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I. Introduction  
A topological space (𝑋, 𝜏) is said to be epiregular [4] if a coarser topology 𝜏 on 𝑋 exists such that 

 𝑋, 𝜏 ′  is 𝑇1, regular . A topological space (𝑋, 𝜏) is said to be 𝛼 -regular [10], [30] if for every closed subset 𝐹 of 

𝑋 and 𝑥 ∈ 𝑋 such that 𝑥 ∉ 𝐹 there exist disjoint open sets 𝑈 and 𝑉 such that 𝑥 ∈ 𝑈 and 𝑉 ∩ 𝐹 is dense in 𝐹. We 

use these definitions to introduce another new topological property as a simultaneous generalization called epi 𝛼 

-regularity. The intent of this article is to implement this property. We show the relationship between epi 𝛼 -

regular space, 𝛼 -normal, 𝛼 -regular, epinormal, epiregular, semiregular and Almost α-normal (almost β-normal) 

spaces. Also we show that every epi 𝛼 -regular space is Hausdorff. We prove that submetrizability or 𝑇1, 𝛼 -

regularity imply epi 𝛼 -regularity but the converse is not correct in general. We give some examples to show 

that epi 𝛼 -regularity, 𝛼 -regularity and semiregularity are not necessarily related. 

 

II.    Epi  𝜶 -Regularity 
Definition 1.1. A topological space (𝑋, 𝜏) is said to be epi 𝛼 -regular if a coarser topology 𝜏 ′  on 𝑋 exists such 

that  𝑋, 𝜏 ′  is 𝑇1, 𝛼 -regular. 

     Note that if we necessarily let  𝑋, 𝜏 ′  to be just 𝛼 -regular in the above definition, then any space will be epi 

𝛼 -regular since the indiscrete topology will satisfy the property. 

     Observe that if for any topological space  𝑋, 𝜏 ′  which is 𝑇𝑖 , 𝑖 ∈ {0,1,2} then any larger topology 𝜏 on 𝑋 so is, 

and since every 𝛼 -regular 𝑇1 is Hausdorff [10], [30], then we can conclude the following. 

Theorem 1.2. Every epi 𝛼 -regular space is Hausdorff.■ 

     We note that if 𝑋 is not 𝑇𝑖 , where 𝑖 ∈ {0,1,2}, then 𝑋 is not epi 𝛼 regular. For example, Sierpinski space and 

The closed extension topology see [9], are not Hausdorff, then they cannot be epi 𝛼 -regular. Since every regular 

space is 𝛼 -regular, then the next theorem is true. 

Theorem 1.3. Every epiregular space is epi 𝛼 -regular.■ 

     The opposite direction of the above statement is not always true, but we still have the following correct. 

Theorem 1.4. If (𝑋, 𝜏) is an epi 𝛼 -regular space, and the witnesses of epi 𝛼 -regularity  𝑋, 𝜏 ′  is first countable, 

then (𝑋, 𝜏) is epiregular.■ 

     Before proofing the above theorem, we need the following proposition which is proved by a similar 

argument found in [29]. 

Proposition 1.5. [30] Every first countable 𝛼 -regular Hausdorff space is regular. 

Proof. Using a contradiction, we suppose that 𝑋 is a first countable, Hausdorff and non regular space. Then 

there is an 𝑥 ∈ 𝑋 and a closed subset 𝐴 of 𝑋 such that 𝑥 ∉ 𝐴 where there are no disjoint open sets that separate 

them. 

Let  𝑈𝑛 : 𝑛 ∈ 𝜔  be an open base in 𝑥 such that 𝑈𝑛+1 ⊂ 𝑈𝑛  for all 𝑛 ∈ 𝜔. Let 𝐻 =  𝑥𝑛 :𝑥𝑛 ∈ 𝑈𝑛
    ∩ 𝐴, 𝑛 ∈ 𝜔 . 

Note that 𝑥𝑛  was chosen inductively and because the space 𝑋 is Hausdorff, we can also suppose at each step of 

the induction that 𝑥𝑛 ∉ 𝑈𝑛+1
      , it follows that 𝑥𝑛 ∈ 𝑈𝑚

     if and only if 𝑚 ≤ 𝑛. 
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The set 𝐻 is closed. Indeed, if 𝑦 ∉ 𝐻∘    , then 𝑋 ∖  𝑈𝑛
    ∩ 𝐴  is an open set containing 𝑦 and not intersecting 𝐻∘     

which implies that 𝑋 ∖  𝑈𝑛
    ∩ 𝐴  is a neighborhood open set containing 𝑦 and not intersecting 𝐻. Therefore 

𝑦 ∉ 𝐻. Note that 𝑥 ∉ 𝐻. Since 𝑥 and 𝐻 can not be separated, so 𝑋 is not an 𝛼-regular space. ■ 

Proof of theorem (𝟏. 𝟒): It is straightforward by proposition 1.5 and theorem 1.3.■ 

Theorem 1.6. If (𝑋, 𝜏) is an epi 𝛼-regular space, and the witnesses of epi 𝛼 -regularity  𝑋, 𝜏 ′  is first countable, 

then (𝑋, 𝜏) is completely Hausdorff. 

Proof. Let (𝑋, 𝜏) be any epi 𝛼-regular space, and let 𝑥, 𝑦 be any distinct points in 𝑋, then one can find a coarser 

topology 𝜏 ′  on 𝑋 such that  𝑋, 𝜏 ′  is 𝑇1, 𝛼 -regular, and then  𝑋, 𝜏 ′  is Hausdorff [10]. It follows that there exist 

two disjoint open sets 𝐺, 𝐻 ∈ 𝜏 ′  such that 𝑥 ∈ 𝐺, 𝑦 ∈ 𝐻,. Now since  𝑋, 𝜏 ′  is first countable then by proposition 

1.5  𝑋, 𝜏 ′  is regular, so there exist 𝑈, 𝑉 ∈ 𝜏 ′  such that 𝑥 ∈ 𝑈 ⊆ 𝑈 𝜏 ′
⊆ 𝐺 and 𝑦 ∈ 𝑉 ⊆ 𝑉 𝜏 ′

⊆ 𝐻, where 

𝑈 𝜏 ′
=  𝑥 ∈ 𝑋: 𝑊 ∩ 𝑈 ≠ ∅, ∀  open 𝑊 in  𝜏 ′ , 𝑥 ∈ 𝑊  similarly 𝑉 𝜏 ′

. Since 𝐴 𝜏 ⊆ 𝐴 𝜏 ′
, for any 𝐴 ⊆ 𝑋, this implies 

That 𝑈 𝜏 ⊆ 𝑈 𝜏 ′
. 𝐴s 𝑈 𝜏 ′

∩ 𝑉 𝜏 ′
= 0. Thus (𝑋, 𝜏) is completely Hansdorff. ■ 

     Thus any space (𝑋, 𝜏) which is not completely Hausdorff, such that any coarser topology of it is 𝑇2 first 

countable, cannot be epi 𝛼 -regular. 

