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Abstract: In this study it is proposes and analyzed a compartmental nonlinear deterministic mathematical 

model for the human Papilloma virus epidemic together with the inclusion of optimal control strategies in a 

community with varying population. The model is studied qualitatively using stability theory of differential 

equations. The basic reproductive number that governs the disease transmission is obtained from the largest 

eigenvalue of the next-generation matrix. Both local and global asymptotic stability conditions for disease-free 

and endemic equilibria are determined. It is observed that the model exhibits a backward bifurcation and the 

sensitivity analysis is performed. The optimal control problem is designed by applying Pontryagin maximum 

principle with three control strategies viz. prevention strategy, treatment strategy and screening strategy. 

Numerical results of the optimal control model reveal that a combination of prevention, screening and treatment 

is the most effective strategy to eradicate the disease from the community. 
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I. Introduction 
Human Papilloma Virus (HPV) is highly transmissible and is now regarded as the most common 

sexually transmitted infection (STI). It is estimated that over half of all sexually active males and females will 

be infected with HPV at some time. HPV is generally transmitted via skin-to-skin contact during sexual 

intercourse and less commonly through other forms of non-penetrative genital contact. Sexual behavior is 

directly related to the probability of acquiring a HPV infection. Prevalence of cervical HPV infection is highest 

amongst women under the age of 25 and lowest amongst women who have never had sex. Increased risk of 

exposure to HPV is proportionally linked to infection and therefore abstaining from sexual activity ensures the 

lowest risk. A monogamous sexual relationship with a partner who has had no or few previous partners 

decreases the risk of contracting an infection, as does the correct use of physical barriers such as condoms [1]. 

However, most of the HPV infections are asymptomatic and can feed away without treatment over the 

course of a few years. For instance, about 70% of HPV infections fed away with in a year and 90 % within two 

years. However, in some people infection can persist for many years and can cause warts or low risk genotype 

of HPV, while other types lead to different kinds of cancers or high risk genotype of HPV, including cervical 

cancer [2-3]. Although HPV itself cannot be treated, the cellular changes that come from any HPV infection can 

be treated. For examples, genital warts, cervical, anal, and genital cancers can be treated if the infection is 

diagnosed during the early stage of development. Pre-cancerous cell changes caused by HPV can be detected by 

Pap tests and treat individuals who are found already infected [3]. 

According to the National Cancer Registry, cancer kills more people than HIV/AIDS, malaria and 

tuberculosis combined [4]. Statistics show that there are 18.1 million new cases, 9.6 million cancer related 

deaths, and 43.8 million people living with cancer in 2018. The number of new cases is expected to rise from 18 

million to 22 million by 2030 and the number of global cancer deaths is projected to increase by 45% by 2030 

[5].  

Mathematical modeling plays an important role in increasing our understanding of the dynamics of 

infectious diseases and also to investigate the optimal use of intervention strategies to control the spread of 

infectious diseases. Old and recent studies such as [1, 6, 7] amongst others have shown that mathematical 

modeling is a widely used tool for resolving questions on public health. Several SIR models [8-10] have been 

developed to assess the potential impact of vaccination against Human Papilloma Virus. Also, [11, 12] 

formulated an SIS model for Human Papilloma Virus transmission with vaccination as a control strategy and 

[13] developed a dynamic model for the heterosexual transmission of Human Papilloma Virus types 16 and 18, 

which are covered by available vaccines. 

However, none of them considered optimal control strategy and also no study have been undertaken by 

applying optimal control. In view of the above, we developed a deterministic mathematical model to investigate 

the dynamics of Human Papilloma Virus with optimal control strategies. 
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II. Model Description and Formulation 
Mathematical modeling process requires translation of a biological scenario into a mathematical 

problem. It begins with a clear description of the processes based on the scientists understanding of the system. 

The translation into mathematical equations should be made with a specific goal or biological question in mind. 

Then the verbal description of the system is encoded in mathematical equations. Mathematical models usually 

consist of parameters and variables that are connected by relationships. Variables are abstractions of the system 

properties that can be quantified or measured and parameters describe the rate of variables [14]. 

The model divides the total population into six sub-classes according to their disease status as Susceptible  𝑆(𝑡), 

Vaccinated  𝑉(𝑡), Asymptomatic  𝐴(𝑡), Infected   𝐼 𝑡 , Recovered    𝑅(𝑡), and Cervical cancer  𝐶(𝑡). Here, a 

mathematical model of the Human Papilloma Virus model is constructed based on the following assumptions:  

(i) The model assumes that a fraction of the population has been vaccinated before the disease outbreak at the 

rate 𝑝 and  1 − 𝑝  fraction of population susceptible.  

(ii) The susceptible class is increased from vaccinated class in which those individuals who are vaccinated but 

did not respond to vaccination with waning rate of  𝜑  and from recovered class in which those individuals 

who lose their temporary immunity by 𝜔 rate.  

(iii) Individuals from susceptible class move to vaccinated class with vaccination rate of 𝛼 .  
(iv) The susceptible class is infected by asymptomatic or symptomatically infected individuals with a force of 

infection 𝜆 = 𝛽 𝐼 + 𝛾𝐴 𝑁   where, 𝛽 = 𝜅𝜏, 𝜅 is contact rate, 𝜏 is the probability that a contact is effective 

to cause infection and  𝛾  is the transmission coefficient for the asymptomatic individuals. If  𝛾 > 1 then, 

the asymptomatic infect susceptible more likely than infective. If  𝛾 = 1, then both asymptomatic and 

infective have equal chance to infect the susceptible, but if  𝛾 < 1 then, the infective have good chance to 

infect susceptible than asymptomatic. 

(v) The HPV vaccine is assumed to not confer permanent immunity and vaccinated individuals also have a 

change of being infectious or asymptomatic with small proportion and the force of infection for the 

vaccinated class is  𝜆𝜈 = 𝜀𝜆, where 0 ≤ 𝜀 ≤ 1 and  𝜀 is the proportion of the serotype not covered by the 

vaccine.  

(vi) Newly infected individuals by the force of infection become either asymptomatic with a probability of  𝜌 to 

join the asymptomatic class or more to the infected class with probability of   1 − 𝜌 .  

(vii) The asymptomatic class can develop disease symptom or can screen themselves and join the infected class 

with a rate of  𝜃 or recover by gaining natural immunity at  𝜙 rate.  

(viii) Individuals in the infected class move to recovered compartment at a rate of  𝜂  by treatment, with treatment 

efficacy of  𝑞 proportion of individuals join the recovered class or join the asymptomatic class with   1 − 𝑞  

proportion by adapting the treatment or may progress to develop cervical cancer is a result of failure of the 

treatment used at a rate  𝛿  thus moving to cervical cancer compartment.  

(ix) Individual infected with cervical cancer may die as a result of the cancer infection at a rate  𝜉. 

(x) In all compartments  𝜇 is the natural mortality rate of individuals and also all the parameters are positive. 

(xi) All parameters in the model are positive. 

 

2.1 Description of Variables and Parameters 

The variables and parameters used in this model are introduced in Tables 1 and 2. Their notations and 

descriptions are also included. 

 

Table 1 Description of Variables used in the model equations (1) – (6) 
Variable Description 

𝐍(𝐭) The total population at time t 

𝐒 𝐭  The number of Susceptible individuals at time t 

𝐕 𝐭  The number of Vaccination individuals at time t 

𝐀 𝐭  The number of Asymptomatic individuals at time t 

𝐈 𝐭  The number of Infected individuals at time t 

𝐑 𝐭  The number of Recovered individuals at time t 

 

Table 2 Description of parameters used in the model equations (1) – (6) 
Parameter Description 

 𝜫 Recruited rate of susceptible individuals.  

𝜷 Transmission rate.  

𝜿 Contact rate. 

𝜸 Transmission coefficient. 

𝝉 The probability that a contact is effective. 

𝝀  Force of infection for susceptible class. 

𝝀𝝂 = 𝜺𝝀  Force of infection for vaccination class. 

𝜶 Vaccination rate of susceptible individuals.  
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𝝋 

 

Waning rate i.e., individuals who are vaccinated but did not respond to vaccination. 

𝝎 Recovery rate. With this rate cells transfer from compartment  𝑹  to  𝑺. 

𝝓 Recovery rate of asymptomatic due to natural immunity. 

𝜺 The proportion of the serotype not covered by the vaccine. 

𝜼 Rate of treatment.  

𝜹 Rate of failure of treatment.   

𝜽 Infection rate of asymptomatic. 

𝝃 Death rate due to infection.  

𝝁 Natural death rate.  

 

Based on the model assumptions the population flow diagram can be visualized as shown in Figure 1.  

 
Figure 1 Schematic Diagram of the Model 

 

The population flow diagram as shown in Figure 1 can be translated into a system of six differential equations as 

follows: 

                𝑑𝑆 𝑑𝑡 =  1 − 𝑝 Π + φV −  𝛼 + 𝜌𝜆 + 𝜇 𝑆 + 𝜔𝑅,                                              (1) 

                𝑑𝑉 𝑑𝑡 = 𝑝Π + 𝛼𝑆 − (𝜑 + 𝜀𝜆 + 𝜇)𝑉,                                                                   (2) 

                𝑑𝐴 𝑑𝑡 = 𝜌𝜆𝑆 + 𝜌𝜀𝜆𝑉 + (1 − 𝑞)𝜂𝐼 − (𝜃 + 𝜙 + 𝜇)𝐴 ,                                         (3) 

              𝑑𝐼 𝑑𝑡 =  1 − 𝜌 𝜆𝑆 +  1 − 𝜌 𝜀𝜆𝑉 + 𝜃𝐴 −  𝛿 + 𝜂 + 𝜇 𝐼                                       (4) 

                𝑑𝑅 𝑑𝑡 = 𝜙𝐴 + 𝑞𝜂𝐼 − (𝜔 + 𝜇)𝑅                                                                            (5) 

             𝑑𝐶 𝑑𝑡 = 𝛿𝐼 − (𝜉 + 𝜇)𝐶                                                                                            (6) 

The non-negative initial conditions of the system of model equations (1) – (6) are denoted by   𝑆 0 =
𝑆0 ,   𝑉 0 = 𝑉0 , 𝐴 0 = 𝐴0, 𝐼 0 = 𝐼0 , 𝑅 0 = 𝑅0, 𝐶 0 =  𝐶0. This system consists of six first order non-

linear ordinary differential equations. 
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III. Model Analysis 
a. Invariant Region 

We obtained the invariant region, in which the model solution is bounded. To do this, first we considered the 

total human population  (𝑁), Here 𝑁 = 𝑆 + 𝑉 + 𝐴 + 𝐼 + 𝑅 + 𝐶 . Then, differentiating  𝑁 both sides with 

respect to 𝑡 leads to; 

  𝑑𝑁 𝑑𝑡 =  𝑑𝑆 𝑑𝑡  +  𝑑𝑉 𝑑𝑡  +  𝑑𝐴 𝑑𝑡  +  𝑑𝐼 𝑑𝑡  +  𝑑𝑅 𝑑𝑡  +  𝑑𝐶 𝑑𝑡                (7) 

By combining (1 − 6) and  (7), we can get 

              𝑑𝑁 𝑑𝑡 = Π − 𝜇𝑁 − 𝛿𝐶                                                                                          (8) 

In the absence of mortality due to cervical cancer disease (8) becomes 

             𝑑𝑁 𝑑𝑡 = Π − 𝜇𝑁                                                                                                      (9)             

Equivalently this inequality can be expressed as a linear ordinary differential inequality as  dN(t) dt  +
μN t ≤ Π giving general solution upon solving as  N t ≤  Π μ  + 𝑐𝑒−𝜇𝑡 . But, the term  𝑁(0) denotes the 

initial values of the respective variable i.e., N t = N 0   at t = 0. Thus, the particular solution can be expressed 

as  N t ≤  Π μ  +  N 0 −  Π μ   𝑒−𝜇𝑡 . Further, it can be observed that 𝑁(𝑡) →   Π μ   as 𝑡 → ∞. That is, the 

total population size  𝑁 𝑡  takes off from the value N 0  at the initial time t = 0 and ends up with the bounded 

value    Π μ   as the time  𝑡 grows to infinity. Thus, it can be concluded that 𝑁 𝑡  is bounded as  0 ≤ 𝑁(𝑡) ≤
 Π μ  . Thus, the feasible solution set of the system equation of the model enters and remains in the region: 

Ω =   𝑆, 𝑉, 𝐴, 𝐼, 𝑅, 𝐶   ∈  ℜ+
6  ∶   𝑁 ≤ Π 𝜇   

Therefore, the basic model is well posed epidemiologically and mathematically. Hence, it is sufficient to study 

the dynamics of the basic model in the region   Ω. 

b. Existence of the solution 

Lemma 1 (Existence) Solutions of the model equations (1) – (6) together with the initial conditions     𝑆 0 >
0,   𝑉 0 > 0, 𝐴 0 > 0, 𝐼 0 > 0, 𝑅 0 > 0, 𝐶 0 > 0 exist in  ℝ+

6  i.e., the model variables 𝑆 𝑡 ,   𝑉 𝑡 ,
𝐴 𝑡 , 𝐼 𝑡 , 𝑅 𝑡  and   𝐶(𝑡)  exist for all  𝑡  and will remain in  ℝ+

6 . 

