On Epi α -Regular Spaces

NADIA GHEITH¹ and ALAMIN ABUSBAIHA²

¹Mathematics Department/University of Gharyan, Gharyan, Libya

²Mathematics Department/University of Gharyan, Mezda, Libya

Abstract: A topological space (X, τ) is said to be epi α -regular if a coarser topology τ' on X exists such that (X, τ') is T_1 , α -regular. In this article we introduce and implement this property and give some examples to show the relationships between epi α -regular, epiregular, epinormal, submetrizable semiregular and Almost α -normal (almost β -normal).

Keywords: Epiregular, Epi α -regular, Epinormal, Semiregular, Submetrizable, and Almost α -normal (almost β -normal).

Mathematics Subject Classification: 54D15 – 54B10.

Date of Submission: 30-05-2021 Date of Acceptance: 13-06-2021

I. Introduction

A topological space (X, τ) is said to be epiregular [4] if a coarser topology τ on X exists such that (X, τ') is T_1 , regular. A topological space (X, τ) is said to be α -regular [10], [30] if for every closed subset F of X and $x \in X$ such that $x \notin F$ there exist disjoint open sets U and V such that $x \in U$ and $V \cap F$ is dense in F. We use these definitions to introduce another new topological property as a simultaneous generalization called *epi* α -regularity. The intent of this article is to implement this property. We show the relationship between epi α -regular space, α -normal, α -regular, epinormal, epiregular, semiregular and Almost α -normal (almost β -normal) spaces. Also we show that every epi α -regular space is Hausdorff. We prove that submetrizability or T_1 , α -regularity imply epi α -regularity but the converse is not correct in general. We give some examples to show that epi α -regularity, α -regularity and semiregularity are not necessarily related.

II. Epi α -Regularity

Definition 1.1. A topological space (X, τ) is said to be epi α -regular if a coarser topology τ' on X exists such that (X, τ') is T_1, α -regular.

Note that if we necessarily let (X, τ') to be just α -regular in the above definition, then any space will be epi α -regular since the indiscrete topology will satisfy the property.

Observe that if for any topological space (X, τ') which is $T_i, i \in \{0, 1, 2\}$ then any larger topology τ on X so is, and since every α -regular T_1 is Hausdorff [10], [30], then we can conclude the following.

Theorem **1.2.** Every epi α -regular space is Hausdorff.

We note that if X is not T_i , where $i \in \{0,1,2\}$, then X is not epi α regular. For example, Sierpinski space and The closed extension topology see [9], are not Hausdorff, then they cannot be epi α -regular. Since every regular space is α -regular, then the next theorem is true.

Theorem **1.3.** Every epiregular space is epi α -regular.

The opposite direction of the above statement is not always true, but we still have the following correct.

Theorem 1.4. If (X, τ) is an epi α -regular space, and the witnesses of epi α -regularity (X, τ') is first countable, then (X, τ) is epiregular.

Before proofing the above theorem, we need the following proposition which is proved by a similar argument found in [29].

Proposition 1.5. [30] Every first countable α -regular Hausdorff space is regular.

Proof. Using a contradiction, we suppose that X is a first countable, Hausdorff and non regular space. Then there is an $x \in X$ and a closed subset A of X such that $x \notin A$ where there are no disjoint open sets that separate them.

Let $\{U_n : n \in \omega\}$ be an open base in x such that $U_{n+1} \subset U_n$ for all $n \in \omega$. Let $H = \{x_n : x_n \in \overline{U_n} \cap A, n \in \omega\}$. Note that x_n was chosen inductively and because the space X is Hausdorff, we can also suppose at each step of the induction that $x_n \notin \overline{U_{n+1}}$, it follows that $x_n \in \overline{U_m}$ if and only if $m \leq n$. The set *H* is closed. Indeed, if $y \notin \overline{H^{\circ}}$, then $X \setminus (\overline{U_n} \cap A)$ is an open set containing *y* and not intersecting $\overline{H^{\circ}}$ which implies that $X \setminus (\overline{U_n} \cap A)$ is a neighborhood open set containing *y* and not intersecting *H*. Therefore $y \notin H$. Note that $x \notin H$. Since *x* and *H* can not be separated, so *X* is not an α -regular space.

Proof of theorem (1.4): It is straightforward by proposition 1.5 and theorem 1.3.■

Theorem 1.6. If (X, τ) is an epi α -regular space, and the witnesses of epi α -regularity (X, τ') is first countable, then (X, τ) is completely Hausdorff.

Proof. Let (X, τ) be any epi α -regular space, and let x, y be any distinct points in X, then one can find a coarser topology τ' on X such that (X, τ') is T_1, α -regular, and then (X, τ') is Hausdorff [10]. It follows that there exist two disjoint open sets $G, H \in \tau'$ such that $x \in G, y \in H$. Now since (X, τ') is first countable then by proposition 1.5 (X, τ') is regular, so there exist $U, V \in \tau'$ such that $x \in U \subseteq \overline{U}^{\tau'} \subseteq G$ and $y \in V \subseteq \overline{V}^{\tau'} \subseteq H$, where $\overline{U}^{\tau'} = \{x \in X : W \cap U \neq \emptyset, \forall \text{ open } W \text{ in } \tau', x \in W\}$ similarly $\overline{V}^{\tau'}$. Since $\overline{A}^{\tau} \subseteq \overline{A}^{\tau'}$, for any $A \subseteq X$, this implies That $\overline{U}^{\tau} \subseteq \overline{U}^{\tau'} \cap \overline{V}^{\tau'} = 0$. Thus (X, τ) is completely Hansdorff.

Thus any space (X, τ) which is not completely Hausdorff, such that any coarser topology of it is T_2 first countable, cannot be epi α -regular.