     Since any 𝛽 -normal or 𝛼 -normal [26] satisfying 𝑇1 axiom is 𝛼-regular [30], [10], then we end to the 

following theorem 

Theorem 1.7. Every epi 𝛽 -normal (epi 𝛼 -normal) space is epi 𝛼 -regular. ■ 

     As every second countable 𝑇3 space is metrizable, [[8],4.2.9], and since every second countable is first 

countable then by proposition 1.5 we have the following corollary. 

Corollary 1.8. If (𝑋, 𝜏) is epi 𝛼 -regular and the witness of epi 𝛼-regularity  𝑋, 𝜏 ′  is second countable, then 

(𝑋, 𝜏) is submetrizable. ■ 

     Note that corollary 1.8 is not correct in general. For example, the Tychonoft Plank   𝜔1 + 1 ×  𝜔0 + 1  ∖
  𝜔1 , 𝜔0   is Tychonoff being Hausdorff locally compact, and hence it is epi 𝛼 -regular, but it is not 

submetrizable, because if it was, then  𝜔1 + 1 × {0} ⊆   𝜔1 + 1 ×  𝜔0 + 1  ∖   𝜔1 , 𝜔0   is submetrizable, 

because submetrizablity is hereditary, but  𝜔1 + 1 × {0} ≅ 𝜔1 + 1 and 𝜔1 + 1 is not submetrizable. 

     It is well known that 𝑇2 paracompact space is 𝑇4, then we have the following result proved. 

Corollary 1.9. If (𝑋, 𝜏) is epi 𝛼-regular and the witness of epi 𝛼 -regularity  𝑋, 𝜏 ′  is paracompact, then 
 𝑋, 𝜏  is 𝑇4. ■ 

     Also, we remind that any 𝑇2 compact space is 𝑇4, and we conclude. 

Corollary 1.10. Any epi 𝛼-regular compact space is 𝑇4. ■ 

     A Hausdorff space 𝑋 is said to be 𝐻-closed if 𝑋 is a closed subspace of every Hausdorff space in which it is 

contained [[8],3.12.5]. Since a regular space is 𝐻 -closed if and only if it is compact [[8],3.12.5]. Then we can 

prove a similar argument for epi 𝛼 -regularity. 

Corollary 1.11. If (𝑋, 𝜏) is epi 𝛼 -regular compact space, then the witness of epi 𝛼 -regularity  𝑋, 𝜏 ′  is 𝐻-

closed. ■ 

Theorem 1.12. If (𝑋, 𝜏) is an epi 𝛼 -regular space, then for every compact subset 𝐹 of 𝑋 and every 𝑥 ∈ 𝑋 such 

that 𝑥 ∉ 𝐹, there exist disjoint open sets 𝑈, 𝑊 such that 𝐹 ∩ 𝑈        = 𝐹 and 𝑥 ∈ 𝑊.  
Proof. Let (𝑋, 𝜏) be an epi 𝛼 -regular space, then a coarser topology 𝜏 ′  on 𝑋 exists such that  𝑋, 𝜏 ′  is 𝛼 -

regular, 𝑇1. Let 𝐹 be any compact set in (𝑋, 𝜏) and let 𝑥 ∉ 𝐹, hence 𝐹 is closed in  𝑋, 𝜏 ′  and 𝑥 ∉ 𝐹, by 𝛼-

regularity of  𝑋, 𝜏 ′ , there exist 𝑈, 𝑊 ∈ 𝜏 ′  such that 𝐹 ∩ 𝑈 = 𝐹, 𝑥 ∈ 𝑊 and 𝑈 ∩ 𝑊 = ∅. ■ 

Corollary 1.13. If 𝐹 and 𝐸 disjoint compact sets in an epi 𝛼-regular space 𝑋, then there exist disjoint open sets 

𝑈 and 𝑊 such that 𝐹 ∩ 𝑈        = 𝐹, 𝐸 ∩ 𝑊        = 𝐸. 
Proof. Let (𝑋, 𝜏) be an epi 𝛼 -regular space, then there exists a coarser topology 𝜏 ′  on 𝑋 such that  𝑋, 𝜏 ′  is 𝛼 -

regular, 𝑇1. Let 𝐹, 𝐸 be any disjoint compact subsets of (𝑋, 𝜏), hence they are disjoint compact subsets of  𝑋, 𝜏 ′  

and by theorem 1.12 for each 𝑎 ∈ 𝐹 and compact set 𝐸, there exist open sets 𝑈𝑎 , 𝑊𝑎  such that 𝑎 ∈ 𝑈𝑎 , 𝐸 ∩ 𝑊𝑎
         =

𝐸 and 𝑈𝑎 ∩ 𝑊𝑎 = ∅. Now consider 𝐹 is an arbitrary compact set disjoint from 𝐸. For each 𝑎 in 𝐹, by theorem 

1.12 gives disjoint open sets 𝑈𝑎𝑖
 containing 𝑎 and 𝐸 ∩ 𝑊𝑎𝑖

          = 𝐸 and 𝑈𝑎𝑖
∩ 𝑊𝑎𝑖

= 0. The family  𝑈𝑎𝑖
: 𝑖 ∈ 𝐼  is an 

open cover of 𝐹, since 𝐹 is compact, there is a finite subfamily  𝑈𝑎1
, … , 𝑈𝑎𝑛

  which covers 𝐹 and the 

corresponding  𝑊𝑎1
     , … , 𝑊𝑎𝑛

       is a closed cover of 𝐸. So that 𝑈 =∪𝑖=1
𝑛 𝑈𝑎𝑖

 is an open set containing 𝐹 and 

disjoint from 𝑊 = ⋂𝑖=1
𝑛  𝑊𝑎𝑖

 which is an open set. such that 𝐹 ∩ 𝑈        = 𝐹, 𝐸 ∩ 𝑊        = 𝐸. Indeed, it is obvious that 

𝐸 ∩ 𝑊        ⊆ 𝐸. On the other hand, let 𝑥 ∈ 𝐸, and 𝐺 is an open set containing 𝑥, we need to show 𝐺 ∩ 𝐸 ∩ 𝑊 ≠ 0. 
Let 𝐺 ∩ 𝐸 ∩ 𝑊 = 0, then there is 1 ≤ 𝑗 ≤ 𝑛 such that 𝐺 ∩ 𝐸 ∩ 𝑊𝑎𝑗

= 0, since 𝐺 is open then 𝑥 ∉ 𝐸 ∩ 𝑊𝑎𝑗
           

which is a contradiction. Therefore 𝐺 ∩ 𝐸 ∩ 𝑊 ≠ 0 which implies that 𝑥 ∈ 𝐸 ∩ 𝑊        . Hence 𝐸 ∩ 𝑊        = 𝐸, and we 

are done.■ 
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III. Properties of Epi 𝜶-Regularity 
Theorem 2.1. [10] Let 𝑋 be an 𝛼-regular space, 𝑓: 𝑋 → 𝑌 is an onto, continuous, open, and closed function. 