Proof The right hand sides of the system of equations (1) – (6) can be expressed as follows: 

𝑓1 𝑆, 𝑉, 𝐴,     𝐼, 𝑅,    𝐶 =  1 − 𝑝 Π + φV −  𝛼 + 𝜌𝜆 + 𝜇 𝑆 + 𝜔𝑅 

 

 𝑓2 𝑆, 𝑉, 𝐴,     𝐼, 𝑅,    𝐶 = 𝑝Π + 𝛼𝑆 − (𝜑 + 𝜀𝜆 + 𝜇)𝑉 

𝑓3 𝑆, 𝑉, 𝐴,     𝐼, 𝑅,    𝐶 = 𝜌𝜆𝑆 + 𝜌𝜀𝜆𝑉 + (1 − 𝑞)𝜂𝐼 − (𝜃 + 𝜙 + 𝜇)𝐴         (10) 

 

𝑓4 𝑆, 𝑉, 𝐴,     𝐼, 𝑅,    𝐶 =  1 − 𝜌 𝜆𝑆 +  1 − 𝜌 𝜀𝜆𝑉 + 𝜃𝐴 −  𝛿 + 𝜂 + 𝜇 𝐼 

𝑓5 𝑆, 𝑉, 𝐴,     𝐼, 𝑅,    𝐶 = 𝜙𝐴 + 𝑞𝜂𝐼 − (𝜔 + 𝜇)𝑅 

𝑓6 𝑆, 𝑉, 𝐴,     𝐼, 𝑅,    𝐶 = 𝛿𝐼 − (𝜉 + 𝜇)𝐶 

According to Derrick and Groosman theorem, let Ω denote the region   Ω =    𝑆, 𝑉, 𝐴,     𝐼, 𝑅,    𝐶  ∈
ℝ+6; N≤Πμ. Then equations (1) – (6) have a unique solution if 𝜕𝑓𝑖𝜕𝑥𝑗,  𝑖,𝑗=1, 2, 3, 4, 5, 6 are continuous and 

bounded in  Ω. Here,  𝑥1 = 𝑆,   𝑥2 = 𝑉, 𝑥3 = 𝐴,   𝑥4 = 𝐼, 𝑥5 = 𝑅 and  𝑥6 = 𝐶. The continuity and the 

boundedness are verified as here under: 

 

Table 3 Continuity and boundedness of the model solution 
  𝜕𝑓1  𝜕𝑆   =   − 𝛽(𝐼 + 𝛾𝐴) 𝑁 + 𝛼 + 𝜇  < ∞ 

   𝜕𝑓1  𝜕𝑉   =   𝜑 < ∞ 
  𝜕𝑓1  𝜕𝐴   =   − 𝛽𝛾𝑆 𝑁   < ∞ 
  𝜕𝑓1  𝜕𝐼   =   − 𝛽𝑆 𝑁   < ∞ 
  𝜕𝑓1  𝜕𝑅   =   𝜔 < ∞ 
  𝜕𝑓1  𝜕𝐶   = 0 < ∞. 

   𝜕𝑓2  𝜕𝑆   =   𝛼 < ∞ 

   𝜕𝑓2  𝜕𝑉   =   − 𝜑 + 𝜀𝜆 + 𝜇  < ∞ 
  𝜕𝑓2  𝜕𝐴   =   − 𝛽𝛾𝜀𝑆 𝑁   < ∞ 
  𝜕𝑓2  𝜕𝐼   =   − 𝛽𝜀𝑆 𝑁   < ∞ 
  𝜕𝑓2  𝜕𝑅   =  0 < ∞ 
  𝜕𝑓2  𝜕𝐶   = 0 < ∞. 

  𝜕𝑓3  𝜕𝑆   =   𝜌𝜆 < ∞ 

   𝜕𝑓3  𝜕𝑉   =   𝜌𝜆𝜀 < ∞ 
  𝜕𝑓3  𝜕𝐴   =   − 𝜃 + 𝜙 + 𝜇  < ∞ 
  𝜕𝑓3  𝜕𝐼   =    1 − 𝑞 𝜂 < ∞ 

  𝜕𝑓3  𝜕𝑅   =  0 < ∞ 
  𝜕𝑓3  𝜕𝐶   = 0 < ∞. 

   𝜕𝑓4  𝜕𝑆   =   (1 − 𝜌)𝜆 < ∞ 

   𝜕𝑓4  𝜕𝑉   =   (1 − 𝜌)𝜀𝜆 < ∞ 
  𝜕𝑓4  𝜕𝐴   =    1 − 𝜌  𝛽𝛾𝑆 𝑁  + (1 − 𝜌) 𝛽𝛾𝜀𝑆𝑉 𝑁   < ∞ 
  𝜕𝑓4  𝜕𝐼   =   − 𝛽𝜀𝑆 𝑁   < ∞ 

  𝜕𝑓4  𝜕𝑅   =  0 < ∞ 
  𝜕𝑓4  𝜕𝐶   = 0 < ∞. 

  𝜕𝑓5  𝜕𝑆   =  0 < ∞ 

   𝜕𝑓5  𝜕𝑉   =  0 < ∞ 
  𝜕𝑓5  𝜕𝐴   =   𝜙 < ∞ 

  𝜕𝑓5  𝜕𝐼   =   𝑞𝜂 < ∞ 
  𝜕𝑓5  𝜕𝑅   =   −(𝜔 + 𝜇) < ∞ 
  𝜕𝑓5  𝜕𝐶   = 0 < ∞. 

  𝜕𝑓6  𝜕𝑆   =  0 < ∞ 

   𝜕𝑓6  𝜕𝑉   =  0 < ∞ 
  𝜕𝑓6  𝜕𝐴   =  0 < ∞ 

  𝜕𝑓6  𝜕𝐼   =   𝛿 < ∞ 
  𝜕𝑓6  𝜕𝑅   =  0 < ∞ 
  𝜕𝑓6  𝜕𝐶   =  −(𝜉 + 𝜇) < ∞. 

                         

Thus, all the partial derivatives   𝜕𝑓𝑖  𝜕𝑥𝑗  ,   𝑖, 𝑗 = 1, 2, 3, 4, 5, 6    exist, continuous and bounded in  Ω. Hence, 

by Derrick and Groosman theorem, a solution for the model (1) – (6) exists and is unique. 
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c. Positivity of the solution 

We assumed that the initial condition of the model is nonnegative, and now we also will show that the solution 

of the model is also positive. 

Theorem 1 Let   Ω =    𝑆, 𝑉, 𝐴,     𝐼, 𝑅,    𝐶  ∈ ℝ+
6 ; S0 > 0, V0 > 0, A0 > 0, I0 > 0, R0 > 0, C0 > 0  ; 

then the solutions of   𝑆, 𝑉, 𝐴,     𝐼, 𝑅,    𝐶  are positive for all  𝑡 ≥ 0. 

Proof Positivity is verified separately for each of the model variables 𝑆 𝑡 ,   𝑉 𝑡 , 𝐴 𝑡 , 𝐼 𝑡 , 𝑅 𝑡 ,  and  𝐶(𝑡). 

Positivity of  𝑆 𝑡 : The model equation (1) given by 𝑑𝑆 𝑑𝑡 =  1 − 𝑃 Π + φV −  𝛽(𝐼 + 𝛾𝐴) 𝑁 +  𝛼 + 𝜇 𝑆 +
𝜔𝑅 can be expressed without loss of generality, after eliminating the positive terms     1 − 𝑃 Π + φV + 𝜔𝑅  
which are appearing on the right hand side, as an inequality as  𝑑𝑆 𝑑𝑡 ≥ − 𝛽(𝐼 + 𝛾𝐴) 𝑁 +  𝛼 + 𝜇 𝑆. Using 

variables separable method and on applying integration, the solution of the foregoing differentially inequality 

can be obtained as   𝑆 𝑡 ≥ 𝑆0 𝑒𝑥𝑝 − (𝛼 + 𝜆 + 𝜇)𝑡  Recall that an exponential function is always non–negative 

irrespective of the sign of the exponent, i.e., the exponential function   𝑒𝑥𝑝 − (𝛼 + 𝜆 + 𝜇)𝑡    is a non-negative 

quantity. Hence, it can be concluded that  𝑆 𝑡 ≥ 0.    

Positivity of  𝑉 𝑡 : The model equation (2) given by 𝑑𝑉 𝑑𝑡 = 𝑝Π + 𝛼𝑆 − (𝜑 + 𝜀𝜆 + 𝜇)𝑉 can be expressed 

without loss of generality, after eliminating the positive term  𝑝Π + 𝛼𝑆  which are appearing on the right hand 

side, as an inequality as  𝑑𝑉 𝑑𝑡 ≥ −(𝜑 + 𝜀𝜆 + 𝜇)𝑉. Using variables separable method and on applying 

integration, the solution of the foregoing differentially inequality can be obtained as      𝑉 𝑡 ≥ 𝑉0 𝑒𝑥𝑝 − (𝜑 +
𝜀𝜆+𝜇)𝑡. Recall that an exponential function is always non–negative irrespective of the sign of the exponent, i.e., 

the exponential function   𝑒𝑥𝑝 − (𝜑 + 𝜀𝜆 + 𝜇)𝑡  is a non-negative quantity. Hence, it can be concluded 

that  𝑉 𝑡 ≥ 0.  

Positivity of  𝐴 𝑡 : The model equation (3) given by 𝑑𝐴 𝑑𝑡 = 𝜌𝜆𝑆 + 𝜌𝜀𝜆𝑉 + (1 − 𝑞)𝜂𝐼 − (𝜃 + 𝜙 + 𝜇)𝐴 can 

be expressed without loss of generality, after eliminating the positive term  𝜌𝜆𝑆 + 𝜌𝜀𝜆𝑉 + (1 − 𝑞)𝜂𝐼  which are 

appearing on the right hand side, as an inequality as  𝑑𝐴 𝑑𝑡 ≥ −(𝜃 + 𝜙 + 𝜇)𝐴. Using variables separable 

method and on applying integration, the solution of the foregoing differentially inequality can be obtained 

as   𝐴 𝑡 ≥ 𝐴0 𝑒𝑥𝑝 − (𝜃 + 𝜙 + 𝜇)𝑡 . Recall that an exponential function is always non–negative irrespective of 

the sign of the exponent, i.e., the exponential function  𝑒𝑥𝑝 − (𝜃 + 𝜙 + 𝜇)𝑡  is a non-negative quantity. Hence, 

it can be concluded that  𝐴 𝑡 ≥ 0.  