Since any β -normal or α -normal [26] satisfying T_1 axiom is α -regular [30], [10], then we end to the following theorem

Theorem 1.7. Every epi *β* -normal (epi *α* -normal) space is epi *α* -regular.

As every second countable T_3 space is metrizable, [[8],4.2.9], and since every second countable is first countable then by proposition 1.5 we have the following corollary.

Corollary 1.8. If (X, τ) is epi α -regular and the witness of epi α -regularity (X, τ') is second countable, then (X, τ) is submetrizable.

Note that corollary 1.8 is not correct in general. For example, the Tychonoft Plank $((\omega_1 + 1) \times (\omega_0 + 1)) \setminus \{(\omega_1, \omega_0)\}$ is Tychonoff being Hausdorff locally compact, and hence it is epi α -regular, but it is not submetrizable, because if it was, then $(\omega_1 + 1) \times \{0\} \subseteq ((\omega_1 + 1) \times (\omega_0 + 1)) \setminus \{(\omega_1, \omega_0)\}$ is submetrizable, because submetrizablity is hereditary, but $(\omega_1 + 1) \times \{0\} \cong \omega_1 + 1$ and $\omega_1 + 1$ is not submetrizable.

It is well known that T_2 paracompact space is T_4 , then we have the following result proved. **Corollary 1.9.** If (X, τ) is epi α -regular and the witness of epi α -regularity (X, τ') is paracompact, then (X, τ) is T_4 .

Also, we remind that any T_2 compact space is T_4 , and we conclude.

Corollary **1.10**. Any epi α -regular compact space is T_4 .

A Hausdorff space X is said to be *H*-closed if X is a closed subspace of every Hausdorff space in which it is contained [[8],3.12.5]. Since a regular space is *H* -closed if and only if it is compact [[8],3.12.5]. Then we can prove a similar argument for epi α -regularity.

Corollary 1.11. If (X, τ) is epi α -regular compact space, then the witness of epi α -regularity (X, τ') is *H*-closed.

Theorem 1.12. If (X, τ) is an epi α -regular space, then for every compact subset F of X and every $x \in X$ such that $x \notin F$, there exist disjoint open sets U, W such that $\overline{F \cap U} = F$ and $x \in W$.

Proof. Let (X, τ) be an epi α -regular space, then a coarser topology τ' on X exists such that (X, τ') is α -

regular, T_1 . Let F be any compact set in (X, τ) and let $x \notin F$, hence F is closed in (X, τ') and $x \notin F$, by α -

regularity of (X, τ') , there exist $U, W \in \tau'$ such that $F \cap U = F, x \in W$ and $U \cap W = \emptyset$.

Corollary 1.13. If *F* and *E* disjoint compact sets in an epi α -regular space *X*, then there exist disjoint open sets *U* and *W* such that $\overline{F \cap U} = F, \overline{E \cap W} = E$.

Proof. Let (X, τ) be an epi α -regular space, then there exists a coarser topology τ' on X such that (X, τ') is α -regular, T_1 . Let F, E be any disjoint compact subsets of (X, τ) , hence they are disjoint compact subsets of (X, τ') and by theorem 1.12 for each $a \in F$ and compact set E, there exist open sets U_a, W_a such that $a \in U_a, \overline{E \cap W_a} = E$ and $U_a \cap W_a = \emptyset$. Now consider F is an arbitrary compact set disjoint from E. For each a in F, by theorem 1.12 gives disjoint open sets U_{a_i} containing a and $\overline{E \cap W_{a_i}} = E$ and $U_{a_i} \cap W_{a_i} = 0$. The family $\{U_{a_i}: i \in I\}$ is an open cover of F, since F is compact, there is a finite subfamily $\{U_{a_1}, \dots, U_{a_n}\}$ which covers F and the corresponding $\{\overline{W_{a_1}}, \dots, \overline{W_{a_n}}\}$ is a closed cover of E. So that $U = \bigcup_{i=1}^n U_{a_i}$ is an open set containing F and disjoint from $W = \bigcap_{i=1}^n W_{a_i}$ which is an open set. such that $\overline{F \cap U} = F, \overline{E \cap W} = E$. Indeed, it is obvious that $\overline{E \cap W} \subseteq E$. On the other hand, let $x \in E$, and G is an open set containing x, we need to show $G \cap E \cap W \neq 0$. Let $G \cap E \cap W = 0$, then there is $1 \leq j \leq n$ such that $G \cap E \cap W_{a_j} = 0$, since G is open then $x \notin \overline{E \cap W_{a_j}}$ which is a contradiction. Therefore $G \cap E \cap W \neq 0$ which implies that $x \in \overline{E \cap W}$. Hence $\overline{E \cap W} = E$, and we are done.

III. Properties of Epi α -Regularity

Theorem 2.1. [10] Let X be an α -regular space, $f: X \to Y$ is an onto, continuous, open, and closed function. Then Y is α -regular.

Proof. Let X be an α -regular space, A be a closed subset of Y and $y \in Y$ such that $y \notin A$. Then $f^{-1}(A)$ is a closed subset of X and there exists $x \in X$ such that f(x) = y and $x \notin f^{-1}(A)$. Since X is an α -regular space, there exist disjoint open subsets G and H of X such that $x \in H$ and $f^{-1}(A) \cap G = f^{-1}(A)$, and so $x \notin \overline{G}$. Since $x \notin \overline{G}$, then $y \notin f(\overline{G})$. It is clear that $f(\overline{G})$ is a closed set containing the open set $f(G), \overline{f(G)} \subseteq f(\overline{G})$. Thus $y \notin \overline{f(G)}$ which implies $y \in f(H)$ and $f(G) \cap f(H) = 0$. Now it is sufficient to show that $\overline{A \cap f(G)} = A$. Let $z \in A$ and W is an open set containing z, then $f^{-1}(z) \subseteq f^{-1}(A) \cap f^{-1}(W)$. Since $\overline{f^{-1}(A) \cap G} = f^{-1}(A), f^{-1}(A) \cap G \cap f^{-1}(W) \neq \emptyset$. Hence by surjectivity of $f, A \cap f(G) \cap W = f(f^{-1}(A)) \cap f(G) \cap f(f^{-1}(W)) \supseteq f(f^{-1}(A) \cap G \cap f^{-1}(W)) \neq 0$ as required.