Then 𝑌 is 𝛼-regular. 

Proof. Let 𝑋 be an 𝛼-regular space, 𝐴 be a closed subset of 𝑌 and 𝑦 ∈ 𝑌 such that 𝑦 ∉ 𝐴. Then 𝑓−1(𝐴) is a 

closed subset of 𝑋 and there exists 𝑥 ∈ 𝑋 such that 𝑓(𝑥) = 𝑦 and 𝑥 ∉ 𝑓−1(𝐴). Since 𝑋 is an 𝛼-regular space, 

there exist disjoint open subsets 𝐺 and 𝐻 of 𝑋 such that 𝑥 ∈ 𝐻 and 𝑓−1(𝐴) ∩ 𝐺 = 𝑓−1(𝐴), and so 𝑥 ∉ 𝐺 . Since 

𝑥 ∉ 𝐺 , then 𝑦 ∉ 𝑓(𝐺 ). It is clear that 𝑓(𝐺 ) is a closed set containing the open set 𝑓(𝐺), 𝑓(𝐺)      ⊆ 𝑓(𝐺 ). Thus 

𝑦 ∉ 𝑓(𝐺)       which implies 𝑦 ∈ 𝑓(𝐻) and 𝑓(𝐺) ∩ 𝑓(𝐻) = 0. Now it is sufficient to show that 𝐴 ∩ 𝑓(𝐺)            = 𝐴. Let 

𝑧 ∈ 𝐴 and 𝑊 is an open set containing 𝑧, then 𝑓−1(𝑧) ⊆ 𝑓−1(𝐴) ∩ 𝑓−1(𝑊). Since 

𝑓−1(𝐴) ∩ 𝐺               = 𝑓−1(𝐴),𝑓−1(𝐴) ∩ 𝐺 ∩ 𝑓−1(𝑊) ≠ ∅. Hence by surjectivity of 𝑓, 𝐴 ∩ 𝑓(𝐺) ∩ 𝑊 = 𝑓 𝑓−1(𝐴) ∩
𝑓(𝐺) ∩ 𝑓(𝑓−1(𝑊)) ⊇ 𝑓 𝑓−1(𝐴) ∩ 𝐺 ∩ 𝑓−1(𝑊) ≠ 0 as required.■ 

Corollary 2.2. Let (𝑋, 𝜏) be an epi 𝛼 -regular space, 𝑓: (𝑋, 𝜏) → (𝑌, 𝒮) is an onto, continuous, open, and closed 

function. Then 𝑌 is epi 𝛼 -reqular. 

Proof. Let (𝑋, 𝜏) be any epi 𝛼 -regular space, let 𝜏 ′  be a coarser topology on 𝑋 such that  𝑋, 𝜏 ′  is 𝛼 -regular, 𝑇1. 

Since 𝑓: 𝑋 → 𝑌 is an onto, continuous, open, and closed function then by theorem 2.13  𝑌, 𝒮 ′ , where 𝒮 ′ =
 𝑓{𝑈}: 𝑈 ∈ 𝜏 ′  , is 𝛼 -regular, and it is obviously 𝑇1. Hence (𝑌, 𝒮) is epi 𝛼 -regular.■ 

Corollary 2.3. Epi 𝛼 -regularity is a topological property.■  

     The proof of the following theorem is due to Murtinová. 

Theorem 2.4. [30], [10] Every subspace of an 𝛼 -regular space is 𝛼 -regular.■ 

Proof. Let 𝑋 be an 𝛼 -regular space and 𝐴 is a subspace 𝑋, 𝑦 ∈ 𝐴 and 𝑦 ∉ 𝐹 ⊂ 𝐴, 𝐹 ∩ 𝐴 = 𝐹 where 𝐹  refers to 

the closure of 𝐹 in 𝑋. Then 𝑦 ∉ 𝐹  and 𝑋 is 𝛼 -regular, hence there are disjoint open sets 𝑈, 𝑉 in 𝑋 such that 

𝑦 ∈ 𝑈 and 𝐹 ∩ 𝑉       = 𝐹. The sets 𝑈 ∩ 𝐴 and 𝑉 ∩ 𝐴 are the sets witnessing 𝛼 -regularity of 𝐴. Indeed, they are 

disjoint, open in 𝐴, 𝑦 ∈ 𝑈 ∩ 𝐴. It remains to show that 𝐹 ∩ 𝑉(∩ 𝐴) is dense in 𝐹 in the space 𝐴. The 𝐴-closure 

of 𝐹 ∩ 𝑉 is 𝐹 ∩ 𝑉       ∩ 𝐴 ⊂ F ∩ 𝐴 = 𝐹. On the other hand, let 𝑥 ∈ 𝐹, 𝑊 is an open subset in 𝑋, 𝑥 ∈ 𝑊. We have to 

prove that 𝑊 ∩ 𝐹 ∩ 𝑉 ≠ ∅. Suppose for contradiction that 𝑊 ∩ 𝐹 ∩ 𝑉 = ∅. Since 𝑊 ∩ 𝑉 is open, 𝑊 ∩ 𝐹 ∩ 𝑉 =

∅ as well. And since 𝑊 is open, ∅ = 𝑊 ∩ 𝐹 ∩ 𝑉       = 𝑊 ∩ 𝐹 . But 𝑥 ∈ 𝑊 ∩ 𝐹  which is a contradiction.■ 

Corollary 2.5. Epi 𝛼-regularity is a hereditary property. 

Proof. Let (𝑋, 𝜏) be an epi 𝛼 -regular space and let  𝐴, 𝜏𝐴  be a subspace of (𝑋, 𝜏). Let 𝜏 ′  be a coarser topology 

on 𝑋 such that  𝑋, 𝜏 ′  is 𝛼 -regular, 𝑇1. The subspace  𝐴, 𝜏𝐴
′   is 𝛼 -regular, 𝑇1 as 𝛼 -regular [30], [10],𝑇1 is 

hereditary 2.5, and 𝜏𝐴
′ ⊆ 𝜏𝐴, therefore  𝐴, 𝜏𝐴  is epi 𝛼 -regular.■ 

Theorem 2.6. 𝛼-regularity are additive properties. 