Positivity of  𝐼 𝑡 : The model equation (4) given by 𝑑𝐼 𝑑𝑡 =  1 − 𝜌 𝜆𝑆 +  1 − 𝜌 𝜀𝜆𝑉 + 𝜃𝐴 −  𝛿 + 𝜂 + 𝜇 𝐼 

can be expressed without loss of generality, after eliminating the positive term   1 − 𝜌 𝜆𝑆 +  1 − 𝜌 𝜀𝜆𝑉 +
𝜃𝐴which are appearing on the right hand side, as an inequality as  𝑑𝐼𝑑𝑡≥−𝛿+𝜂+𝜇𝐼 . Using variables separable 

method and on applying integration, the solution of the foregoing differentially inequality can be obtained 

as  𝐼(𝑡) ≥ 𝐼0 𝑒𝑥𝑝 −  𝛿 + 𝜂 + 𝜇 𝑡 . Recall that an exponential function is always non–negative irrespective of 

the sign of the exponent, i.e., the exponential function  𝑒𝑥𝑝 −  𝛿 + 𝜂 + 𝜇 𝑡  is a non-negative quantity. Hence, 

it can be concluded that  𝐼 𝑡 ≥ 0.    
Positivity of  𝑅 𝑡 : The model equation (5) given by 𝑑𝑅 𝑑𝑡 = 𝜙𝐴 + 𝑞𝜂𝐼 − (𝜔 + 𝜇)𝑅 can be expressed without 

loss of generality, after eliminating the positive term  𝜙𝐴 + 𝑞𝜂𝐼 which are appearing on the right hand side, as 

an inequality as  𝑑𝑅 𝑑𝑡 ≥ −(𝜔 + 𝜇)𝑅 . Using variables separable method and on applying integration, the 

solution of the foregoing differentially inequality can be obtained as 𝑅(𝑡) ≥ 𝑅0 𝑒𝑥𝑝 − (𝜔 + 𝜇)𝑡 . Recall that an 

exponential function is always non–negative irrespective of the sign of the exponent, i.e., the exponential 

function  𝑒𝑥𝑝 − (𝜔 + 𝜇)𝑡  is a non-negative quantity. Hence, it can be concluded that  𝑅 𝑡 ≥ 0.  

Positivity of  𝐶 𝑡 : The model equation (5) given by 𝑑𝐶 𝑑𝑡 = 𝛿𝐼 − (𝜉 + 𝜇)𝐶 can be expressed without loss of 

generality, after eliminating the positive term  𝛿𝐼 which are appearing on the right hand side, as an inequality as  

𝑑𝐶 𝑑𝑡 ≥ −(𝜉 + 𝜇)𝐶. Using variables separable method and on applying integration, the solution of the 

foregoing differentially inequality can be obtained as 𝐶(𝑡) ≥ 𝐶0 𝑒𝑥𝑝 − (𝜉 + 𝜇)𝑡 . Recall that an exponential 

function is always non–negative irrespective of the sign of the exponent, i.e., the exponential function  𝑒𝑥𝑝 −
(𝜉+𝜇)𝑡 is a non-negative quantity. Hence, it can be concluded that  𝐶𝑡≥0.  

Thus, the model variables 𝑆 𝑡 ,   𝑉 𝑡 , 𝐴 𝑡 , 𝐼 𝑡 , 𝑅(𝑡) and 𝐶(𝑡)  representing population sizes of various types 

of cells are positive quantities and will remain in  ℝ+
6   for all  𝑡. 

3.4 The Disease Free Equilibrium (DFE) 

To find the disease free equilibrium, we equated the right hand sides of model equations (1 − 6) to zero, 

evaluating it at 𝐴 = 𝐼 = 𝐶 = 0 and solving for the non-infected and non-asymptomatic variables. Thus, the 

disease-free equilibrium point of the model equation in (1) – (6) above is given by 

𝐸0 =  𝑆0 , 𝑉0,       𝐴0, 𝐼0, 𝑅0, 𝐶0 =   π μ  h1 ,    π μ  h2 , 0, 0, 0, 0  
Where 1 =  𝜑 − 𝜇 + 𝜇𝑝  𝛼 + 𝜑 + 𝜇     and   2 =  𝛼 + 𝜇𝑝  𝛼 + 𝜑 + 𝜇  . 

3.5 The Basic Reproduction Number  ℜ0  

In this section we obtained the threshold parameter that governs the spread of a disease which is called the basic 

reproduction number is obtained. To obtain the basic reproduction number, we used the next-generation matrix 

method so that it is the spectral radius of the next-generation matrix [14]. 
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The model equations are rewritten starting with newly infective classes: 

                                          𝑑𝐴 𝑑𝑡 = 𝜌𝜆𝑆 + 𝜌𝜀𝜆𝑉 + (1 − 𝑞)𝜂𝐼 − (𝜃 + 𝜙 + 𝜇)𝐴 ,                                          

                                          𝑑𝐼 𝑑𝑡 =  1 − 𝜌 𝜆𝑆 +  1 − 𝜌 𝜀𝜆𝑉 + 𝜃𝐴 −  𝛿 + 𝜂 + 𝜇 𝐼,                                                                             

                                                  𝑑𝐶 𝑑𝑡 = 𝛿𝐼 − (𝜉 + 𝜇)𝐶                                                                                             

Then by the principle of next-generation matrix, we obtained 

𝐹𝑖 =  
 𝜌𝛽(𝐼 + 𝛾𝐴)𝑆 𝑁 +  𝜌𝜀𝛽(𝐼 + 𝛾𝐴)𝑉 𝑁 

  1 − 𝜌 𝛽(𝐼 + 𝛾𝐴)𝑆 𝑁 +   1 − 𝜌 𝜀𝛽(𝐼 + 𝛾𝐴)𝑉 𝑁 

0

    and      𝑉𝑖 =  

 𝜃 + 𝜙 + 𝜇 𝐴 − (1 − 𝑞)𝜂𝐼

 𝛿 + 𝜂 + 𝜇 𝐼 − 𝜃𝐴

 𝜉 + 𝜇 𝐶 − 𝛿𝐼

                  

(11) 

The Jacobian matrices of 𝐹𝑖  and 𝑉𝑖  evaluated at DFE are given by 𝐹 and  𝑉, respectively, such that 

  𝐹 =  
𝜌𝛽𝛾𝑘1 𝜌𝛽𝑘1 0

 1 − 𝜌 𝛽𝛾𝑘1  1 − 𝜌 𝛽𝑘1 0
0 0 0

   and     𝑉 =  

𝑐 −(1 − 𝑞)𝜂 0
−𝜃 𝑑 0
0 −𝛿 𝑓

          (12)                             

Here   𝑘1 = 1 + 𝜀2   and  𝑘2 = 𝑐𝑑 − 𝜃𝜂(1 − 𝑞). 

It can be verified that the matrix  𝑉 is non-singular as its determinant 𝑑𝑒𝑡 𝑉 = 𝑓𝜂 𝑐𝑑 − 𝜃(1 − 𝑞)    is non-zero 

and after some algebraic computations its inverse matrix is constructed as 

𝑉−1 =  

 𝑑 𝑘2    1 − 𝑞 𝜂 𝑘2  0

 𝜃 𝑘2   𝑐 𝑘2  0
 −𝜃𝛿 𝑓𝑘2   𝑐𝛿 𝑓𝑘2   1 𝑓  

 . 

The product of the matrices 𝐹 and  𝑉−1 can be computed as: 

𝐹𝑉−1 =

 
 
 
 
 

𝜌𝛽𝛾𝑘1 𝜌𝛽𝑘1 0

 1 − 𝜌 𝛽𝛾𝑘1  1 − 𝜌 𝛽𝑘1 0

0 0 0 
 
 
 
 

    

 
 
 
 
 

 𝑑 𝑘2    1 − 𝑞 𝜂 𝑘2  0

 𝜃 𝑘2   𝑐 𝑘2  0

 −𝜃𝛿 𝑓𝑘2   𝑐𝛿 𝑓𝑘2   1 𝑓   
 
 
 
 

 

 

=

 
 
 
 
 
  𝜌𝛽𝑘1𝑘3 𝑘2  +  𝜌𝛽𝑘1 𝑘2      1 − 𝑞 𝜂𝜌𝛽𝛾𝑘1 𝑘2  +  𝑐𝜌𝛽𝑘1 𝑘2   0

  𝑑𝜌𝛽𝛾𝑘1 𝑘2  +  𝜃𝜌𝛽𝑘1 𝑘2      1 − 𝜌  1 − 𝑞 𝜂𝛽𝛾𝑘1 𝑘2  +   1 − 𝜌 𝑐𝛽𝑘1 𝑘2   0

0 0 0 
 
 
 
 

 

 

=

 
 
 
 
 

  𝑘1𝑘3𝜌𝛽 𝑘2    𝑘1𝑘4𝜌𝛽 𝑘2  0

  1 − 𝜌  𝑘1𝑘3 𝑘2     1 − 𝜌  𝛽𝑘1𝑘4 𝑘2   0

0 0 0 
 
 
 
 

 

 

Now it is possible to calculate the eigenvalue to determine the basic reproduction number ℜ0 by taking the 

spectral radius of the matrix  𝐹𝑉−1. Thus, the eigenvalues are computed by evaluating  𝑑𝑒𝑡  𝐹𝑉−1 − 𝜓𝐼 = 0 or 

equivalently solving 

 
 

  𝑘1𝑘3𝜌𝛽 𝑘2    𝑘1𝑘4𝜌𝛽 𝑘2  0

  1 − 𝜌  𝑘1𝑘3 𝑘2     1 − 𝜌  𝛽𝑘1𝑘4 𝑘2   0

0 0 0

 
 = 0 

It reduces to the cubic equation for  𝜓 as 

  −𝜓   𝑘1𝑘3𝜌𝛽 𝑘2    1 − 𝜌  𝛽𝑘1𝑘4 𝑘2   − 𝜓  𝑘1𝑘3𝜌𝛽 𝑘2  − 𝜓  1 − 𝜌  𝛽𝑘1𝑘4 𝑘2   + 𝜓2 = 0 . 

Giving the three eigenvalues as 

  𝜓1 =    𝑘1𝑘3𝜌𝛽 𝑘2  +   1 − 𝜌  𝛽𝑘1𝑘4 𝑘2       

 𝜓2 = 0   
𝜓3 = 0 

 

Here, 1 =  𝜑 − 𝜇 + 𝜇𝑝  𝛼 + 𝜑 + 𝜇   ,  

              2 =  𝛼 + 𝜇𝑝  𝛼 + 𝜑 + 𝜇  ,  

             𝑘1 = 1 + 𝜀2 ,  

              𝑘2 = 𝑐𝑑 − 𝜃𝜂(1 − 𝑞), 

              𝑘3 = 𝑑𝛾 + 𝜃, 
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               𝑘4 =  1 − 𝑞 𝜂𝛾 + 𝑐, 

               𝑎 = (𝛼 + 𝜆 + 𝜇), 

               𝑏 = (𝜑 + 𝜀𝜆 + 𝜇), 

               𝑐 = (𝜃 + 𝜙 + 𝜇), 

               𝑑 = (𝛿 + 𝜂 + 𝜇), 

               𝑒 = (𝜔 + 𝜇), 

               𝑓 = (𝜉 + 𝜇).    