Corollary 2.2. Let (X, τ) be an epi α -regular space, $f: (X, \tau) \to (Y, S)$ is an onto, continuous, open, and closed function. Then Y is epi α -regular.

Proof. Let (X, τ) be any epi α -regular space, let τ' be a coarser topology on X such that (X, τ') is α -regular, T_1 . Since $f: X \to Y$ is an onto, continuous, open, and closed function then by theorem 2.13 (Y, S'), where $S' = \{f\{U\}: U \in \tau'\}$, is α -regular, and it is obviously T_1 . Hence (Y, S) is epi α -regular.

Corollary **2.3**. Epi α -regularity is a topological property.

The proof of the following theorem is due to Murtinová.

Theorem 2.4. [30], [10] Every subspace of an α -regular space is α -regular.

Proof. Let X be an α -regular space and A is a subspace $X, y \in A$ and $y \notin F \subset A, \overline{F} \cap A = F$ where \overline{F} refers to the closure of F in X. Then $y \notin \overline{F}$ and X is α -regular, hence there are disjoint open sets U, V in X such that $y \in U$ and $\overline{F \cap V} = F$. The sets $U \cap A$ and $V \cap A$ are the sets witnessing α -regularity of A. Indeed, they are disjoint, open in A, $y \in U \cap A$. It remains to show that $F \cap V(\cap A)$ is dense in F in the space A. The A-closure of $F \cap V$ is $\overline{F \cap V} \cap A \subset \overline{F} \cap A = F$. On the other hand, let $x \in F$, W is an open subset in $X, x \in W$. We have to prove that $W \cap F \cap V \neq \emptyset$. Suppose for contradiction that $W \cap F \cap V = \emptyset$. Since $W \cap V$ is open, $W \cap \overline{F} \cap V = \emptyset$ as well. And since W is open, $\emptyset = W \cap \overline{F} \cap V = W \cap \overline{F}$. But $x \in W \cap \overline{F}$ which is a contradiction. **Corollary 2.5.** Epi α -regularity is a hereditary property.

Proof. Let (X, τ) be an epi α -regular space and let (A, τ_A) be a subspace of (X, τ) . Let τ' be a coarser topology on X such that (X, τ') is α -regular, T_1 . The subspace (A, τ'_A) is α -regular, T_1 as α -regular [30], [10], T_1 is hereditary 2.5, and $\tau'_A \subseteq \tau_A$, therefore (A, τ_A) is epi α -regular.

Theorem 2.6. α -regularity are additive properties.

Proof. Let $\{X_{\alpha}\}_{\alpha \in A}$ be a family of α -regular spaces, and A be a closed subset of the sum $\bigoplus_{\alpha \in \Lambda} X_{\alpha}, x \in \bigoplus_{\alpha \in \Lambda} X_{\alpha}$ such that $x \notin A$. By proposition 2.2.1 in[8] the intersections $A \cap X_{\alpha}$ is closed in X_{α} for every $\alpha \in \Lambda$ and $x \notin A \cap X_{\alpha}$ From α -regularity of X_{α} it follows that there are two open sets U_{α} and V_{α} in X_{α} and such that

 $\overline{A \cap X_{\alpha} \cap U_{\alpha}} = A \cap X_{\alpha}, x \in V_{\alpha}$

and

$$\overline{U \cap A} = \emptyset$$

Let
$$U = \bigcup_{\alpha \in \Lambda} U_{\alpha}$$
 and $V = \bigcup_{\alpha \in \Lambda} V_{\alpha}$, then clearly

 $\overline{A \cap U} = \overline{U_{\alpha \in \Lambda}(A \cup U_{\alpha})} = \bigcup_{\alpha \in \Lambda} \overline{A} = \overline{A} = A, x \in V$

 $U \cap V = \cup_{\alpha \in \Lambda} U_{\alpha} \cap \bigcup_{\alpha \in \Lambda} V_{\alpha} = \bigcup_{\alpha \in \Lambda} (U_{\alpha} \cap V_{\alpha}) = 0$

Since *U* and *V* are open in $\bigoplus_{\alpha \in \Lambda} X_{\dot{\alpha}}$, the sum $\bigoplus_{\alpha \in \Lambda} X_{\alpha}$ is α -regular.

Theorem **2.7**. Epi α -regularity is an additive property.

Proof. Let $(X_{\alpha}, \tau_{\alpha})$ be an epi α -regular space for each $\alpha \in \Lambda$ For each $\alpha \in \Lambda$, let τ'_{α} be a topology on X_{α} coarser than τ_{α} such that $(X_{\alpha}, \tau'_{\alpha})$ is α -regular, T_1 . since T_1 is additive see [[8],2.2.7] and α -regularity is also additive by theorem 2.6. Then $\bigoplus_{\alpha \in \Lambda} (X_{\alpha}, \tau'_{\alpha})$ is α -regular, T_1 , and its topology is coarser than the topology on $\bigoplus_{\alpha \in \Lambda} (X_{\alpha}, \tau_{\alpha})$.

Theorem 2.8. Let $\{(X_{\alpha}, \tau_{\alpha}): \alpha \in \Lambda\}$ be a family of epi-regular spaces, and let $X = \prod_{\alpha \in \Lambda} X_{\alpha}$. Then (X, τ) is epi α -regular, where τ is the Tychonoff product topology, if only if $(X_{\alpha}, \tau_{\alpha})$ is epi α -regular for each $\alpha \in \Lambda$.

