

Example. 3.4. Let f(x) = x10 - 1 over GF(3) 

Here f(x) = x10 - 1  = (x5 – 1) (x5 + 1) 

Note that as in above Example 3.2  

(x5 - 1)= (1+ x - 2x2 + x3 + x4) (x - 1) 
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and by Example 2.2 

(x5 + 1)= (x - 2) (x4 + 2x3 + x2 +2x+1)  

  x10 – 1 = (x - 1) (x - 2) (1 +2x + x2 + 2x3 + x4 ) (1+ x +x2 + x3 + x4) 

 

Example. 3.5 Let f(x) = x20 - 1 over GF(3) 

Now  x20 - 1  = (x10 – 1) (x10 + 1) 

Note that as in  above Example 3.4 

x10 – 1 = (x - 1) (x - 2) (1 +2x + x2 + 2x3 + x4 ) (1+ x +x2 + x3 + x4  ) 

and by Example 2.3 

   (x10 + 1)= (1 -x + x3 + x4 ) (1+ x +x2 + x4 + 2x5 + x6 ) 

  x20 – 1 = (x - 1) (x - 2) (1 +2x + x2 + 2x3 + x4 ) (1+ x +x2 + x3 + x4  ) 

                         (1 -x + x3 + x4 ) (1+ x +x2 + x4 + 2x5 + x6 ) 

Example. 3.6 Let f(x) = x40 - 1 over GF(3) 

Now  x40 - 1  = (x20 – 1) (x20 + 1) 

Note that as in  above Example 3.5   

x20 – 1 = (x - 1) (x - 2) (1 +2x + x2 + 2x3 + x4 ) (1+ x +x2 + x3 + x4  ) 

                         (1 -x + x3 + x4 ) (1+ x +x2 + x4 + 2x5 + x6 ) 

and by Example 2.4  

(x20 + 1)= (1 + x2 – x3 – x4 + x6 – x7 + x8) (1- x +x2 + x4  ) (1+ x -x2 – x3 + x4 -x5- x6 + x7 + x8) 

  x40 – 1 = (x - 1) (x - 2) (1 +2x + x2 + 2x3 + x4 ) (1+ x +x2 + x3 + x4  ) 

                      (1 -x + x3 + x4 ) (1+ x +x2 + x4 + 2x5 + x6 )(1 + x2 – x3 – x4 +  x6    – x7 + x8) (1- x +x2 + x4  ) (1+ x -x2 

– x3 + x4 -x5- x6 + x7 + x8) 

Also we have  

x6+2x5+x4+x2+x+1= (x2+1) (x4-x3+x+1) 

x8 – x7+x6- x4 – x3+x2 +1=  (x4-x3+x2+1) (x2-x+1) (x2+x-1) 

x8 + x7 - x6 - x5 + x4- x3 - x2 +x+1=  (x4+x3+x2+1) (x4+ x2+x+1) 

Hence  

x40 - 1  = (x - 1) (x - 2) (1 +2x + x2 + 2x3 + x4 ) (1+ x +x2 + x3 + x4  ) 

                         (1 -x + x3 + x4 ) (1- x +x2 + x4  ) (x2+1) (x4-x3+x+1) (x4-                           x3+x2+1) (x2-x+1) (x2+x-

1) (x4+x3+x2+1) (x4+ x2+x+1) 

 

IV. Comparison between the two methods( i.e. factorization through  cyclotomic coset and factorization 

with the help of Berlikamp’s algorithm) :- 

 

Method I : (Factorization Through Cyclotomic Cosets) 

(i) This method is useful for finding the irreducible factors of the polynomial xn – 1 over GF(q) where 

(n, q) = 1. 

(ii) For large ‘n’  the number of cyclotomic cosets may be large. 
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(iii) If ‘m’ the multiplicative order of q mod n, is large then some times it is difficult to find a  

irreducible polynomial of degree m. 

(iv) For large q it is difficult to find primitive element of GF(q). 

(v) If the size of a cyclotomic cosets is large, then to find corresponding minimal polynomial is 

difficult. 

(vi) For large ‘n’ it is again difficult to find primitive nth root of unity. 

(vii) The number of cyclotomic cosets and their size respectively gives information regarding the 

number of  irreducible factors of xn – 1 and their degree. 

Basically this method is very appropriate for factorizing xn – 1 for small ‘n’ over GF(q), where ‘m’ 

is also small. 

Method II : (Factorization Through Berlikamp,s Algorithm) 

(i) This method is helpful for finding the factors of a general polynomial of degree m over GF(q). 

(ii) For large m, the Q-matrix becomes very large. 

(iii) In general case, to find the coefficient of the polynomial g(x) s.t.       g(x).[Q – I ] = O is laborious. 

(iv) If q is large, then it is difficult to find g.c.d.(f(x), g(x) – s), where s ∈ GF(q). 

(v) The factor of f(x) may not be irreducible. 

(vi) In general case, we have many choice for the coefficient of g(x). We can choose those coefficient 

which reduces the calculation work. 

(vii) In special case , if ‘n’ is large then the number of cyclotomic cosets may be large. 

(viii) In special case, if number of cyclotomic cosets is large or the size of the cyclotomic coset is large, 

then to find g(x) is  difficult. 

 

V. Conclusion 

Thus from above discussion , it is clear that every case has its oven merit and demerits but one thing 

which is basically true is that both cases are good for small value of the parameter i.e. the degree of the 

polynomial , size of the field  and  the multiplicative order’ .The case I gives us the factorization of xn – 1 into 

its irreducible factors but in case II we factorize a general polynomial of degree ‘n’ whereas its factors may not 

be irreducible.  
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