However, the dominant eigenvalue here is 𝜓1 =  𝜅𝜏𝑘1 𝑘2   𝑘3𝜌 + (1 − 𝜌)𝑘4  and is the spectral radius as the 

threshold value or the basic reproductive number. Thus, it can be concluded that the reproduction number of the 

model is  ℜ0 =  𝜅𝜏𝑘1 𝑘2   𝑘3𝜌 + (1 − 𝜌)𝑘4 . 
3.6 Local Stability of Disease Free Equilibrium 

Theorem 2 The disease free equilibrium point  𝐸0 of the system (1) – (6) is locally asymptotically stable if 

  ℜ0 < 1 and unstable if  ℜ0 > 1. 

Proof To proof this theorem first we obtain the Jacobian matrix of system (10) at the disease free equilibrium 

 𝐸0 as follows: 

𝐽(𝐸0) =

 
 
 
 
 
 
 
 
 
 
 
−𝑎 𝜑 𝛽𝛾1 𝛽1 𝜔 0

𝛼 −𝑏 𝛽𝜀𝛾2 𝛽𝜀2 0 0

0 0 𝜌𝛽𝛾𝑘1 − 𝑐 𝜌𝛽𝑘1 − (1 − 𝑞)𝜂 0 0

0 0  1 − 𝜌 𝛽𝛾𝑘1 + 𝜃  1 − 𝜌 𝛽𝑘1 − 𝑑 0 0

0 0 𝜙 𝑞𝜂 −𝑒 0

0 0 0 𝛿 0 −𝑓 
 
 
 
 
 
 
 
 
 
 

 

Now, the eigenvalues of  𝐽 𝐸0  are required to be found. The characteristic equation 𝑑𝑒𝑡 𝐽 𝐸0 − 𝜓𝐼 = 0 is 

expanded and simplified as follows: 

 

 

 

 

−𝑎 − 𝜓 𝜑 𝛽𝛾1 𝛽1 𝜔 0

𝛼 −𝑏 − 𝜓 𝛽𝜀𝛾2 𝛽𝜀2 0 0

0 0  𝜌𝛽𝛾𝑘1 − 𝑐 − 𝜓 𝜌𝛽𝑘1 − (1 − 𝑞)𝜂 0 0

0 0  1 − 𝜌 𝛽𝛾𝑘1 + 𝜃   1 − 𝜌 𝛽𝑘1 − 𝑑 − 𝜓 0 0

0 0 𝜙 𝑞𝜂 −𝑒 − 𝜓 0

0 0 0 𝛿 0 −𝑓 − 𝜓

 

 

 

= 0 

 −𝑓 − 𝜓  −𝑒 − 𝜓   𝜌𝛽𝛾𝑘1 − 𝑐 − 𝜓   1 − 𝜌 𝛽𝑘1 − 𝑑 − 𝜓 

−   1 − 𝜌 𝛽𝛾𝑘1 + 𝜃  𝜌𝛽𝑘1 − (1 − 𝑞)𝜂    −𝑎 − 𝜓  −𝑏 − 𝜓 − 𝛼𝜑 = 0 

  −𝑓 − 𝜓 = 0,  −𝑒 − 𝜓 = 0,   𝜌𝛽𝛾𝑘1 − 𝑐 − 𝜓   1 − 𝜌 𝛽𝑘1 − 𝑑 − 𝜓 −   1 − 𝜌 𝛽𝛾𝑘1 +

𝜃𝜌𝛽𝑘1− 1−𝑞)𝜂=0, −𝑎−𝜓−𝑏−𝜓−𝛼𝜑=0 

Thus, the five eigenvalues of the matrix are determined as  

𝜓1 = −𝑓 

    𝜓2 = −𝑒 

𝜓3 =  − 𝑎 + 𝑏 +   𝑎 + 𝑏 2 − 4(𝑎𝑏 − 𝛼𝜑) 2   

𝜓4 =  − 𝑎 + 𝑏 −   𝑎 + 𝑏 2 − 4(𝑎𝑏 − 𝛼𝜑) 2  

𝜓5 =
 𝜌𝛽𝛾𝑘1 − 𝑐 +  1 − 𝜌 𝛽𝑘1 − 𝑑 +  (𝜌𝛽𝛾𝑘1 − 𝑐 +  1 − 𝜌 𝛽𝑘1 − 𝑑)2 − 4𝑘3)

2
 

 𝜓6 =
 𝜌𝛽𝛾𝑘1 − 𝑐 +  1 − 𝜌 𝛽𝑘1 − 𝑑 −  (𝜌𝛽𝛾𝑘1 − 𝑐 +  1 − 𝜌 𝛽𝑘1 − 𝑑)2 − 4𝑘3)

2
 

It can be observed that the first three eigenvalues   𝜓1  and 𝜓2  are absolutely negative quantities. However, the 

remaining two  𝜓3,  𝜓4 ,    𝜓5   and  𝜓6 are also negatives so long as the following restrictions on the parameters 

are valid: 𝑎𝑏 > 𝛼𝜑,   2 𝑎𝑏 − 𝛼𝜑 < (𝑎 + 𝑏)2 , 4𝑘3 > 2(𝜌𝛽𝛾𝑘1 + (1 − 𝜌)𝛽𝑘1)2 and 𝑘3 < 0   respectively, 

when  ℜ0 < 1. 
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Therefore, it is concluded that the DFE 𝐸0 of the system of differential equations (1) – (6) is locally 

asymptotically stable if ℜ0 < 1 and unstable if  ℜ0 > 1. 

 

3.7 Global Stability of the DFE 𝐸0 

 Theorem 3 The disease free equilibrium point  𝐸0  of the model is globally asymptotically stable if 

 ℜ0 < 1 and unstable if  ℜ0 > 1. 

Proof Using the comparison theorem as given in [14], the rate of change of the variables representing the 

disease classes of the model can be rewritten as  

                                
𝐴′

𝐼′

𝐶 ′

 =  𝐹 − 𝑉  
𝐴
𝐼
𝐶
 − 𝑀𝜃  

𝐴
𝐼
𝐶
                              (12) 

However, 𝑀 =  1 −  𝑆0 𝑁0   = 0 since  𝑆0 =  𝜋 𝜇  ,  𝑁0 =  𝜋 𝜇    and 𝜃  is non-negative matrix.  Therefore, 

the equation (12) reduces to the simplified form as 

 
𝐼𝑢

′

𝐼𝑠
′

𝐶0

 ≤  𝐹 − 𝑉  
𝐼𝑢
𝐼𝑠
𝐶

  

Here in (12), the matrices 𝐹 and 𝑉 at the disease free equilibrium 𝐸0 are defined as 

𝐹 =  
𝜌𝛽𝛾𝑘1 𝜌𝛽𝑘1 0

 1 − 𝜌 𝛽𝛾𝑘1  1 − 𝜌 𝛽𝑘1 0
0 0 0

      and      𝑉 =  

𝑐 −(1 − 𝑞)𝜂 0
−𝜃 𝑑 0
0 −𝛿 𝑓

  

Now, (𝐹 − 𝑉) can be computed as 

𝐹 − 𝑉 =  
𝜌𝛽𝛾𝑘1 𝜌𝛽𝑘1 0

 1 − 𝜌 𝛽𝛾𝑘1  1 − 𝜌 𝛽𝑘1 0
0 0 0

 −  
𝑐 − 1 − 𝑞 𝜂 0

−𝜃 𝑑 0
0 −𝛿 𝑓

  

                                  =  

𝜌𝛽𝛾𝑘1 − 𝑐 𝜌𝛽𝑘1 + (1 − 𝑞)𝜂 0

 1 − 𝜌 𝛽𝛾𝑘1 + 𝜃  1 − 𝜌 𝛽𝑘1 − 𝑑 0
0 𝛿 −𝑓

                                          (13) 

 

 

Next, elementary row-operations are used to row-reduce the matrix in (13) to a lower triangular as in (14).  
𝐹 − 𝑉 =

  

  𝜌𝛽𝑘1 + (1 − 𝑞)𝜂   1 − 𝜌 𝛽𝛾𝑘1 + 𝜃 +  𝜌𝛽𝛾𝑘1 − 𝑐   1 − 𝜌 𝛽𝑘1 − 𝑑    1 − 𝜌 𝛽𝑘1 − 𝑑  0 0

  1 − 𝜌 𝛽𝛾𝑘1 + 𝜃   1 − 𝜌 𝛽𝑘1 − 𝑑 0
0 𝛿 −𝑓

                             

(14) 

The eigenvalues of matrix (14) are found by evaluating the characteristic equation  det  𝐹 − 𝑉 − 𝜓𝐼 = 0 as 

follows: 

𝜓1 = 𝑓, 
𝜓2 =   1 − 𝜌 𝛽𝑘1 − 𝑑 , 

𝜓3 =   𝜌𝛽𝑘1 + (1 − 𝑞)𝜂   1 − 𝜌 𝛽𝛾𝑘1 + 𝜃 +  𝜌𝛽𝛾𝑘1 − 𝑐   1 − 𝜌 𝛽𝑘1 − 𝑑    1 − 𝜌 𝛽𝑘1 − 𝑑  . 

Here it can be observed that the first eigenvalue   𝜓1 is absolutely negative quantity. However, the remaining 

eigenvalue  𝜓2   is also negative when   1 − 𝜌 𝛽𝑘1 < 𝑑 and 𝜓3 is negative when  − 𝜌𝛽𝑘1 + (1 − 𝑞)𝜂   1 −
𝜌𝛽𝛾𝑘1+𝜃<𝜌𝛽𝛾𝑘1−𝑐1−𝜌𝛽𝑘1−𝑑 . Hence, the disease free equilibrium point  𝐸0  is globally asymptotically 

stable if   ℜ0 < 1 and unstable if  ℜ0 > 1. 

                3.8 The Endemic Equilibrium 

Endemic equilibrium point  𝐸1 is a steady state solution where the disease persists in the community. For the 

existence and uniqueness of endemic equilibrium  𝐸1 =   𝑆∗, 𝑉∗, 𝐴∗,    𝐼∗,    𝑅∗,   𝐶∗ , its coordinates should 

satisfy the conditions  𝐸1 =   𝑆∗, 𝑉∗, 𝐴∗,    𝐼∗,    𝑅∗,   𝐶∗ ≠ 0, where S0 > 0, V0 > 0, A0 > 0, I0 > 0, R0 >
0,     andC0 > 0. The endemic equilibrium point is obtained by setting left hand sides of equations of the system 

(1) – (6) to zero. We then solved for state variables in terms of the force of infection,  𝜆∗  and obtain the 

following; 

 

𝑆∗ =  𝑏𝑉∗ − 𝑝Π 𝛼  

 

𝑉∗ =  𝑝Π 1 − ρ λ∗ + αC∗k5 − αθedR∗   1 − 𝜌 𝜆∗   
 

𝐴∗ =  𝑒𝛿R∗ − qηfC∗  𝛿   
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𝐼∗ = 𝑓𝐶∗ 𝛿  

 

𝑅∗ =  k8C∗  𝑘6   

𝑉∗ =  Πk6 1 − ρ  pλ∗ ab − α − pa − α(1 − p)   𝑘7𝑘8 − 𝑘5𝑘6(𝑎𝑏 − 𝛼)   

Here  𝑘5 = 𝑓𝑑 + 𝜃𝑞𝜂𝑓,  𝑘6 = 𝛿𝑒 𝛿𝜌𝜃 + (1 − 𝜌)𝑐 ,  𝑘7 = 𝜃𝑒𝑑 𝑎𝑏 − 𝛼 + 𝜔𝜆∗(1 − 𝜌)  and  𝑘8 =
 𝛿𝜌𝑘5 + 𝑓𝜂(1 − 𝜌)   1 − 𝜌 + 𝑞𝑐  .         