Proof. Let (X, τ) be an epi α -regular space, and let $\beta \in \Lambda$, by Theorem 2.5, every subspace of (X, τ) is epi α - regular. By [[31],2.39], there is a subspace of (X, τ) that is homeomorphic to X_{β} . since epi α -regularity is a topological property then $(X_{\beta}, \tau_{\beta})$ is epi α -regular.

Now let $(X_{\alpha}, \tau_{\alpha})$ be epiregular, epi α -regular space for each $\alpha \in \Lambda$. For each $\alpha \in \Lambda$, let τ'_{α} be a topology on X_{α} , coarser than τ_{α} such that $(X_{\alpha}, \tau'_{\alpha})$ is T_3 . since T_3 is multiplicative [[8],2.3.11]. Then $\prod_{\alpha \in \Lambda} X_{\alpha}$ is T_3 with respect of the product topology of τ''_{α} 's, which implies that $\prod_{\alpha \in \Lambda} X_{\alpha}$ is α -regular T_1 with respect of the product topology of τ''_{α} 's and its topology is coarser than the topology on $\prod_{\alpha \in \Lambda} (X_{\alpha}, \tau_{\alpha})$.

Let \mathbb{R} be the real line. Let \mathbb{P} be the set of all irrational numbers and \mathbb{Q} be the rational numbers. Let U be the usual topology of the real line \mathbb{R} . The real line with the topology generated by $\mathcal{B} = \{(x - \varepsilon, x + \varepsilon) : x \in \mathbb{Q}\} \cup \{\{x\}: x \in \mathbb{P}\}$ is called the *Michael line* and is denoted by M. And $M \times P$, where \mathbb{P} has the usual topology, is called the *Michael product* [8]. As the Michael line is α -regular, T_1 , hence we have the following corollary. *Corollary* 2.9. The Michael line is φ -regular space.

The space $\mathbb{M} \times \mathbb{P}$ is α -regular, T_1 space being product of two (regular) α regular, T_1 spaces, so we have the following theorem.

Theorem 2.10. The Michael product is an epi α -regular space.

Note that epiregularity is invariant under products, however, this is not the case for α -regularity as Murtinová in [30] proved that α -regularity is not preserved under products. Regarding Murtinová result in [30], the following theorem proves that epi α -regularity is not preserved by products and at the same time we construct a non epi α -regular space from a non epiregular space.

Theorem 2.11. Let $A(\kappa)$ is the one-point compactification of a discrete set of cardinality κ . Then for every non-epiregular T_1 space X there is $\kappa \leq \chi(X)$ such that $X \times A(\kappa)$ is not epi α -regular.

Proof. By a similar argument used in theorem [7] in [30].■

It follows that product of an epi α -regular space and a compact zero dimensional space may fail to be epi α -regular. In particular it means that epi α -regularity is not preserved by products.

There are many ways of producing a new topological space from an old one. In 1929, Alexandroff introduced his method by constructing the Double Circumference Space [1]. In 1968, R. Engelking generalized this construction to an arbitrary space as follows: Let X be any topological space. Let $X' = X \times \{1\}$. Note that $X \cap X' = \emptyset$. Let $A(X) = X \cup X'$. For simplicity, for an element $x \in X$, we will denote the element (x, 1) in X' by x' and for a subset $B \subseteq X$ let $B' = \{x' : x \in B\} = B \times \{1\} \subseteq X'$. For each $x' \in X'$, let $\mathcal{B}(x') = \{\{x'\}\}$ For each $x \in X$, let $\mathcal{B}(x) = \{U \cup (U' \setminus \{x'\}) : U \text{ is open in } X \text{ with } x \in U\}$. Let τ denote the unique topology on A(X) which has $\{\mathcal{B}(x) : x \in X\} \cup \{\mathcal{B}(x') : x' \in X'\}$ as its neighborhood system. A(X) with this topology is called the Alexandroff Duplicate of X [9]. The following is easy to prove.

Lemma 2.12. If X is T_1 then its Alexandroff Duplicate A(X) is also T_1 .

Theorem 2.13. [10] If X is α -regular satisfying T_1 axiom, then its Alexandroff Duplicate A(X) is also α -regular. **Proof.** Let E be aclosed set in A(X) and $x \in A(X)$ such that $x \notin E$. Write $E = E_1 \cup E_2$, where $E_1 = E \cap X, E_2 = E \cap X'$. So $x \notin E_1$ in X and $x' = (x, 1) \notin E_2$. By α -regularity of X, there exist two disjoint open sets U and V of X such that $E_1 \cap U$ is dense in E_1 and $x \in V$. Since X is T_1 we can choose $W_1 = (U \cup U' \cup E_2) \setminus \{x\}$ and $W_2 = (V \cup V' \cup \{x'\}) \setminus E$. Then W_1 and W_2 are disjoint open sets in A(X), and $x' \in W_2$. Now, we prove $W_1 \cap E$ is dense in E. Note that $W_1 \cap E = (W_1 \cap E_1) \cup (W_1 \cap E_2) = (U \cap E_1) \cup E_2$, so $(W_1 \cap E) = (U \cap E_1) \cup E_2 = (\overline{U \cap E_1}) \cup (\overline{E_2}) \supset E_1 \cup \overline{E_2} \supset E$. Therefore, $W_1 \cap E$ is dense in E. Then A(X) is α -regular. Hence α -regular is preserved by the Alexandroff Duplicate space.

Theorem 2.14. If (X, \mathcal{K}) is epi α -regular, then so is its Alexandroff Duplicate $(A(X), \tau)$.