Proof. Let  𝑋𝛼  𝛼∈𝐴  be a family of 𝛼 -regular spaces, and 𝐴 be a closed subset of the sum ⨁𝛼∈𝛬  𝑋𝛼 , 𝑥 ∈ ⨁𝛼∈Λ  𝑋𝛼  

such that 𝑥 ∉ 𝐴. By proposition 2.2.1 in[8] the intersections 𝐴 ∩ 𝑋𝑎  is closed in 𝑋𝛼  for every 𝛼 ∈ Λ and 

𝑥 ∉ 𝐴 ∩ 𝑋𝛼  From 𝛼 -regularity of 𝑋α  it follows that there are two open sets 𝑈α  and 𝑉α  in 𝑋𝛼  and such that 

𝐴 ∩ 𝑋𝛼 ∩ 𝑈α
                = 𝐴 ∩ 𝑋α , 𝑥 ∈ 𝑉𝛼  

and 

𝑈 ∩ 𝐴        = ∅ 

Let 𝑈 =∪𝛼∈Λ 𝑈𝛼  and 𝑉 =∪𝛼∈Λ 𝑉𝛼 , then clearly 

𝐴 ∩ 𝑈        = 𝑈𝛼∈𝛬 𝐴 ∪ 𝑈𝛼                   =∪𝛼∈Λ 𝐴 = 𝐴 = 𝐴, 𝑥 ∈ 𝑉

𝑈 ∩ V =∪𝛼∈𝛬 𝑈𝛼 ∩∪𝛼∈𝛬 𝑉𝛼 =∪𝛼∈Λ  𝑈𝛼 ∩ 𝑉𝛼 = 0
 

Since 𝑈 and 𝑉 are open in ⨁𝛼∈𝛬  𝑋𝛼 , the sum ⨁𝛼∈𝛬  𝑋𝛼  is 𝛼 -regular.■ 

Theorem 2.7. Epi 𝛼-regularity is an additive property. 

Proof. Let  𝑋𝛼 , 𝜏𝛼  be an epi 𝛼 -regular space for each 𝛼 ∈ Λ For each 𝛼 ∈ Λ, let 𝜏𝛼
′  be a topology on 𝑋𝑎  coarser 

than 𝜏𝛼  such that  𝑋𝛼 , 𝜏𝛼
′   is 𝛼 -regular, 𝑇1. since 𝑇1 is additive see [[8],2.2.7] and 𝛼 -regularity is also additive 

by theorem 2.6. Then ⊕𝛼∈𝛬  𝑋𝛼 , 𝜏𝛼
′   is 𝛼 -regular, 𝑇1, and its topology is coarser than the topology on 

⊕𝛼∈𝐴  𝑋𝑎 , 𝜏𝛼 .■ 

Theorem 2.8. Let   𝑋𝛼 , 𝜏𝛼 : 𝛼 ∈ Λ  be a family of epi-regular spaces, and let 𝑋 = ∏𝛼∈Λ  𝑋𝛼 . Then (𝑋, 𝜏) is epi 𝛼 

-regular, where 𝜏 is the Tychonoff product topology, if only if  𝑋𝛼 , 𝜏𝛼  is epi 𝛼 -regular for each 𝛼 ∈ Λ. 

Proof. Let (𝑋, 𝜏) be an epi 𝛼 -regular space, and let 𝛽 ∈ Λ, by Theorem 2.5, every subspace of (𝑋, 𝜏) is epi 𝛼 -

regular. By [[31],2.39], there is a subspace of (𝑋, 𝜏) that is homeomorphic to 𝑋𝛽 . since epi 𝛼-regularity is a 

topological property then  𝑋𝛽 , 𝜏𝛽  is epi 𝛼 -regular. 

Now let  𝑋𝛼 , 𝜏𝛼  be epiregular, epi 𝛼 -regular space for each 𝛼 ∈ Λ. For each 𝛼 ∈ Λ, let 𝜏α
′  be a topology on 𝑋𝛼 , 

coarser than 𝜏𝛼  such that  𝑋𝛼 , 𝜏𝛼
′   is 𝑇3. since 𝑇3 is multiplicative [[8],2.3.11]. Then ∏𝛼∈Λ  𝑋𝛼  is 𝑇3 with respect 

of the product topology of 𝜏𝛼
′′ s, which implies that ∏𝛼∈Λ  𝑋𝛼  is 𝛼 -regular 𝑇1 with respect of the product topology 

of 𝜏𝛼
′′ s and its topology is coarser than the topology on ∏𝛼∈Λ   𝑋𝛼 , 𝜏𝛼 .■ 
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     Let ℝ be the real line. Let ℙ be the set of all irrational numbers and ℚ be the rational numbers. Let 𝑈 be the 

usual topology of the real line ℝ. The real line with the topology generated by ℬ = {(𝑥 − 𝜀, 𝑥 + 𝜀): 𝑥 ∈ ℚ} ∪
{{𝑥}: 𝑥 ∈ ℙ} is called the Michael line and is denoted by 𝑀. And 𝑀 × 𝑃, where ℙ has the usual topology, is 

called the Michael product [8]. As the Michael line is 𝛼 -regular, 𝑇1, hence we have the following corollary. 

Corollary 2.9. The Michael line is epi 𝛼 -regular space.■ 

      The space 𝕄 × ℙ is 𝛼 -regular, 𝑇1 space being product of two (regular) 𝛼 regular, 𝑇1 spaces, so we have the 

following theorem. 

Theorem 2.10. The Michael product is an epi 𝛼 -regular space. ■ 

     Note that epiregularity is invariant under products, however, this is not the case for 𝑎 -regularity as 

Murtinová in [30] proved that 𝛼 -regularity is not preserved under products. Regarding Murtinová result in 

[30], the following theorem proves that epi 𝛼 -regularity is not preserved by products and at the same time we 

construct a non epi 𝛼 -regular space from a non epiregular space. 

Theorem 2.11. Let 𝐴(𝜅) is the one-point compactification of a discrete set of cardinality 𝜅. Then for every non-

epiregular 𝑇1 space 𝑋 there is 𝜅 ≤ 𝜒(𝑋) such that 𝑋 × 𝐴(𝜅) is not epi 𝛼 -regular. 

Proof. By a similar argument used in theorem [7] in [30].■ 

     It follows that product of an epi 𝛼 -regular space and a compact zero dimensional space may fail to be epi 𝛼-

regular. In particular it means that epi 𝛼-regularity is not preserved by products. 