On substituting the expression for 𝐼∗ and 𝐴∗ into the force of infection, that is,  𝜆∗ =  𝛽(𝐼∗ + 𝛾𝐴∗) 𝑁 , 

characteristic polynomial of force of infection is obtained as  

𝑝 𝜆∗ = 𝐷1𝜆
∗ − 𝐷2  

Here 𝐷1 = 𝜇𝛽𝑝𝑘9 1 − 𝜌 (𝑎𝑏 − 𝛼) and 𝐷2 = −𝜇𝛽𝑘9(1 − ρ) 𝑝𝑎 + 𝛼(1 − 𝑝) , where,  𝑘9 = 𝑓𝑘6 − 𝑘6𝛾𝑞𝜂𝑓 +
𝛾𝑒𝛿𝑘8. 

Clearly, 𝐷1 > 0 and  𝐷2 ≤ 0, whenever    ℜ0 < 1, and  𝜆∗ = 𝐷2 𝐷1 ≥ 0. From this, we see that, for  ℜ0 < 1, 

there is a unique endemic equilibrium for this model. Therefore, this condition shows that it is possible for 

backward bifurcation in the model if  ℜ0 < 1.  

Lemma 2 A unique endemic equilibrium point   𝐸1 exists and is positive if  ℜ0 > 1. 

 3.9 The global stability of the endemic equilibrium 

Theorem 4 If  ℜ0 > 1, the endemic equilibrium   𝐸1 of the model  1 − 6  is globally asymptotically stable. 

Proof To prove the global asymptotic stability of the endemic equilibrium we use the method of Lyapunov 

functions. Define 

𝐿 𝑆∗, 𝑉∗, 𝐴∗,    𝐼∗,    𝑅∗,   𝐶∗ 
=  𝑆 − 𝑆∗ − 𝑆∗𝑙𝑛 𝑆∗ 𝑆   +  𝑉 − 𝑉∗ − 𝑉∗𝑙𝑛 𝑉∗ 𝑉   +  𝐴 − 𝐴∗ − 𝐴∗𝑙𝑛 𝐴∗ 𝐴   
+  𝐼 − 𝐼∗ − 𝐼∗𝑙𝑛 𝐼∗ 𝐼   +  𝑅 − 𝑅∗ − 𝑅∗𝑙𝑛 𝑅  +  𝐶 − 𝐶∗ − 𝐶∗𝑙𝑛 𝐶∗ 𝐶    

By direct calculating the derivative of 𝐿 along the solution  1 − 6  we have 

𝑑𝐿 𝑑𝑡 =   𝑆 − 𝑆∗ 𝑆  𝑑𝑆 𝑑𝑡 +   𝑉 − 𝑉∗ 𝑉  𝑑𝑉 𝑑𝑡 +   𝐴 − 𝐴∗ 𝐴  𝑑𝐴 𝑑𝑡 +   𝐼 − 𝐼∗ 𝐼  𝑑𝐼 𝑑𝑡 +
  𝑅 − 𝑅∗ 𝑅  𝑑𝑅 𝑑𝑡 +   𝐶 − 𝐶∗ 𝐶  𝑑𝐶 𝑑𝑡 , 

=   𝑆 − 𝑆∗ 𝑆    1 − 𝑝 Π + φV −  𝛼 + 𝜌𝜆 + 𝜇 𝑆 + 𝜔𝑅 +   𝑉 − 𝑉∗ 𝑉   𝑝Π + 𝛼𝑆 − (𝜑 + 𝜀𝜆 + 𝜇)𝑉 
+   𝐴 − 𝐴∗ 𝐴   𝜌𝜆𝑆 + 𝜌𝜀𝜆𝑉 + (1 − 𝑞)𝜂𝐼 − (𝜃 + 𝜙 + 𝜇)𝐴  
+   𝐼 − 𝐼∗ 𝐼    1 − 𝜌 𝜆𝑆 +  1 − 𝜌 𝜀𝜆𝑉 + 𝜃𝐴 −  𝛿 + 𝜂 + 𝜇 𝐼 
+   𝑅 − 𝑅∗ 𝑅   𝜙𝐴 + 𝑞𝜂𝐼 − (𝜔 + 𝜇)𝑅 +   𝐶 − 𝐶∗ 𝐶   𝛿𝐼 − (𝜉 + 𝜇)𝐶  

=  1 − 𝑆∗ 𝑆    1 − 𝑝 Π + φV −  𝛼 + 𝜌𝜆 + 𝜇 𝑆 + 𝜔𝑅 +  1 − 𝑉∗ 𝑉   𝑝Π + 𝛼𝑆 − (𝜑 + 𝜀𝜆 + 𝜇)𝑉 
+  1 − 𝐴∗ 𝐴   𝜌𝜆𝑆 + 𝜌𝜀𝜆𝑉 + (1 − 𝑞)𝜂𝐼 − (𝜃 + 𝜙 + 𝜇)𝐴  
+  1 − 𝐼∗ 𝐼    1 − 𝜌 𝜆𝑆 +  1 − 𝜌 𝜀𝜆𝑉 + 𝜃𝐴 −  𝛿 + 𝜂 + 𝜇 𝐼 
+  1 − 𝑅∗ 𝑅   𝜙𝐴 + 𝑞𝜂𝐼 − (𝜔 + 𝜇)𝑅 +  1 − 𝐶∗ 𝐶   𝛿𝐼 − (𝜉 + 𝜇)𝐶  

𝑑𝐿 𝑑𝑡 = Π +  (1 − 𝜌)𝜀𝜆𝑉𝐼∗ 𝐼 + 𝛼𝑆∗ + 𝜌𝜆𝑆∗ + 𝜑𝑉∗ + 𝜀𝜆𝑉∗ + 𝜃𝐴∗ + 𝜙𝐴∗ + 𝛿𝐼∗ + 𝜂𝐼∗ + 𝜔𝑅∗ + 𝜉𝐶∗

+  𝑆∗ + 𝑉∗ + 𝐴∗ +    𝐼∗ +   𝑅∗ +    𝐶∗ 𝜇 + 𝜆𝑆
−   (1 − 𝑝)Π𝑆∗ 𝑆  +  φV𝑆∗ 𝑆  +  ωR𝑆∗ 𝑆  +  pΠ𝑉∗ 𝑉  +  αI𝑉∗ 𝑉  +  ρλS𝐴∗ 𝐴  
+  ρελV𝐴∗ 𝐴  +  (1 − q)ηI𝐴∗ 𝐴  +  (1 − ρ)λS𝐼∗ 𝐼  +  θA𝐼∗ 𝐼  +  ϕA𝑅∗ 𝑅  
+  qηI𝑅∗ 𝑅  +  δI𝐶∗ 𝐶  + 𝑁𝜇 + 𝜌𝜆𝑆 + 𝜉𝐶  

Thus collecting positive and negative terms together we obtain 

𝑑𝐿 𝑑𝑡 = Π +  (1 − 𝜌)𝜀𝜆𝑉𝐼∗ 𝐼 + 𝛼𝑆∗ + 𝜌𝜆𝑆∗ + 𝜑𝑉∗ + 𝜀𝜆𝑉∗ + 𝜃𝐴∗ + 𝜙𝐴∗ + 𝛿𝐼∗ + 𝜂𝐼∗ + 𝜔𝑅∗ + 𝜉𝐶∗ + 𝑁∗𝜇
+ 𝜆𝑆
−   (1 − 𝑝)Π𝑆∗ 𝑆  +  φV𝑆∗ 𝑆  +  ωR𝑆∗ 𝑆  +  pΠ𝑉∗ 𝑉  +  αI𝑉∗ 𝑉  +  ρλS𝐴∗ 𝐴  
+  ρελV𝐴∗ 𝐴  +  (1 − q)ηI𝐴∗ 𝐴  +  (1 − ρ)λS𝐼∗ 𝐼  +  θA𝐼∗ 𝐼  +  ϕA𝑅∗ 𝑅  
+  qηI𝑅∗ 𝑅  +  δI𝐶∗ 𝐶  + 𝑁𝜇 + 𝜌𝜆𝑆 + 𝜉𝐶 , 

𝑑𝐿 𝑑𝑡 = 𝑄 − 𝐾. 

Here, 𝑄 = Π +  (1 − 𝜌)𝜀𝜆𝑉𝐼∗ 𝐼 + 𝛼𝑆∗ + 𝜌𝜆𝑆∗ + 𝜑𝑉∗ + 𝜀𝜆𝑉∗ + 𝜃𝐴∗ + 𝜙𝐴∗ + 𝛿𝐼∗ + 𝜂𝐼∗ + 𝜔𝑅∗ + 𝜉𝐶∗ +
𝑁∗𝜇 + 𝜆𝑆, 

𝐾 =   (1 − 𝑝)Π𝑆∗ 𝑆  +  φV𝑆∗ 𝑆  +  ωR𝑆∗ 𝑆  +  pΠ𝑉∗ 𝑉  +  αI𝑉∗ 𝑉  +  ρλS𝐴∗ 𝐴  +  ρελV𝐴∗ 𝐴  
+  (1 − q)ηI𝐴∗ 𝐴  +  (1 − ρ)λS𝐼∗ 𝐼  +  θA𝐼∗ 𝐼  +  ϕA𝑅∗ 𝑅  +  qηI𝑅∗ 𝑅  +  δI𝐶∗ 𝐶  
+ 𝑁𝜇 + 𝜌𝜆𝑆 + 𝜉𝐶  

𝑁 = 𝑆 + 𝑉 + 𝐴 + 𝐼 + 𝑅 + 𝐶  and  𝑁∗ = 𝑆∗ + 𝑉∗ + 𝐴∗ + 𝐼∗ + 𝑅∗ + 𝐶∗ 

Thus if  𝑄 < 𝐾, then 𝑑𝐿 𝑑𝑡  ≤ 0. Noting that 𝑑𝐿 𝑑𝑡 = 0 if and only if 𝑆 = 𝑆∗, 𝑉 = 𝑉∗, 𝐴 = 𝐴∗, 𝐼 = 𝐼∗, 𝑅 =
𝑅∗, 𝐶 = 𝐶∗. Therefore, the largest compact invariant set in   𝑆∗, 𝑉∗, 𝐴∗,    𝐼∗,    𝑅∗,   𝐶∗ ∈ Ω:  𝑑𝐿 𝑑𝑡 = 0  is 

the singleton 𝐸1 is the endemic equilibrium of the system   1 − 6 . By LaSalle’s invariant principle (LaSalle’s, 

1976), it implies that 𝐸1 is globally asymptotically stable in Ω if  𝑄 < 𝐾. 
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IV.  Backward Bifurcation Analysis 
The possible presence of backwards bifurcations in simple disease models has important qualitative 

implications. Backward bifurcation allows multiple stable states with fixed parameters. Further, small changes 

in parameters can produce large changes in equilibrium behavior. Imagine a population in which the disease is 

absent and   ℜ0  is changing slowly. In backward bifurcation, once  ℜ0 > 1, the disease can invade to a 

relatively high endemic level. Further, decreasing  ℜ0   to its former level will not necessarily make the disease 

disappear. 

Moreover, if a disease lowers its reproductive rate by invading, it would be expected that when 

  ℜ0 < 1 and it cannot invade a population, it could never persist at all. Further when   ℜ0  is slightly above 1, 

the disease would be expected to reach a low endemic level, because of this negative feedback. In particular, 

when  ℜ0 = 1, each infection exactly replaces itself in the linear approximation. Hence, we would expect the 

disease to be able to invade at   ℜ0 = 1 in backward bifurcation. 

Intuitively speaking, we are going to develop a criterion for whether the disease can invade when 

  ℜ0 = 1 by assuming that the disease invades a small amount along the dominant eigenvector, calculating the 

vector field at a point along the dominant eigenvector near the disease free equilibrium, and multiplying by the 

dominant left eigenvector to find out if the component of the vector field in the direction of the dominant 

eigenvector is positive or negative. 