Proof. Let (X, \mathcal{K}) be an epi α -regual space, then a coarser topology \mathcal{K}' on X exists such that (X, \mathcal{K}') is T_1, α -regular. Let $(A(X), \tau')$ be the Alexandroff Duplicate of (X, \mathcal{K}') . Since by theorem 2.13 α -regularity is preserved by the Alexandroff Duplicate space and also T_1 , then $(A(X), \tau')$ is also T_1, α -regular, and it is obviously coarser than $(A(X), \tau)$ by the topology of the Alexandroff Duplicate. Hence, A(X) is epi α -regular.

In 1951, Bing [5] and Hanner [14] introduced a new topological space by generating it from an old topological space. This new space is called *discrete extension*.

Definition 2.15. Let M be a non-empty proper subset of a topological space (X, τ) . Define a new topology $\tau_M = \{U \cup K : U \in \tau \text{ and } K \subseteq X \setminus M\}$. The space (X, τ_M) is called *discrete extension*, and donated by X_M , see [8], [21]. In [21], properties such as countable tightness, Fréchet, and weaker types of normality were investigated for discrete extension. Here we study the relationship between a space X and a discrete extension X_M of X according to epi α -regularity.

For any epi α -regular space (X, τ) we have $\tau' \subseteq \tau \subseteq \tau_M$ where τ' is Tychonoff, so we have the following proved.

Theorem 2.16. If (X, τ) is an epi α -regular space, then also is X_M .

Since any Hausdorff locally compact is Tychonoff and hence epi α -regular, then by theorem 2.16 the following is easy to prove

Corollary 2.17. If (X, τ) is a Hausdorff locally compact space, then X_M is epi α -regular.

IV. Epi *α* -Regularity And Some Other Separation Axioms

A topological space (X, τ) is called *submetrizable* if there exists a metric d on X such that the topology τ_d on X generated by d is coarser than τ , i.e., $\tau_d \subseteq \tau$, see [13], since, by definitions, any submetrizable space is epi α -regular. The converse of the last statement is not true in general. For example, $\omega_1 + 1$ is epi α -regular being T_2 compact, hence α -regular T_1 and therefore epi α -regular. But it is not submetrizable, because if $\omega_1 + 1$

was submetrizable, then there would be a metric d on $\omega_1 + 1$ such that the topology τ_d on $\omega_1 + 1$ generated by d is coarser than the usual ordered topology. This means that $(\omega_1 + 1, \tau_d)$ is perfectly normal. So, the closed set $\{\omega_1\}$ is a G_{δ} -set in $(\omega_1 + 1, \tau_d)$. i.e., $\{\omega_1\} = \bigcap_{n \in \mathbb{N}} U_n$, where $U_n \in \tau_d$, hence U_n is open in the usual ordered topology on $\omega_1 + 1$, which is a contradiction.

Obviously, any α -regular, T_1 space is epi α -regular, just by taking $\tau' = \tau$. However epi α -regularity and α -regularity do not imply each other. For example, the Half-Disc space [33] is epi α -regular which is not α -regular by proposition 1.5, since the space is Hausdorff first countable not regular. Similarly, Deleted Diameter topology [32] is epi α -regular being submetrizable, but it is not α -regular. Any indiscrete space which has more than one element is an example of an α -regular space which is not epi α -regular.

Semiregularization topologies were studied in [27], a *Semiregular* space is T_2 space in which the regular open sets form a basis for the topology [33]. Epi α -regularity and semiregularity are independent, for example the Half-Disc space [33], is epi α -regular but not semiregular, It is epi α -regular because it is submetrizable. and any indiscrete space which has more than one element is an example of a semiregular space which is not epi α -regular.

Recall that a topological space (X, τ) is called *extremally disconnected* if it is T_1 and the closure of any open set is open [18]. Since every α -regular, extremely disconnected space is regular [10], then we have the following correct.

Corollary 3.1. If *X* is an epi α -regular space and the attested of epi α -regularity is extremely disconnected, then *X* is epiregular.

Recall that a topological space (X, τ) is called Zero-dimensional if it is a non-empty T_1 space and has a base consisting of open-and-closed sets [8].

Clearly, every zero-dimensional space is Tychonoff space, and hence T_3 , so we conclude.

Corollary **3.2**. Any zero-dimensional space is epi *α*-regular.■

The converse of the above result is not always correct. For example, The Euclidean topology on the set of real numbers is epi α -regular since it is T_3 but not zero dimensional. The following example [22] is a modified example of *Mysior's example* from [28].

Example 3.3. Let $A \subseteq \mathbb{R}$ be such that the intersection $A_k = A \cap [k, k+1)$ is uncountable for every integer $k \in \mathbb{Z}$. Let $\Delta = \{(a, a) : a \in A\}$ be the diagonal of $X = A^2$ and define the following sets

$$U_k = \{(a, b) \in X : a > k\}$$

for $k \in \mathbb{Z}$

$$\Gamma_a = \{(a + \varepsilon, a) \in X : \varepsilon \in [0,3]\} \cup \{(a, a - \varepsilon) \in X : \varepsilon \in [0,3]\}$$

for $a \in A$. Consider a topology τ on $X = A^2$ generated by a basis consisting of all singletons $\{x\}$ with $x \in X \setminus \Delta$ and all sets $\Gamma_a \setminus F$, where $a \in A$ and F is finite. Clearly X is Hausdorff and zero-dimensional, and so is epi α -regular.

The following example is constructed by Murtinová in [28] as she showed that it is an example of an α -normal Hausdorff, hence α -regular, non regular space.

Example 3.4.[29] Let $X = \omega_1 + 1$ and define a topology τ such that: ω_1 with the ordinal topology is an open subspace and a base in the point ω_1 will be the collection:

 $U_{\mathcal{C}} = \{\omega_1\} \cup \{\alpha+1 \colon \alpha \in \mathcal{C}\}$

where C is a closed unbounded subset of ω_1 (Club).

The topology τ is Hausdorff since it is stronger than the onder topology on $\omega_1 + 1$. This space is epi α -regular since it is α -regular Hausdorff and it is epinegular since it is stronger that the order topology on $\omega_1 + 1$ but it is not regular nor first countable.