     There are many ways of producing a new topological space from an old one. In 1929 , Alexandroff 

introduced his method by constructing the Double Circumference Space [1]. In 1968, R. Engelking generalized 

this construction to an arbitrary space as follows: Let 𝑋 be any topological space. Let 𝑋′ = 𝑋 × {1}. Note that 

𝑋 ∩ 𝑋′ = ∅. Let 𝐴(𝑋) = 𝑋 ∪ 𝑋′ . For simplicity, for an element 𝑥 ∈ 𝑋, we will denote the element (𝑥, 1) in 𝑋′  

by 𝑥 ′  and for a subset 𝐵 ⊆ 𝑋 let 𝐵′ =  𝑥 ′ : 𝑥 ∈ 𝐵 = 𝐵 × {1} ⊆ 𝑋′ . For each 𝑥 ′ ∈ 𝑋′ , let ℬ 𝑥 ′ =   𝑥 ′   For 

each 𝑥 ∈ 𝑋, let ℬ(𝑥) =  𝑈 ∪  𝑈′ \ 𝑥 ′  : 𝑈  is open in 𝑋 with 𝑥 ∈ 𝑈}. Let 𝜏 denote the unique topology on 𝐴(𝑋) 

which has {ℬ(𝑥): 𝑥 ∈ 𝑋} ∪  ℬ 𝑥 ′ : 𝑥 ′ ∈ 𝑋′   as its neighborhood system. 𝐴(𝑋) with this topology is called the 

Alexandroff Duplicate of 𝑋 [9]. The following is easy to prove. 

Lemma 2.12. If 𝑋 is 𝑇1 then its Alexandroff Duplicate 𝐴(𝑋) is also 𝑇1.■ 

Theorem 2.13. [10] If 𝑋 is 𝛼-regular satisfying 𝑇1 axiom, then its Alexandroff Duplicate 𝐴(𝑋) is also 𝛼-regular. 

Proof. Let 𝐸 be aclosed set in 𝐴(𝑋) and 𝑥 ∈ 𝐴(𝑋) such that 𝑥 ∉ 𝐸. Write 𝐸 = 𝐸1 ∪ 𝐸2, where 𝐸1 = 𝐸 ∩ 𝑋, 𝐸2 =
𝐸 ∩ 𝑋′ . So 𝑥 ∉ 𝐸1 in 𝑋 and 𝑥 ′ = (𝑥, 1) ∉ 𝐸2 . By 𝛼 -regularity of 𝑋, there exist two disjoint open sets 𝑈 and 𝑉 of 

𝑋 such that 𝐸1 ∩ 𝑈 is dense in 𝐸1 and 𝑥 ∈ 𝑉. Since 𝑋 is 𝑇1 we can choose 𝑊1 =  𝑈 ∪ 𝑈′ ∪ 𝐸2 ∖ {𝑥} and 

𝑊2 =  𝑉 ∪ 𝑉 ′ ∪  𝑥 ′  ∖ 𝐸. Then 𝑊1 and 𝑊2are disjoint open sets in 𝐴(𝑋), and 𝑥 ′ ∈ 𝑊2 . Now, we prove 𝑊1 ∩ 𝐸 

is dense in 𝐸. Note that 𝑊1 ∩ 𝐸 =  𝑊1 ∩ 𝐸1 ∪  𝑊1 ∩ 𝐸2 =  𝑈 ∩ 𝐸1 ∪ 𝐸2, so   𝑊1 ∩ 𝐸             =  𝑈 ∩ 𝐸1 ∪ 𝐸2
                  =

 𝑈 ∩ 𝐸1
          ∪  𝐸2

   ) ⊃ 𝐸1 ∪ 𝐸2
   ⊃ 𝐸.  Therefore, 𝑊1 ∩ 𝐸 is dense in 𝐸. Then 𝐴(𝑋) is 𝛼-regular. Hence 𝛼-regular is 

preserved by the Alexandroff Duplicate space.■ 

Theorem 2.14. If (𝑋, 𝒦) is epi 𝛼-regular, then so is its Alexandroff Duplicate (𝐴(𝑋), 𝜏). 

Proof. Let (𝑋, 𝒦) be an epi 𝛼 -regualr space, then a coarser topology 𝒦 ′  on 𝑋 exists such that  𝑋, 𝒦 ′  is 𝑇1, 𝛼 -

regular. Let  𝐴(𝑋), 𝜏 ′  be the Alexandroff Duplicate of  𝑋, 𝒦 ′ . Since by theorem 2.13 𝛼-regularity is 

preserved by the Alexandroff Duplicate space and also 𝑇1, then  𝐴(𝑋), 𝜏 ′  is also 𝑇1, 𝛼 -regular, and it is 

obviously coarser than (𝐴(𝑋), 𝜏) by the topology of the Alexandroff Duplicate. Hence, 𝐴(𝑋) is epi 𝛼 -regualr.■ 

     In 1951, Bing [5] and Hanner [14] introduced a new topological space by generating it from an old 

topological space. This new space is called discrete extension.  

Definition 2.15. Let 𝑀 be a non-empty proper subset of a topological space (𝑋, 𝜏). Define a new topology 

𝜏𝑀 = {𝑈 ∪ 𝐾: 𝑈 ∈ 𝜏 and 𝐾 ⊆ 𝑋 ∖ 𝑀}. The space  𝑋, 𝜏𝑀  is called discrete extension, and donated by 𝑋𝑀 , see 

[8], [21]. In [21], properties such as countable tightness, Fréchet, and weaker types of normality were 

investigated for discrete extension. Here we study the relationship between a space 𝑋 and a discrete extension 

𝑋𝑀  of 𝑋 according to epi 𝛼 -regularity. 

      For any epi 𝛼 -regular space (𝑋, 𝜏) we have 𝜏 ′ ⊆ 𝜏 ⊆ 𝜏𝑀 where 𝜏 ′  is Tychonoff, so we have the following 

proved. 

Theorem 2.16. If (𝑋, 𝜏) is an epi 𝛼 -regular space, then also is 𝑋𝑀 .■ 

Since any Hausdorff locally compact is Tychonoff and hence epi 𝛼 -regular, then by theorem 2.16 the following 

is easy to prove  

Corollary 2.17. If (𝑋, 𝜏) is a Hausdorff locally compact space, then 𝑋𝑀  is epi 𝛼 -regular.■ 
 

IV. Epi 𝛼 -Regularity And Some Other Separation Axioms 
A topological space (𝑋, 𝜏) is called submetrizable if there exists a metric 𝑑 on 𝑋 such that the topology 

𝜏𝑑  on 𝑋 generated by 𝑑 is coarser than 𝜏, i.e., 𝜏𝑑 ⊆ 𝜏, see [13], since, by definitions, any submetrizable space is 

epi 𝛼-regular. The converse of the last statement is not true in general. For example, 𝜔1 + 1 is epi 𝛼-regular 

being 𝑇2 compact, hence 𝛼-regular 𝑇1 and therefore epi 𝛼-regular. But it is not submetrizable, because if 𝜔1 + 1 
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was submetrizable, then there would be a metric 𝑑 on 𝜔1 + 1 such that the topology 𝜏𝑑  on 𝜔1 + 1 generated by 

𝑑 is coarser than the usual ordered topology. This means that  𝜔1 + 1, 𝜏𝑑  is perfectly normal. So, the closed set 
 𝜔1  is a 𝐺𝛿 −set in  𝜔1 + 1, 𝜏𝑑 . i.e.,  𝜔1 =∩𝑛∈𝑁 𝑈𝑛 , where 𝑈𝑛 ∈ 𝜏𝑑 , hence 𝑈𝑛  is open in the usual ordered 

topology on 𝜔1 + 1, which is a contradiction. 