We investigate the nature of the bifurcation by using the method introduced in [15], which is based on 

the use of the central manifold theory. In short, the method is summarized by theorem 4.1 in [15]. In such a 

theorem, there are two important quantities the coefficients, 𝑎 and  𝑏, of the normal form representing the 

dynamics of the system on the central manifold. These coefficients decide the bifurcation. In particular, if 𝑎 < 0 

and 𝑏 > 0, then the bifurcation is forward and if 𝑎 > 0 and 𝑏 > 0, then the bifurcation is backward. This is done 

by renaming the variables as follows; 

Let 𝑆 = 𝑥1 , 𝑉 = 𝑥2 , 𝐴 = 𝑥3 , 𝐼 = 𝑥4 , 𝑅 = 𝑥5, 𝐶 = 𝑥6    further by introducing the vector notation  𝑥 =
 𝑥1,    𝑥2 ,     𝑥3,    𝑥4 ,      𝑥5 ,       𝑥6 ,  𝑇 . Then the model can be written in the form of: 

𝑑𝑥 𝑑𝑡 = 𝐹(𝑥) 

Where 𝐹 =  𝑓1,    𝑓2,     𝑓3,    𝑓4,      𝑓5,       𝑓6,  𝑇  

 

As follows 

                                         𝑑𝑥1 𝑑𝑡 =  1 − 𝑝𝜒 Π + φ𝑥2 + 𝜔𝑥5 −  𝛼 + 𝜌𝜆 + 𝜇 𝑥1 ,                                               
                                         𝑑𝑥2 𝑑𝑡 = 𝑝𝜒Π + 𝛼𝑥1 − (𝜑 + 𝜀𝜆 + 𝜇)𝑥2,                                                                    

                                          𝑑𝑥3 𝑑𝑡 = 𝜌𝜆𝑥1 + 𝜌𝜀𝜆𝑥2 + (1 − 𝑞)𝜂𝑥4 − (𝜃 + 𝜙 + 𝜇)𝑥3 ,    (16)                               

                                          𝑑𝑥4 𝑑𝑡 =  1 − 𝜌 𝜆𝑥1 +  1 − 𝜌 𝜀𝜆𝑥2 + 𝜃𝑥3 −  𝛿 + 𝜂 + 𝜇 𝑥4 ,                                        
                                          𝑑𝑥5 𝑑𝑡 = 𝜙𝑥3 + 𝑞𝜂𝑥4 −  𝜔 + 𝜇 𝑥5 ,                                                                             
                                         𝑑𝑥6 𝑑𝑡 = 𝛿𝑥4 − (𝜉 + 𝜇)𝑥6  

Where 𝑁 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6         

Then the Jacobian system at the disease free; 

              𝐽(𝐸0) =

 
 
 
 
 
 
−𝑎 𝜑 𝛽𝛾1 𝛽1 𝜔 0
𝛼 −𝑏 𝛽𝜀𝛾2 𝛽𝜀2 0 0
0 0 𝜌𝛽𝛾𝑘1 − 𝑐 𝜌𝛽𝑘1 − (1 − 𝑞)𝜂 0 0

0 0  1 − 𝜌 𝛽𝛾𝑘1 + 𝜃  1 − 𝜌 𝛽𝑘1 − 𝑑 0 0
0 0 𝜙 𝑞𝜂 −𝑒 0
0 0 0 𝛿 0 −𝑓 

 
 
 
 
 

              (17)    

Suppose that 𝛽 = 𝛽∗ is a bifurcation, the system (17) is linearized at the disease free equilibrium point when 

𝛽∗ = 𝛽 with  ℜ0 = 1, solving for  𝛽∗ for   ℜ0 = 1 from: 

  ℜ0 =
𝛽  (𝜑 − 𝜇 + 𝜇𝑝)   𝛿 + 𝜂 + 𝜇 𝛾 + 𝜃 𝜌 +  1 − 𝜌  1 − 𝑞 𝜂𝛾(𝜃 + 𝜙 + 𝜇)  

 𝛼 + 𝜑 + 𝜇  𝜃 + 𝜙 + 𝜇  𝛿 + 𝜂 + 𝜇 − 𝜃𝜂(1 − 𝑞)
= 1 

We obtained  

𝛽∗ =
 𝛼 + 𝜑 + 𝜇  𝜃 + 𝜙 + 𝜇  𝛿 + 𝜂 + 𝜇 − 𝜃𝜂(1 − 𝑞)

𝛽  (𝜑 − 𝜇 + 𝜇𝑝)   𝛿 + 𝜂 + 𝜇 𝛾 + 𝜃 𝜌 +  1 − 𝜌  1 − 𝑞 𝜂𝛾(𝜃 + 𝜙 + 𝜇)  
 

The system (18) with  𝛽 = 𝛽∗ has a simple zero eigenvalues, hence the central manifold theory will be used to 

analyze the dynamics of the system near 𝛽 = 𝛽∗. The Jacobian matrix near 𝛽 = 𝛽∗ has a right eigenvector 

associated with the zero eigenvalue given by  𝑤 = (𝑤1 ,    𝑤2 ,     𝑤3 ,    𝑤4 ,      𝑤5 ,       𝑤6)𝑇  from the system; 



Optimal Control Strategy on Human Papilloma Virus (HPV) model with Backward Bifurcation .. 

DOI: 10.9790/5728-1506026587                                     www.iosrjournals.org                                        75 | Page 

𝐽 𝐸0 =

 
 
 
 
 
 
−𝑎 𝜑 𝛽𝛾1 𝛽1 𝜔 0
𝛼 −𝑏 𝛽𝜀𝛾2 𝛽𝜀2 0 0

0 0 𝜌𝛽𝛾𝑘1 − 𝑐 𝜌𝛽𝑘1 −  1 − 𝑞 𝜂 0 0

0 0  1 − 𝜌 𝛽𝛾𝑘1 + 𝜃  1 − 𝜌 𝛽𝑘1 − 𝑑 0 0
0 0 𝜙 𝑞𝜂 −𝑒 0
0 0 0 𝛿 0 −𝑓 

 
 
 
 
 

 
 
 
 
 
 
𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6 
 
 
 
 
 

=

 
 
 
 
 
 
0
0
0
0
0
0 
 
 
 
 
 

         (18) 

The system of equation becomes; 

−𝑎𝑤1 + 𝜑𝑤2 +  𝛽𝛾1𝑤3+ 𝛽1𝑤4 + 𝜔𝑤5=0 

                                 𝛼𝑤1 − 𝑏𝑤2 +  𝛽𝜀𝛾1𝑤3+ 𝛽𝜀1𝑤4=0                                   (19) 

 𝜌𝛽𝛾𝑘1 − 𝑐 𝑤3 +   𝜌𝛽𝑘1 −  1 − 𝑞 𝜂 𝑤4 = 0 

  1 − 𝜌 𝛽𝛾𝑘1 + 𝜃 𝑤3 +    1 − 𝜌 𝛽𝑘1 − 𝑑 𝑤4 = 0 

𝜙𝑤3 + 𝑞𝜂𝑤4 − 𝑒𝑤5 = 0 

𝛿𝑤4 − 𝑓𝑤6 = 0 

Solving system of equation (19) we obtained; 

𝑤1 =  𝑏𝑤2 +  𝛽𝜀𝛾1𝑤3+ 𝛽𝜀1𝑤4  𝛼   

𝑤2 = 𝑤2 > 0 

𝑤3 =   1 − 𝑞 𝜂 − 𝜌𝛽𝑘1 𝑤4  𝜌𝛽𝛾𝑘1 − 𝑐   

𝑤4 = 𝑤4 > 0 

𝑤5 =  𝜙𝑤3 + 𝑞𝜂𝑤4  𝑒   

𝑤6 = 𝛿𝑤4  𝑓   

The left eigenvectors of 𝐽(𝐸0) associated with the zero eigenvalue at 𝛽∗ = 𝛽 is given by 

𝑣 = (𝑣1 ,    𝑣2 ,     𝑣3 ,    𝑣4,      𝑣5,       𝑣6)𝑇  from the system (16) 

𝐽 𝐸01 =

 
 
 
 
 
 

−𝑎 𝛼 0 0 0 0
𝜑 −𝑏 0 0 0 0

𝛽𝛾1 𝛽𝜀𝛾2 𝜌𝛽𝛾𝑘1 − 𝑐  1 − 𝜌 𝛽𝛾𝑘1 + 𝜃 𝜙 0

𝛽1 𝛽𝜀2 𝜌𝛽𝑘1 −  1 − 𝑞 𝜂  1 − 𝜌 𝛽𝑘1 − 𝑑 𝑞𝜂 𝛿
𝜔 0 0 0 −𝑒 0
0 0 0 0 0 −𝑓 

 
 
 
 
 

 
 
 
 
 
 
𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6 
 
 
 
 
 

=

 
 
 
 
 
 
0
0
0
0
0
0 
 
 
 
 
 

 (20)    

The system of equation (20) becomes; 

−𝑎𝑣1 + 𝛼𝑣2 = 0 

𝜑𝑣1 − 𝑏𝑣2 = 0 

                     𝛽𝛾1𝑣1 + 𝛽𝜀𝛾2𝑣2 +  𝜌𝛽𝛾𝑘1 − 𝑐 𝑣3 +   1 − 𝜌 𝛽𝛾𝑘1 + 𝜃 𝑣4 + 𝜙𝑣5 = 0  (21)                

𝛽1𝑣1 + 𝛽𝜀2𝑣2 +  𝜌𝛽𝑘1 − (1 − 𝑞)𝜂 𝑣3 +   1 − 𝜌 𝛽𝑘1 − 𝑑 𝑣4 + 𝑞𝜂𝑣5 + 𝛿𝑣6 = 0 

𝜔𝑣1 − 𝑒𝑣5 = 0,      −𝑓𝑣6 = 0 

Solving system of equation (21) we obtained; 

𝑣1 = 𝑣2 

𝑣3 =   1 − 𝜌 𝛽𝛾𝑘1 + 𝜃 𝑣4  𝑐 − 𝜌𝛽𝛾𝑘1   

𝑣4 = 𝑣4 

𝑣5 = 𝑣6 = 0 

To compute 𝑎 and  𝑏 we use a formula explained in [15] 

𝑎 =  𝑣𝑘𝑤𝑖𝑤𝑗  𝜕
2𝑓 𝜕𝑥𝑖𝜕𝑥𝑗   𝑆0, 𝑉0, 0,    0, 0, 0 

𝑛

𝑘 ,𝑗 ,𝑖=1

 

𝑏 =  𝑣𝑘𝑤𝑖 𝜕
2𝑓 𝜕𝑥𝑖𝜕𝛽  

𝑛

𝑘 ,𝑖=1

 

Where  

                                         𝑓1 =  1 − 𝑝𝜒 Π + φ𝑥2 + 𝜔𝑥5 −  𝛼 + 𝜌𝜆 + 𝜇 𝑥1 ,                                               
                                         𝑓2 = 𝑝𝜒Π + 𝛼𝑥1 − (𝜑 + 𝜀𝜆 + 𝜇)𝑥2,                                                                    

                                          𝑓3 = 𝜌𝜆𝑥1 + 𝜌𝜀𝜆𝑥2 + (1 − 𝑞)𝜂𝑥4 − (𝜃 + 𝜙 + 𝜇)𝑥3 ,          (22)       

                                          𝑓4 =  1 − 𝜌 𝜆𝑥1 +  1 − 𝜌 𝜀𝜆𝑥2 + 𝜃𝑥3 −  𝛿 + 𝜂 + 𝜇 𝑥4 ,                                        
                                          𝑓5 = 𝜙𝑥3 + 𝑞𝜂𝑥4 −  𝜔 + 𝜇 𝑥5 ,                                                                             
                                         𝑓6 = 𝛿𝑥4 − (𝜉 + 𝜇)𝑥6  

Taking into account system (22) and considering only the non zero components of the left eigenvectors  𝑣3 

and  𝑣4, then we obtained; 

𝑎 = (2𝛽𝑤4𝑣4)𝑟1 

𝑏 = 𝛽𝑤4𝑣4(𝛾𝑟2 + 1) 𝜌 𝑟3 − 1 + 1 𝑘1 
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                            Here     𝑟1 =  𝜌 𝑟3 − 1 + 1  𝛾𝑟2 𝑤1 + 𝜀𝑤2 + 𝑤1 + 𝜀𝑤2  
𝑟2 =   1 − 𝜌 𝛽𝛾𝑘1 + 𝜃  𝑐 − 𝜌𝛽𝛾𝑘1   

𝑟3 =   1 − 𝑞 𝜂 − 𝜌𝛽𝑘1  𝜌𝛽𝛾𝑘1 − 𝑐   

Since the coefficient 𝑏 is always positive and 𝑎 > 0 depend on whether 𝑟1 is greater or less than 0. Thus we 

have established the following results. 