Note that *the right order topology* defined on the set of real numbers $\mathbb{R}[33]$ is an example of β -normal, α -normal since there are no disjoint closed sets on it and it is not epi α -regular since it is not Hansdorff.

Recall that a topological space (X, τ) is called *epicompletely regular* [12] if there is a coarser topology τ' on X such that (X, τ') is Tychonoff. Note that if a topological space X is epicompletely regular, then the space is epi α -regular. But the converse of the above statement is not always true. however, the following theorem is correct since epiregularity implies epicompletely regularity.

Corollary 3.5. If (X, τ) is an epi α -regular space, and the witnesses of epi α -regularity (X, τ') is first countable, then (X, τ) is epicompletely regular.

It is well known that every compact second countable topological space satisfying T_2 axiom is metrizable, [[8],4.2.8] and this induces another result.

Corollary **3.6**. If a topological space X is epi α -regular, compact, and the attested of epi α -regular is second countable then the space is submetrizable.

Remind that a topological space (X, τ) is C_2 -paracompact if there is a T_2 , paracompact space (Y, δ) and a bijective map $f: (X, \tau) \to (Y, \delta)$ such that the restriction $f_{|A}: A \to f(A)$ is a homeomorphism for every

compact subspace $A \subseteq X$. For more details see [15]. A space X is called *Fréchet* if for every $A \subseteq X$ and every $x \in \overline{A}$ there exists a sequence $(x_n)_{n \in \mathbb{N}}$ of points of A

such that $x_n \rightarrow x$, see [8].

Theorem 3.7. Let (X, τ) be a C_2 -paracompact and Fréchet, then (X, τ) is epi α -regular.

Proof. Let (X, τ) be a C_2 -paracompact and Fréchet, then (X, τ) is epinormal by theorem 2.16 in [15], then it is epi α -normal. Hence (X, τ) is epi α regular.

Theorem 3.8. If (X, τ) is Lindelöff epi α -regular space and the attasted of epi α -regularity (X, τ') is first countable, then (X, τ) is C_2 -paracompact.

Proof. Let (X, τ) be a Lindelöff epi α -regular space, then there exists a coarser topological space (X, τ') that is T_1 , α -regular first countable, and hence is regular by propostion 1.5. since (X, τ) is a Lindelöff space, then (X, τ') is also Lindelöff and regular which implies that (X, τ') is T_2 and paracompact, and therefore the identity map id : $(X, \tau) \rightarrow (X, \tau')$ is the required map to have our space (X, τ) to be C_2 -paracompact.

Since any regular Lindelöff space is normal, then this is not hard to show

Corollary 3.9. Let (X, τ) be an epi α -regular Lindeloff space, and the attested of epi α -regularity is first countable, then (X, τ) is epinormal.

Remind that a topological space (X, τ) is called *nearly compact* [23] if every open cover of X has a finite subfamily the interiors of the closures of whose members covers X.

Theorem 3.10. If (X, τ) is a Hausdorff nearly compact space, then (X, τ) is epi α -regular.

Proof. Let (X, τ) be a Hausdorff nearly compact space, and let τ_A be the semi regularization of τ , then τ_s is a Hausdorff nearly compact space. Therefore τ_A is T_4 , and hence T_2 , α -regular. Therefore (X, τ) is epi α -regular.

Remind that a topological space (X, τ) is called *partially normal* [18] if for any two disjoint subsets A and B of X, where A is regularly closed and B is π -closed, there exist two disjoint open subsets U and V of X containing A and B respectively.

Theorem 3.11. If (X, τ) is a semi regular partial normal space and τ_s is T_1 , then (X, τ) is epi α -regular.

Proof. It is enough to show that (X, τ_s) is α -regular. Let U be any open set containing x in (X, τ_s) . By semiregularity, there is an open set W such that $x \subseteq W \subseteq int \mathbb{Z}\overline{W}) \subseteq U$. Since int (\overline{W}) is regularly open and using the same idea of theorem 2.11 in [2] there exists an open set V in (X, τ_s) such that $x \subseteq V \subseteq \overline{V} \subseteq$ int $\mathbb{Z}\overline{W}) \subseteq U$. Therefore $\overline{A \cap V} \subseteq \overline{V} \subseteq int \mathbb{Z}\overline{U}) \subseteq B$. Hence (X, τ_s) is α -regular, and then (X, τ) is epi α -regular.

Epi α -regularity and α -normality do not imply each other. For example, the Dieudonné topology and The deleted Tychonoff Plank, see [26] and [33], are not normal space nor α -normal, but they are epi α -regular because they are zero dimensional.

Remind that a space (X, τ) is called *almost* α -normal [11] if for any two disjoint closed subsets A and B of X one of which is regularly closed there exist disjoint open subsets U and V of X such that $A \cap U$ is dense in A and $B \cap V$ is dense in B. That is, $\overline{A \cap U} = A$ and $\overline{B \cap V} = B$. and a space (X, τ) is called *almost* β -normal [11] if for any two disjoint closed subsets A and B of X one of which is regularly closed there exist disjoint open subsets U and V of X such that $A \cap U$ is dense in A and $B \cap V$ is dense in B. That is, $\overline{A \cap U} = A$, $\overline{B \cap V} = B$ and $\overline{U} \cap \overline{V} = \emptyset$.

Note that almost α -normality (almost β -normality) and epi α -regularity are not related to each other. For example, \mathbb{R} with the particular point topology τ_p , see [8], [33], where the particular point is $p \in \mathbb{R}$, is not normal nor β -normal nor α -normal. But the space is almost β -normal and almost α -normal since the only regularly closed sets are \mathbb{R} and \emptyset . However this space is not Hausdorff and then it is epi α -regular. Conversely, Any indiscrete space which has more than one element is an example of an almost α -normal (almost β -normal) space which is not epi α -regular. However, every almost α normal extremely disconnected space is epi α -regular.