Obviously, any 𝛼-regular, 𝑇1 space is epi 𝑎-regular, just by taking 𝜏 ′ = 𝜏. However epi 𝛼 -regularity 

and 𝛼 -regularity do not imply each other. For example, the Half-Disc space [33] is epi 𝛼-regular which is not 

𝛼-regular by proposition 1.5, since the space is Hausdorrf first countable not regular. Similarly, Deleted 

Diameter topology [32] is epi 𝛼 -regular being submetrizable, but it is not 𝛼 -regular. Any indiscrete space 

which has more than one element is an example of an 𝛼 -regular space which is not epi 𝛼 -regular.  

Semiregularization topologies were studied in [27], a Semiregular space is 𝑇2 space in which the 

regular open sets form a basis for the topology [33]. Epi 𝛼 -regularity and semiregularity are independent, for 

example the Half-Disc space [33], is epi 𝛼-regular but not semiregular, It is epi 𝛼 -regular because it is 

submetrizable. and any indiscrete space which has more than one element is an example of a semiregular space 

which is not epi 𝛼-regular. 

     Recall that a topological space (𝑋, 𝜏) is called extremally disconnected if it is 𝑇1 and the closure of any open 

set is open [18]. Since every 𝛼 -regular, extremely disconnected space is regular [10], then we have the 

following correct. 

Corollary 3.1. If 𝑋 is an epi 𝛼-regular space and the attested of epi 𝛼-regularity is extremely disconnected, then 

𝑋 is epiregular.■ 

     Recall that a topological space (𝑋, 𝜏) is called Zero-dimensional if it is a non-empty 𝑇1 space and has a base 

consisting of open-and-closed sets [8].  
     Clearly, every zero-dimensional space is Tychonoff space, and hence 𝑇3, so we conclude. 

Corollary 3.2. Any zero-dimensional space is epi 𝛼-regular.■ 

     The converse of the above result is not always correct. For example, The Euclidean topology on the set of 

real numbers is epi 𝛼 -regular since it is 𝑇3 but not zero dimensional. The following example [22] is a modified 

example of Mysior’s example from [28]. 

Example 3.3. Let 𝐴 ⊆ ℝ be such that the intersection 𝐴𝑘 = 𝐴 ∩ [𝑘, 𝑘 + 1) is uncountable for every integer 

𝑘 ∈ ℤ. Let Δ = {(𝑎, 𝑎): 𝑎 ∈ 𝐴} be the diagonal of 𝑋 = 𝐴2 and define the following sets 

𝑈𝑘 = {(𝑎, 𝑏) ∈ 𝑋: 𝑎 > 𝑘} 

for 𝑘 ∈ ℤ 

Γ𝑎 = {(𝑎 + 𝜀, 𝑎) ∈ 𝑋: 𝜀 ∈ [0,3]} ∪ {(𝑎, 𝑎 − 𝜀) ∈ 𝑋: 𝜀 ∈ [0,3]} 
for 𝑎 ∈ A. Consider a topology 𝜏 on 𝑋 = 𝐴2 generated by a basis consisting of all singletons {𝑥} with 𝑥 ∈ 𝑋 ∖ Δ 

and all sets Γ𝑎 ∖ 𝐹, where 𝑎 ∈ 𝐴 and 𝐹 is finite. Clearly 𝑋 is Hausdorff and zero-dimensional, and so is epi 𝛼-

regular. 

     The following example is constructed by Murtinová in [28] as she showed that it is an example of an 𝛼 -

normal Hausdorff, hence 𝛼 -regular, non regular space. 

Example 3.4.[29] Let 𝑋 = 𝜔1 + 1 and define a topology 𝜏 such that: 𝜔1 with the ordinal topology is an open 

subspace and a base in the point 𝜔1 will be the collection: 

𝑈𝐶 =  𝜔1 ∪ {𝛼 + 1: 𝛼 ∈ 𝐶} 

where 𝐶 is a closed unbounded subset of 𝜔1 (Club).  

The topology 𝜏 is Hausdorff since it is stronger than the onder topology on 𝜔1 + 1. This space is epi 𝛼 -regular 

since it is 𝛼 -regular Hausdorff and it is epinegular since it is stronger that the order topology on 𝜔1 + 1 but it is 

not regular nor first countable. 

     Note that the right order topology defined on the set of real numbers ℝ[33] is an example of 𝛽 -normal, 𝛼-

normal since there are no disjoint closed sets on it and it is not epi 𝛼-regular since it is not Hansdorff. 

     Recall that a topological space (𝑋, 𝜏) is called epicompletely regular [12] if there is a coarser topology 𝜏 ′  on 

𝑋 such that  𝑋, 𝜏 ′  is Tychonoff. Note that if a topological space 𝑋 is epicompletely regular, then the space is 

epi 𝛼-regular. But the converse of the above statement is not always true. however, the following theorem is 

correct since epiregularity implies epicompletely regularity. 

Corollary 3.5. If (𝑋, 𝜏) is an epi 𝛼-regular space, and the witnesses of epi 𝛼-regularity  𝑋, 𝜏 ′  is first countable, 

then (𝑋, 𝜏) is epicompletely regular.■ 

     It is well known that every compact second countable topological space satisfying 𝑇2 axiom is metrizable, 

[  [8],4.2.8  and this induces another result. 

Corollary 3.6. If a topological space 𝑋 is epi 𝛼-regular, compact, and the attested of epi 𝛼-regular is second 

countable then the space is submetrizable.■ 

     Remind that a topological space (𝑋, 𝜏) is  𝐶2-paracompact if there is a 𝑇2, paracompact space (𝑌, 𝛿) and a 

bijective map 𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝛿) such that the restriction 𝑓∣𝐴: 𝐴 ⟶ 𝑓(𝐴) is a homeomorphism for every 
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compact subspace 𝐴 ⊆ 𝑋. For more details see [15]. A space X is called Fréchet if for every 𝐴 ⊆ 𝑋 and every 

𝑥 ∈  𝐴  there exists a sequence (𝑥𝑛)𝑛∈ℕ of points of 𝐴 

such that 𝑥𝑛  →  𝑥, see [8]. 