Theorem If 𝑟1 > 0, 𝑎 > 0 then model system (1 − 6) has a backward bifurcation at  ℜ0 = 1, otherwise 𝑎 < 0 

and a unique endemic equilibrium is locally asymptotically stable for,  ℜ0 > 1 but close to 1. 

 

V. Extension of the Model into an Optimal Control 
In this section, we apply optimal control strategies on the model equation   1 − 6 . This helped us to identify the 

best intervention strategy that helps to eradicate the disease in the specified time. The optimal control model is 

an extension HPV model by including the following three controls defined as: 

a. 𝑢1 a prevention effort, which protect susceptible from contacting the disease. 

b. 𝑢2 a treatment effort, to minimize infection by treating infectious. 

c.  𝑢3 a screening effort, to help asymptomatic to screen themselves. 

After incorporating,  𝑢1, 𝑢2 and 𝑢3 in model equation  1 − 6 , we obtain the following optimal control model of 

equation: 

                    

 
  
 

  
 

𝑑𝑆 𝑑𝑡 =  1 − 𝑝 Π + φV + 𝜔𝑅 − 𝑝(1 − 𝑢1) 𝛽 𝐼 + 𝛾𝐴 𝑁  𝑆 −  𝛼 + 𝜇 𝑆,                                           

𝑑𝑉 𝑑𝑡 = 𝑝Π + 𝛼𝑆 −  1 − 𝑢1  𝛽 𝐼 + 𝛾𝐴 𝑁  𝜀𝑉 −  𝜑 + 𝜇 𝑉,                                                               

𝑑𝐴 𝑑𝑡 = 𝜌 1 − 𝑢1  𝛽 𝐼 + 𝛾𝐴 𝑁   𝑆 + 𝜀𝑉 +  1 − 𝑞  1 − 𝑢2 𝜂𝐼 −  𝑢3 + 𝜃 𝐴 −  𝜙 + 𝜇 𝐴    (23)

 𝑑𝐼 𝑑𝑡 =  1 − 𝜌  1 − 𝑢1  𝛽 𝐼 + 𝛾𝐴 𝑁   𝑆 + 𝜀𝑉 +  𝑢3 + 𝜃 𝐴 −  𝑢2 + 𝜂 𝐼 −  𝛿 + 𝜇 𝐼,                

𝑑𝑅 𝑑𝑡 = 𝜙𝐴 +  𝑢2 + 𝑞𝜂 𝐼 −  𝜔 + 𝜇 𝑅,                                                                                                          

𝑑𝐶 𝑑𝑡 = 𝛿𝐼 −  𝜉 + 𝜇 𝐶 .                                                                                                                                   

         

                       

To study the optimal levels of the controls, the control set 𝑈 is Lebesgue measurable and it is defined as: 𝑈 =
  𝑢1 𝑡 , 𝑢2(𝑡), 𝑢3(𝑡) ; 0 ≤ 𝑢1 < 1, 0 ≤ 𝑢2 < 1, 0 ≤ 𝑢3 < 1, 0 ≤ 𝑡 ≤ 𝑇   .Our aim is to obtain a control 𝑢 

and 𝑆, 𝑉, 𝐴, 𝐼, 𝑅 and 𝐶 that minimize the proposed objective function 𝐽 and the form of the objective 

functional is taken in line with literature on epidemic models [17], given by: 

𝐽 = min
𝑢1 ,𝑢2 ,𝑢3

  𝑏1𝐴 + 𝑏2𝐼 +
1

2
 𝑤𝑖𝑢𝑖

2

3

𝑖=1

 
𝑡𝑓

0

𝑑𝑡 

Where  𝑏1, 𝑏2 and 𝑤𝑖  are positive. The expression 
1

2
𝑤𝑖𝑢𝑖

2  represents cost which is associated with the 

controls 𝑢𝑖 .The form is quadratic because we assume that costs are non-linear in its nature. Our aim is to 

minimize the number of asymptomatic, infective and costs. Thus, we seek to find an optimal triple controls 

 𝑢1
∗,   𝑢2

∗ ,   𝑢3
∗  such that  

𝐽 𝑢1
∗,   𝑢2

∗ ,   𝑢3
∗ = 𝑚𝑖𝑛 𝐽 𝑢1

∗,   𝑢2
∗ ,   𝑢3

∗ : 𝑢𝑖 ∈ 𝑈  
Here 𝑈 =   𝑢1

∗,   𝑢2
∗ ,   𝑢3

∗   each 𝑢𝑖  is measurable with 0 ≤ 𝑢𝑖 < 1 for  0 ≤ 𝑡 ≤ 𝑡𝑓 . 

 

 

6.1 The Hamiltonian and Optimality System 

By using the principle of [17],” Pontryagins Maximum Principle Pontryagin”, we got the necessary conditions 

which is satisfied by optimal pair. Therefore, by this principle we obtained a Hamiltonian (H) defined as: 

𝐻 = (𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑛𝑑) +  𝑎𝑑𝑗𝑜𝑖𝑛𝑡 (𝑅𝐻𝑆 𝑜𝑓 𝑂𝐷𝐸) 
H S, V, A, I, R, C, t 

= L A, I, 𝑢1, 𝑢2 , 𝑢3, t + λ1 dS dt  + λ2 dV dt  + λ3 dA dt  + λ4 dI dt  + λ5 dR dt  
+ λ6 dC dt   

Here  L A, I, 𝑢1, 𝑢2 , 𝑢3, t = 𝑏1𝐴 + 𝑏2𝐼 +
1

2
 𝑤𝑖𝑢𝑖

23
𝑖=1 , 𝜆𝑖 , 𝑖 = 1, … 6 are the adjoint variable functions to be 

determined suitably by applying Pontryagin’s maximal principle [17] and also using [18] for existence of the 

optimal control pairs. 

Theorem 5 There exist an optimal control set 𝑢1, 𝑢2 , 𝑢3 and the corresponding solution  S, V, A, I, R and C that 

minimize 𝐽 𝑢1
∗,   𝑢2

∗ ,   𝑢3
∗  over 𝑈. Furthermore, there exist adjoint functions 𝜆1, …  , 𝜆6 such that  

 

𝑑𝜆1 𝑑𝑡 = −𝜕𝐻 𝜕𝑆 
= − −  1 − 𝑢1 𝛽(𝐼 + 𝛾𝐴) 𝑁  − 𝛼 − 𝜇 𝜆1 − 𝛼𝜆2 −  𝜌 1 − 𝑢1 𝛽(𝐼 + 𝛾𝐴) 𝑁  𝜆3

−  (1 − 𝜌) 1 − 𝑢1 𝛽(𝐼 + 𝛾𝐴) 𝑁  𝜆4 
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𝑑𝜆2 𝑑𝑡 = −𝜕𝐻 𝜕𝑉 
= −𝜑𝜆1 −  −  1 − 𝑢1 𝜀𝛽(𝐼 + 𝛾𝐴) 𝑁  − 𝜑 − 𝜇 𝜆2 −  𝜌𝜀 1 − 𝑢1 𝛽(𝐼 + 𝛾𝐴) 𝑁  𝜆3

−  (1 − 𝜌) 1 − 𝑢1 𝜀𝛽(𝐼 + 𝛾𝐴) 𝑁  𝜆4 

𝑑𝜆3 𝑑𝑡 = −𝜕𝐻 𝜕𝐴 
=   1 − 𝑢1 𝛽𝛾𝑆 𝑁  𝜆1  +   1 − 𝑢1 𝛽𝛾𝑉 𝑁  𝜆2

−  𝜌 1 − 𝑢1 𝛽𝛾(𝜀𝑉 + 𝑆) 𝑁 − 𝑢3 − 𝜃 − 𝜇 − 𝜙 𝜆3

−  (1 − 𝜌) 1 − 𝑢1 𝛽𝛾(𝑆 + 𝜀𝑉) 𝑁 + 𝑢3 + 𝜃 𝜆4 − 𝜙𝜆5 − 𝑏1 

𝑑𝜆4 𝑑𝑡 = −𝜕𝐻 𝜕𝐼 
=   1 − 𝑢1 𝛽𝑆 𝑁  𝜆1  +   1 − 𝑢1 𝛽𝑉 𝑁  𝜆2

−  𝜌 1 − 𝑢1 𝛽(𝜀𝑉 + 𝑆) 𝑁 +  1 − 𝑞 (1 − 𝑢2)𝜂 𝜆3

−  (1 − 𝜌) 1 − 𝑢1 𝛽(𝑆 + 𝜀𝑉) 𝑁 − 𝑢2 − 𝜂 − 𝛿 − 𝜇 𝜆4 −  𝑢2 + 𝑞𝜂 𝜆5 − 𝛿𝜆6 − 𝑏2 

𝑑𝜆5 𝑑𝑡 = −𝜕𝐻 𝜕𝑅 = −𝜔𝜆1 − (−𝜔 − 𝜇)𝜆5 

𝑑𝜆6 𝑑𝑡 = −𝜕𝐻 𝜕𝐶 = −(−𝜔 − 𝜇)𝜆6 

With transversality conditions, 𝜆𝑖 𝑡𝑓 = 0, 𝑖 = 1, … ,6.  