A β -normal epi α -regular non normal space example found in [29] which as follows: **Example 3.12.** Let $S = \{\alpha < \omega_2 : cf(\alpha) = \omega_1\}$, and consider the set $X = \{(\alpha, \beta) : \beta \le \alpha \le \omega_2, (\alpha, \beta) \ne \omega_2, \omega_2\}$ and its partition into

 $A = \{(\alpha, \alpha): \alpha < \omega_2\}$ $B = \{(\omega_2, \beta): \beta < \omega_2\}$ $D = \{(\alpha, \beta): \beta < \alpha < \omega_2\}$

Topologize X as follow: Let each $(\alpha, \beta) \in D$ be isolated, and let an open base in $(\alpha, \alpha) \in A$ consists of all sets of type

$$\{(\gamma, \gamma): \alpha_0 < \gamma \le \alpha\} \cup \bigcup \{\{\gamma\} \times C_{\gamma}: \alpha_0 < \gamma \le \alpha, \gamma \in S\}$$

where $\alpha_0 < \alpha$ and every C_{γ} is a closed and unbounded (club) subset of γ , and let an open base in $(\omega_2, \beta) \in B$ consists of all sets

$$\{(\alpha, \gamma): \beta_0 < \gamma \leq \beta, \alpha_{\gamma} < \gamma \leq \omega_2\}$$

where $\beta_0 < \beta$, $\beta \le \alpha_{\gamma} < \omega_2$.

All above defined basic open neighborhoods are closed. That is, X is zero dimensional hence it is epi α -regular. Murtinová in [29] proved that this space is β -normal non normal.

Remind that a toplogical space (X, τ) is called *epi-mildly normal* [17] if there exists a coarser topology τ' on X such that (X, τ') is Hausdorff, mildly normal.

The following theorem induced by theorem 2.4 in [26] shows a relationship between epi-mildly normality, β -normal and epi α -regular.

Theorem 3.13. If a topological space is epi-mildly normal and the witness of epi-mildly normality is β -normal then (X, τ) is epi α -regular.

Proof. Let (X, τ) be a topological epi-mildly normal space and the attested of epi-mildly normal epinormal is β - normal, then there is a coarser topological space (X, τ') that is Hausdorff, mildly normal and β -normal, so by theorem (2.4) in [26] then (X, τ') is Hausdorff and normal, and therefore it is Hansdorff α -normal, and so (X, τ') is T_1, α -regular [10]. Hence (X, τ) is epi α -regular.

Epi α -regularity does not imply mildly normality.

Example 3.14. [3] Let \mathbb{P} denote the irrationals and \mathbb{Q} denote the rationals. For each $p \in \mathbb{P}$ and $n \in \mathbb{N}$, let $p_n = \left(p, \frac{1}{n}\right) \in \mathbb{R}^2$. For each $p \in \mathbb{P}$, choose a sequence $(p_n^*)_{n \in \mathbb{N}}$ of rationals such that $p_n' = (p_n^*, 0) \to (p, 0)$ where the convergence is taken in \mathbb{R}^2 with its usual topology \mathcal{U} . For each $p \in \mathbb{P}$ and $n \in \mathbb{N}$, let $A_n((p, 0)) = \{p_k: k \ge n\}$ and $B_n((p, 0)) = \{p_k: k \ge n\}$. Now,for each $p \in \mathbb{P}$ and $n \in \mathbb{N}$, let $U_n((p, 0)) = \{(p, 0)\} \cup A_n((p, 0)) \cup B_n((p, 0))$. Let $X = \{(x; 0) \in \mathbb{R}^2: x \in \mathbb{R}\} \cup \{p_n = \left(p, \frac{1}{n}\right) \in \mathbb{R}^2: p \in \mathbb{P} \text{ and } n \in \mathbb{N}\}$. For each $p \in \mathbb{P}$ and $n \in \mathbb{N}\}$. For each $p \in \mathbb{P}$ and each $n \in \mathbb{N}$, let $B((q, 0)) = \{\{(q, 0)\}\}$. For each $p \in \mathbb{P}$, let $B((p, 0)) = \{U_n((p, 0)): n \in \mathbb{N}\}$. For each $p \in \mathbb{P}$ and each $n \in \mathbb{N}$, let $B(p_n) = \{\{p_n\}\}$. Denote by τ the unique topology on X that has $\{B((x, 0)), B(p_n): x \in \mathbb{R}, p \in \mathbb{P} \text{ and } n \in \mathbb{N}\}$ as its neighborhood system. Let $Z = \{(x, 0): x \in \mathbb{R}\}$. That is, Z is the x -axis. Then $(Z, \tau) \cong (\mathbb{R}, \mathcal{R}S)$, where $\mathcal{R}S$ is the Rational Sequence Topology, see [33]. Since Z is closed in X and $(\mathbb{R}, \mathcal{R}S)$ is not normal, then X is not normal, but, since any basic open set is closed-and-open and X is T_1 , then X is zero-dimensional, hence epi α -regular. Now, Let $A \subseteq \mathbb{P}$ and $B \subseteq \mathbb{P}$ be closed disjoint subsets that cannot be separated in $(\mathbb{R}, \mathcal{R}S)$. Let $G = \bigcup \{B_1((p, 0)): p \in A\}$ and $H = \bigcup \{B_1((p, 0)): p \in B\}$. Then G and Hare both open in (X, τ) and \overline{G} and \overline{H} are disjoint closed domains that cannot be separated, hence X is not mildly normal.

Epi α -regularity does not imply epinormality, and here is an example.