Theorem 3.7. Let (𝑋, 𝜏) be a 𝐶2 -paracompact and Fréchet, then (𝑋, 𝜏) is epi 𝛼-regular. 

Proof. Let (𝑋, 𝜏) be a 𝐶2 -paracompact and Fréchet, then (𝑋, 𝜏) is epinormal by theorem 2.16 in [15], then it is 

epi 𝛼 -normal. Hence (𝑋, 𝜏) is epi 𝛼 regular.■ 

Theorem 3.8. If (𝑋, 𝜏) is Lindelöff epi 𝛼-regular space and the attasted of epi 𝛼-regularity  𝑋, 𝜏 ′  is first 

countable, then (𝑋, 𝜏) is 𝐶2 -paracompact. 

Proof. Let (𝑋, 𝜏) be a Lindelöff epi 𝛼-regular space, then there exists a coarser topological space  𝑋, 𝜏 ′  that is 

𝑇1, 𝛼-regular first countable, and hence is regular by propostion 1.5. since (𝑋, 𝜏) is a Lindelöff space, then 
 𝑋, 𝜏 ′  is also Lindelöff and regular which implies that  𝑋, 𝜏 ′  is 𝑇2 and paracompact, and therefore the identity 

map id : (𝑋, 𝜏) ⟶  𝑋, 𝜏 ′  is the required map to have our space (𝑋, 𝜏) to be 𝐶2 -paracompact.■ 

     Since any regular Lindelöff space is normal, then this is not hard to show 

Corollary 3.9. Let (𝑋, 𝜏) be an epi 𝛼-regular Lindeloff space, and the attested of epi 𝛼-regularity is first 

countable, then (𝑋, 𝜏) is epinormal.■ 

     Remind that a topological space (𝑋, 𝜏) is called nearly compact [23] if every open cover of 𝑋 has a finite 

subfamily the interiors of the closures of whose members covers 𝑋. 

Theorem 3.10. If (𝑋, 𝜏) is a Hausdorff nearly compact space, then (𝑋, 𝜏) is epi 𝛼-regular. 

Proof. Let (𝑋, 𝜏) be a Hausdorff nearly compact space, and let 𝜏𝐴 be the semi regularization of 𝜏, then 𝜏𝑠  is a 

Hausdorff nearly compact space. Therefore 𝜏𝐴 is 𝑇4, and hence 𝑇2, 𝛼-regular. Therefore (𝑋, 𝜏) is epi 𝛼-regular.■ 

     Remind that a topological space (𝑋, 𝜏) is called partially normal [18] if for any two disjoint subsets 𝐴 and 𝐵 

of 𝑋, where 𝐴 is regularly closed and 𝐵 is 𝜋-closed, there exist two disjoint open subsets 𝑈 and 𝑉 of 𝑋 

containing 𝐴 and 𝐵 respectively. 

Theorem 3.11. If (𝑋, 𝜏) is a semi regular partial normal space and 𝜏𝑠  is 𝑇1, then (𝑋, 𝜏) is epi 𝛼-regular. 

Proof. It is enough to show that  𝑋, 𝜏𝑠  is 𝛼-regular. Let 𝑈 be any open set containing 𝑥 in  𝑋, 𝜏𝑠 . By 

semiregularity, there is an open set 𝑊 such that 𝑥 ⊆ 𝑊 ⊆ int(W ) ⊆ 𝑈. Since int (W ) is regularly open and 

using the same idea of theorem 2.11 in [2] there exists an open set 𝑉 in  𝑋, 𝜏𝑠  such that 𝑥 ⊆ 𝑉 ⊆ 𝑉 ⊆

int(W ) ⊆ 𝑈. Therefore 𝐴 ∩ 𝑉       ⊆ 𝑉 ⊆ int(𝑈 ) ⊆ 𝐵. Hence  𝑋, 𝜏𝑠  is 𝛼-regular, and then (𝑋, 𝜏) is epi 𝛼-

regular.■ 

     Epi 𝛼-regularity and 𝛼-normality do not imply each other. For example, the Dieudonné topology and The 

deleted Tychonoff Plank, see [26] and [33], are not normal space nor 𝛼 -normal, but they are epi 𝛼-regular 

because they are zero dimensional. 

     Remind that a space  𝑋, 𝜏  is called almost 𝛼-normal [11] if for any two disjoint closed subsets 𝐴 and 𝐵 of 𝑋 

one of which is regularly closed there exist disjoint open subsets 𝑈 and 𝑉 of 𝑋 such that 𝐴 ∩  𝑈 is dense in 𝐴 

and 𝐵 ∩  𝑉 is dense in 𝐵. That is, 𝐴 ∩  𝑈         = 𝐴 and 𝐵 ∩  𝑉         = 𝐵. and a space   𝑋, 𝜏   is called almost 𝛽-normal 

[11] if for any two disjoint closed subsets 𝐴 and 𝐵 of 𝑋 one of which is regularly closed there exist disjoint open 

subsets 𝑈 and 𝑉 of 𝑋 such that 𝐴 ∩  𝑈 is dense in 𝐴 and 𝐵 ∩  𝑉 is dense in 𝐵. That is, 𝐴 ∩  𝑈         = 𝐴 , 𝐵 ∩  𝑉         =
𝐵 and 𝑈 ∩  𝑉 = ∅. 

       Note that almost α-normality (almost β-normality) and epi 𝛼-regularity are not related to each other. For 

example, ℝ with the particular point topology 𝜏𝑝 , see [8], [33], where the particular point is 𝑝 ∈ ℝ, is  not 

normal nor 𝛽-normal nor 𝛼-normal. But the space is almost 𝛽-normal and almost 𝛼-normal since the only 

regularly closed sets are ℝ and ∅. However this space is not Hausdorff and then it is epi 𝛼-regular. Conversely, 

Any indiscrete space which has more than one element is an example of an almost α-normal (almost β-normal) 

space which is not epi 𝛼-regular. However, every almost α normal extremely disconnected space is epi 𝛼-

regular. 

     A 𝛽-normal epi 𝛼 -regular non normal space example found in [29] which as follows: 

Example 3.12. Let 𝑆 =  𝛼 < 𝜔2: 𝑐𝑓(𝛼) = 𝜔1 , and consider the set 𝑋 =  (𝛼, 𝛽): 𝛽 ≤ 𝛼 ≤ 𝜔2 , (𝛼, 𝛽) ≠
𝜔2,𝜔2 and its partition into 

𝐴 =  (𝛼, 𝛼): 𝛼 < 𝜔2 

𝐵 =   𝜔2 , 𝛽 : 𝛽 < 𝜔2 

𝐷 =   𝛼, 𝛽): 𝛽 < 𝛼 < 𝜔2  
 

Topologize 𝑋 as follow: Let each (𝛼, 𝛽) ∈ 𝐷 be isolated, and let an open base in (𝛼, 𝛼) ∈ 𝐴 consists of all sets 

of type 

 (𝛾, 𝛾): 𝛼0 < 𝛾 ≤ 𝛼 ∪ ⋃ {𝛾} × 𝐶𝛾 : 𝛼0 < 𝛾 ≤ 𝛼, 𝛾 ∈ 𝑆  

where 𝛼0 < 𝛼 and every 𝐶𝛾  is a closed and unbounded (club) subset of 𝛾, and let an open base in  𝜔2 , 𝛽 ∈ 𝐵 

consists of all sets 

 (𝛼, 𝛾): 𝛽0 < 𝛾 ≤ 𝛽, 𝛼𝛾 < 𝛾 ≤ 𝜔2  
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where 𝛽0 < 𝛽, 𝛽 ≤ 𝛼𝛾 < 𝜔2. 

All above defined basic open neighborhoods are closed. That is, 𝑋 is zero dimensional hence it is epi 𝛼 -regular. 

Murtinová in [29] proved that this space is 𝛽 -normal non normal. 

    Remind that a toplogical space (𝑋, 𝜏) is called epi-mildly normal [17] if there exists a coarser topology 𝜏 ′  on 

𝑋 such that  𝑋, 𝜏 ′  is Hausdorff, mildly normal. 

     The following theorem induced by theorem 2.4 in [26] shows a relationship between epi-mildly normality, 𝛽 

-normal and epi 𝛼 -regular. 

Theorem 3.13. If a topological space is epi-mildly normal and the witness of epi-mildly normality is 𝛽-normal 

then (𝑋, 𝜏) is epi 𝛼-regular. 

Proof. Let (𝑋, 𝜏) be a topological epi-mildly normal space and the attested of epi-mildly normal epinormal is 𝛽 -

normal, then there is a coarser topological space  𝑋, 𝜏 ′  that is Hausdorff, mildly normal and 𝛽-normal, so by 

theorem (2.4) in [26] then  𝑋, 𝜏 ′  is Hausdorrf and normal, and therefore it is Hansdorff 𝛼 -normal, and so 
 𝑋, 𝜏 ′  is 𝑇1, 𝛼 -regular [10]. Hence (𝑋, 𝜏) is epi 𝛼 -regular.■ 

     Epi 𝛼 -regularity does not imply mildly normality. 

Example 3.14. [3] Let ℙ denote the irrationals and ℚ denote the rationals. For each 𝑝 ∈ ℙ and 𝑛 ∈ ℕ, let 

𝑝𝑛 =  𝑝,
1

𝑛
 ∈ ℝ2. For each 𝑝 ∈ ℙ, choose a sequence  𝑝𝑛

∗ 𝑛∈N  of rationals such that 𝑝𝑛
′ =  𝑝𝑛

∗ , 0 → (𝑝, 0) 

where the convergence is taken in ℝ2 with its usual topology 𝒰. For each 𝑝 ∈ ℙ and 𝑛 ∈ ℕ, let 𝐴𝑛((𝑝, 0)) =
 𝑝𝑘

′ : 𝑘 ≥ 𝑛  and 𝐵𝑛((𝑝, 0)) =  𝑝𝑘 : 𝑘 ≥ 𝑛 . Now,for each 𝑝 ∈ ℙ and 𝑛 ∈ ℕ, let 𝑈𝑛 ((𝑝, 0)) = {(𝑝, 0)} ∪

𝐴𝑛((𝑝, 0)) ∪ 𝐵𝑛((𝑝, 0)). Let 𝑋 =  (𝑥; 0) ∈ ℝ2: 𝑥 ∈ ℝ ∪ {𝑝𝑛 =  𝑝,
1

𝑛
 ∈ ℝ2: 𝑝 ∈ ℙ and  𝑛 ∈ ℕ . For each 𝑞 ∈

ℚ, let 𝐵((𝑞, 0)) = {{(𝑞, 0)}}. For each 𝑝 ∈ ℙ, let 𝐵((𝑝, 0)) =  𝑈𝑛((𝑝, 0)): 𝑛 ∈ ℕ . For each 𝑝 ∈ ℙ and each 

𝑛 ∈ ℕ, let 𝐵 𝑝𝑛 =   𝑝𝑛   . Denote by 𝜏 the unique topology on 𝑋 that has  𝐵((𝑥, 0)), 𝐵 𝑝𝑛 :𝑥 ∈ ℝ, 𝑝 ∈  Pandn 

∈ ℕ} as its neighbomood system. Let 𝑍 = {(𝑥, 0): 𝑥 ∈ ℝ}. That is, 𝑍 is the 𝑥 -axis. Then (𝑍, 𝜏) ≅ (ℝ, ℛ𝒮), 

where ℛ𝒮 is the Rational Sequence Topology, see [33]. Since 𝑍 is closed in 𝑋 and (ℝ, ℛ𝒮) is not normal, then 

𝑋 is not normal, but, since any basic open set is closed-and-open and 𝑋 is 𝑇1, then 𝑋 is zero-dimensional, hence 

epi 𝛼-regular. Now, Let 𝐴 ⊆ ℙ and 𝐵 ⊆ ℙ be closed disjoint subsets that cannot be separated in (ℝ, ℛ𝒮). Let 

𝐺 =∪  𝐵1((𝑝, 0)): 𝑝 ∈ 𝐴  and 𝐻 =∪  𝐵1((𝑝, 0)):𝑝 ∈ 𝐵 . Then 𝐺 and 𝐻are both open in (𝑋, 𝜏) and 𝐺  and 𝐻  are 

disjoint closed domains that cannot be separated, hence 𝑋 is not mildly normal. 

     Epi 𝛼-regularity does not imply epinormality, and here is an example. 

Example 3.15. Let 𝐺 = 𝐷ω1  where 𝐷 = {1,2} with the discrete topology. Let 𝐻 be the subspace of 𝐺 consisting 

of all points of 𝐺 with at most countabl many zero coondinates. Put 𝑋 = 𝐺 × 𝐻. Raushan Buzyakova proved 

that 𝑋 cannot be mapped onto a normal space 𝑌 be a bijective continuous function [7]. Using Buzyakova’s and 

the fact that 𝑋 is 𝑘 -space [[8],3.3.27], then this implies that 𝑋 is Tychonoff and so is epi 𝛼 -regular and it 

cannot be 𝐶-normal see 3], and since epinormality implies 𝐶-normailty, then 𝑋 cannot be epinormal. 
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