Example 3.15. Let $G = D^{\omega_1}$ where $D = \{1,2\}$ with the discrete topology. Let H be the subspace of G consisting of all points of G with at most countabl many zero coordinates. Put $X = G \times H$. Raushan Buzyakova proved that X cannot be mapped onto a normal space Y be a bijective continuous function [7]. Using Buzyakova's and the fact that X is k-space [[8],3.3.27], then this implies that X is Tychonoff and so is epi α -regular and it cannot be C-normal see 3], and since epinormality implies C-normality, then X cannot be epinormal.

References

- [1]. Alexandroff, P.S. and Urysohn, P.S. Mmoire sur les espaces topologiques compacts, Verh. Akad. Wetensch, Amsterdam. vol. 14.(1929).
- [2]. Alshammari, I. Epi-Almost Normality, Journal of Mathematical Analysis Volume 11 Issue 2(2020), 52 57.
- [3]. ALZahrani, S. and Kalantan, L. C-Normal Topological Property, Filomat 31: 2(2017), 407 411.
- [4]. Alzahrani, S. Epiregular Topological Spaces, Afrika Matematika 29 (2018),803808.
- [5]. Bing, R. H. Metrization of Topological Spaces. Canad J. Math, 3(1951)175 186.
- [6]. Blair, R. L. Spaces In Which Special Sets Are Z-Embedded. Canad. J. Math 28:4(1976),673690.
- [7]. Buzyakova, R. Z. An Example of Two Normal Groups That Cannot be Condensed Onto A Normal Space. Moscow Univ. Math. Bull. 52,3 page 42. Russion Original in: Vestink Moskov. Univ. Ser. I Mat. Makh. 3. paye 59.
- [8]. Engelking, R. General Topology. PWN, Warszawa. (1977).
- [9]. Engelking, R. On The Double Circumference of Alexandroff. Bull. Acad. Pol. Sci. Ser. Astron. Math. Phys. 16, no 8(1968),629634.
- [10]. Gheith, N. On α -Regularity. Gharyan University Journal, Libya 17 (2019) 233 256.
- [11]. Gheith, N.and Ahmed, S. On Almost α-Normal and Almost β-Normal Spaces. Rewaq Almarefa Journal, University of Tripoli-Faculty of Education. Volume (9-10), December 2018.
- [12]. Alzaharani, S. and Gheith, N. On Epicompletely Regularity. Nanoscience and Nanotechnology Letters. Volume 12, Number 2, February 2020, pp. 263 – 269(7)
- [13]. Gruenhage, G. Generalized metric spaces. In: Handbook of Set Theoretic Topology. North Holland, Amesterda-m. pp. 428434. (1984).
- [14]. Hannar, O. Solid Spaces and Absolute Retracts. Ark.För.Mat. 1(1951)375 382.
- [15]. Kalantan, L. and Saeed, M. M. and Alzumi H. C-Paracompactness and C₂ Paracompactness. Turk. J. Math.43 (2019), 920.
- [16]. Kalanatan, L. and AlZahrani S. Epinormality. J. Nonlinear Sci. Appl. 9 (2016)5398 5402.
- [17]. Kalantan L, and Alshammari I. Epi Mildly-Normality. Open Math. 16: (2018),11701175
- [18]. Kalantan, L. and Allahabi, F. On Almost Normality. Demonstratio Mathematica XLI, no. 4(2008),961968.
- [19]. Alshammari, I. and Kalantan, L. and Thabit, S. Partial Normality. Journal of Mathematical Analysis. Volume 10 Issue 6(2019), Pages 1 – 8.
- [20]. Almontashery, K. and Kalantan L. Results About Alexandroff Duplicate Space. Appl. Gen. Topol. 17, no. 2(2016), 117 122.

- [21]. Kalantan, L. and Alawadi, A. and Saeed, M. On The Discrete Extension Spaces. Journal Of Mathematical Analysis. 9, no. 2(2018)150 - 157.
- [22]. Kraysztof, C. C. and Wajciechowski, J. Cardinality of Regular Spaces Admitting Only Constant Continuous functions. Topology Proceedings. 47(2016)33 – 329.
- [23]. Lambrinos, P. On almost compact and nearly compact spaces. Rendiconti del Circolo Matematico di Palermo, 1975,24,14 18.
- [24]. Ludwig, L. D. and Nyikos, P. and Porter, J. Dowker Spaces Revisted. Tsukuba Journal of Mathematics 34(1)(2010).
- [25]. Ludwig, L. and Burke D. Hereditarily α -Normal Sspaces and Infinte Products. Topology Proceeding 25(2000) 291-299
- [26]. Arhangel'skii, A. and Ludwig L. D. On α -Normal and β -Normal Spaces. Comment. Math. Univ. Carolinae. 42.3(2001)507 519.
- [27]. Mrsevic, M. and Reilly, I.L. and Vamanamurthy, M.K. On semi-regularization topologies. J. Austral. Math. Soc.(Ser.) 38,4054 (1985).
- [28]. Mysior, A. A Regular Space Which is Not Completely Regular. Proc. Amer. Math. Soc. 81, no. 4(1981)652 653.
- [29]. Murtinová, E. A β -Normal Tychonoff Space Which is Not Normal. Comment. Math. Univ. Carolinae. 43.1(2002)159 164.
- [30]. Murtinová, E. On α -Regularity. Topology Proceeding. (2001).
- [31]. Patty, C.W. Foundations of topology. Jones and Bartlett, Sudbury. (2008).
- [32]. Ščepin, E.V. On Topological Products, Groups, And a New Class Of Spaces More General Than Metric Spaces. Soviet Math. Dokl. 17: 1(1976), 152155.
- [33]. Steen, L. and Seebach, J. A. Countrexample in Topology. Dover Publications, INC. New York (1995).

NADIA GHEITH, et. al. "On Epi α -Regular Spaces." *IOSR Journal of Mathematics (IOSR-JM)*, 17(3), (2021): pp. 41-48.