Similarly we follow the approach of Pontryagin to get the control as in [17]. We solved the equation, 𝜕𝐻 𝜕𝑢𝑖 =
0 at 𝑢𝑖

∗ for 𝑖 = 1, 2, 3 and we obtain the control set  𝑢1
∗, 𝑢2

∗ , 𝑢3
∗  characterized by: 

u1
∗ = max 0,   min(1, Φ1)  

u2
∗ = max 0,   min(1, Φ2)  

u3
∗ = max 0,   min(1, Φ3)  

Where Φ1 = β(γA + I) ρVελ3 − ρVελ4 + ρSλ3 − ρSλ4 + Vελ4 − Vελ2 − Sλ1 + Sλ4 Nω1  

Φ2 = − I qηλ3 − ηλ3 − λ4 + λ5 ω2  

Φ3 = A  λ3 − λ4 ω3  

Proof The form of the adjoint equation and transversality conditions are standard results from Pontryagin’s 

maximum principle [17]. We differentiate the Hamiltonian with respect to states S, V, A, I, R and C respectively 

and then the adjoint system can be written as: 

𝑑𝜆1 𝑑𝑡 = −𝑑𝐻 𝑑𝑆 
= − −  1 − 𝑢1 𝛽(𝐼 + 𝛾𝐴) 𝑁  − 𝛼 − 𝜇 𝜆1 − 𝛼𝜆2 −  𝜌 1 − 𝑢1 𝛽(𝐼 + 𝛾𝐴) 𝑁  𝜆3

−  (1 − 𝜌) 1 − 𝑢1 𝛽(𝐼 + 𝛾𝐴) 𝑁  𝜆4 

𝑑𝜆2 𝑑𝑡 = −𝑑𝐻 𝑑𝑉 
= −𝜑𝜆1 −  −  1 − 𝑢1 𝜀𝛽(𝐼 + 𝛾𝐴) 𝑁  − 𝜑 − 𝜇 𝜆2 −  𝜌𝜀 1 − 𝑢1 𝛽(𝐼 + 𝛾𝐴) 𝑁  𝜆3

−  (1 − 𝜌) 1 − 𝑢1 𝜀𝛽(𝐼 + 𝛾𝐴) 𝑁  𝜆4 

𝑑𝜆3 𝑑𝑡 = −𝑑𝐻 𝑑𝐴 
=   1 − 𝑢1 𝛽𝛾𝑆 𝑁  𝜆1  +   1 − 𝑢1 𝛽𝛾𝑉 𝑁  𝜆2

−  𝜌 1 − 𝑢1 𝛽𝛾(𝜀𝑉 + 𝑆) 𝑁 − 𝑢3 − 𝜃 − 𝜇 − 𝜙 𝜆3

−  (1 − 𝜌) 1 − 𝑢1 𝛽𝛾(𝑆 + 𝜀𝑉) 𝑁 + 𝑢3 + 𝜃 𝜆4 − 𝜙𝜆5 − 𝑏1 

𝑑𝜆4 𝑑𝑡 = −𝑑𝐻 𝑑𝐼 
=   1 − 𝑢1 𝛽𝑆 𝑁  𝜆1  +   1 − 𝑢1 𝛽𝑉 𝑁  𝜆2

−  𝜌 1 − 𝑢1 𝛽(𝜀𝑉 + 𝑆) 𝑁 +  1 − 𝑞 (1 − 𝑢2)𝜂 𝜆3

−  (1 − 𝜌) 1 − 𝑢1 𝛽(𝑆 + 𝜀𝑉) 𝑁 − 𝑢2 − 𝜂 − 𝛿 − 𝜇 𝜆4 −  𝑢2 + 𝑞𝜂 𝜆5 − 𝛿𝜆6 − 𝑏2 

𝑑𝜆5 𝑑𝑡 = −𝑑𝐻 𝑑𝑅 = −𝜔𝜆1 − (−𝜔 − 𝜇)𝜆5 

𝑑𝜆6 𝑑𝑡 = −𝑑𝐻 𝑑𝐶 = −(−𝜔 − 𝜇)𝜆6 

Similarly by following the approach of [17], to get the controls, we solved the equation, 𝜕𝐻 𝜕𝑢𝑖   = 0 at  𝑢𝑖  for 

𝑖 = 1, 2,3  and obtained: 

u1
∗ = β(γA + I) ρVελ3 − ρVελ4 + ρSλ3 − ρSλ4 + Vελ4 − Vελ2 − Sλ1 + Sλ4 Nω1  

u2
∗ = − I qηλ3 − ηλ3 − λ4 + λ5 ω2  

u3
∗ = A  λ3 − λ4 ω3  

When we write by using standard control arguments involving the bounds on the controls, we conclude: 

u1
∗ =  

Φ1 , if  0 < Φ1 < 1
0, if  Φ1 ≤ 0,         
1, if  Φ1 ≥ 1.         

  

u2
∗ =  

Φ2, if  0 < Φ2 < 1
0, if  Φ2 ≤ 0,         
1, if  Φ2 ≥ 1.         

  

u3
∗ =  

Φ3, if  0 < Φ3 < 1
0, if  Φ3 ≤ 0,         
1, if  Φ3 ≥ 1.         

  

In compact notation 
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u1
∗ = max 0,   min(1, Φ1)  

u2
∗ = max 0,   min(1, Φ2)  

u3
∗ = max 0,   min(1, Φ3)  

Where Φ1 = β(γA + I) ρVελ3 − ρVελ4 + ρSλ3 − ρSλ4 + Vελ4 − Vελ2 − Sλ1 + Sλ4 Nω1  

Φ2 = − I qηλ3 − ηλ3 − λ4 + λ5 ω2  

Φ3 = A  λ3 − λ4 ω3  

The optimality system is formed from the optimal control system (the state system) and the adjoint variable 

system by incorporating the characterized control set and initial and transversal condition. 
𝑑𝑆 𝑑𝑡 =  1 − 𝑝 Π + φV + 𝜔𝑅 − (1 − 𝑢1

∗) 𝛽 𝐼 + 𝛾𝐴 𝑁  𝑆 −  𝛼 + 𝜇 𝑆,                                           

𝑑𝑉 𝑑𝑡 = 𝑝Π + 𝛼𝑆 −  1 − 𝑢1
∗  𝛽 𝐼 + 𝛾𝐴 𝑁  𝜀𝑉 −  𝜑 + 𝜇 𝑉,                                                               

𝑑𝐴 𝑑𝑡 = 𝜌 1 − 𝑢1
∗  𝛽 𝐼 + 𝛾𝐴 𝑁   𝑆 + 𝜀𝑉 +  1 − 𝑞  1 − 𝑢2

∗ 𝜂𝐼 −  𝑢3
∗ + 𝜃 𝐴 −  𝜙 + 𝜇     (15)

 𝑑𝐼 𝑑𝑡 =  1 − 𝜌  1 − 𝑢1
∗  𝛽 𝐼 + 𝛾𝐴 𝑁   𝑆 + 𝜀𝑉 +  𝑢3

∗ + 𝜃 𝐴 −  𝑢2
∗ + 𝜂 𝐼 −  𝛿 + 𝜇 𝐼,                

𝑑𝑅 𝑑𝑡 = 𝜙𝐴 +  𝑢2
∗ + 𝑞𝜂 𝐼 −  𝜔 + 𝜇 𝑅,                                                                                                          

𝑑𝐶 𝑑𝑡 = 𝛿𝐼 −  𝜉 + 𝜇 𝐶 .                                                                                                                                   

 

𝑑𝜆1 𝑑𝑡 = − −  1 − 𝑢1 𝛽(𝐼 + 𝛾𝐴) 𝑁  − 𝛼 − 𝜇 𝜆1 − 𝛼𝜆2 −  𝜌 1 − 𝑢1 𝛽(𝐼 + 𝛾𝐴) 𝑁  𝜆3

−  (1 − 𝜌) 1 − 𝑢1 𝛽(𝐼 + 𝛾𝐴) 𝑁  𝜆4 

𝑑𝜆2 𝑑𝑡 = −𝜑𝜆1 −  −  1 − 𝑢1 𝜀𝛽(𝐼 + 𝛾𝐴) 𝑁  − 𝜑 − 𝜇 𝜆2 −  𝜌𝜀 1 − 𝑢1 𝛽(𝐼 + 𝛾𝐴) 𝑁  𝜆3

−  (1 − 𝜌) 1 − 𝑢1 𝜀𝛽(𝐼 + 𝛾𝐴) 𝑁  𝜆4 

𝑑𝜆3 𝑑𝑡 =   1 − 𝑢1 𝛽𝛾𝑆 𝑁  𝜆1  +   1 − 𝑢1 𝛽𝛾𝑉 𝑁  𝜆2 −  𝜌 1 − 𝑢1 𝛽𝛾(𝜀𝑉 + 𝑆) 𝑁 − 𝑢3 − 𝜃 − 𝜇 − 𝜙 𝜆3

−  (1 − 𝜌) 1 − 𝑢1 𝛽𝛾(𝑆 + 𝜀𝑉) 𝑁 + 𝑢3 + 𝜃 𝜆4 − 𝜙𝜆5 − 𝑏1 

𝑑𝜆4 𝑑𝑡 =   1 − 𝑢1 𝛽𝑆 𝑁  𝜆1  +   1 − 𝑢1 𝛽𝑉 𝑁  𝜆2 −  𝜌 1 − 𝑢1 𝛽(𝜀𝑉 + 𝑆) 𝑁 +  1 − 𝑞 (1 − 𝑢2)𝜂 𝜆3

−  (1 − 𝜌) 1 − 𝑢1 𝛽(𝑆 + 𝜀𝑉) 𝑁 − 𝑢2 − 𝜂 − 𝛿 − 𝜇 𝜆4 −  𝑢2 + 𝑞𝜂 𝜆5 − 𝛿𝜆6 − 𝑏2 

𝑑𝜆5 𝑑𝑡 = −𝜔𝜆1 − (−𝜔 − 𝜇)𝜆5 

𝑑𝜆6 𝑑𝑡 = −(−𝜔 − 𝜇)𝜆6 

𝜆𝑖 𝑡𝑓 = 0, 𝑖 = 1, … ,6, 𝑆 0 = 𝑆0 , 𝑉 0 = 𝑉0 , 𝐴 0 = 𝐴0, 𝐼 0 = 𝐼0 , 𝑅 0 = 𝑅0, 𝐶 0 = 𝐶0. 

6.2 Uniqueness of the Optimality System 

Due to the priori boundedness of the state, adjoint functions and the resulting Lipschitz structure of the ODEs, 

we can obtain the uniqueness of solutions of the optimality system for the small time interval. Hence the 

following theorem 

Theorem 6 For  𝑡 ∈  0, 𝑡𝑓 , the bounded solutions to the optimality system is unique. 

For the proof of the theorem, see [19]. 

 

VI. Numerical Simulation 
           We perform numerical simulation of the optimal control system or the state system by using the software 

DE Discover 2.6.4. To examine the impact of each control on eradication of HPV, we used the following 

strategy: 

(i) Applying prevention only  𝑢1 as intervention 

(ii) Applying treatment only 𝑢2 as intervention 

(iii) Applying screening only 𝑢3  as intervention 

(iv) Implementing prevention 𝑢1 and treatment 𝑢2 intervention 

(v) Implementing prevention 𝑢1 and screening 𝑢3 intervention 

(vi) Implementing treatment 𝑢2 and screening 𝑢3 intervention 

(vii) Using all the three controls: prevention effort 𝑢1, treatment effort 𝑢2, and also screening 𝑢3 

To conduct the study, a set of meaningful values are assigned to the model parameters. These values are either 

taken from literature or assumed. Using the parameter values given in Table 4 and the initial conditions 𝑆 0 =
150000, 𝑉 0 = 116200, 𝑅 0 = 96600, 𝐴 0 = 122400, 𝐼 0 = 93840  and 𝐶 0 = 32500 in the model 

equations (15) a simulation study is conducted and the results are given in Figures   2 − 8 . 

 

Table 4 Parameter values used in Numerical Simulations 
Parameter Value Reference 

𝚷 175 [14] 

𝝁 0.0100 [14] 

𝝋 0.1830 Assumed 

𝜶 0.0080 Assumed 

𝜸 0.3000 [14] 

𝝎 0.1000 Assumed 

𝜺 0.0020 Assumed 

𝜹 0.1000 Assumed 

𝝓 0.0025 Assumed 
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𝒑 0.2970 Assumed 

𝝆 0.0500 Assumed 

𝒒 0.5000 Assumed 

𝜼 0.2000 Assumed 

𝜽 0.3910 Assumed 

𝝃 0.0300 Assumed 

𝜿 0.5000 Assumed 

𝝉 0.8900 Assumed 

 

7.1 Numerical results in the presence of prevention only 

We simulated the optimality control system by incorporating prevention intervention only. Figures 2(a) 

and 2(b) shows that the decrease of asympw4tomatic population in the specified time but the number of 

infectious individuals did not go to zero over the period of implementation of this intervention strategy. The 

reason is that due to lack of prevention susceptible individuals still get infected. Therefore, we conclude that 

applying optimized prevention only as control intervention decreases the burden of the disease but it cannot 

eradicate HPV in the community. 

 

 
Figure 2(a): Simulations of optimal control with prevention only (Combined plot) 

 

 
Figure 1(b):  Simulations of optimal control with prevention only (individual plot) 

 

 



Optimal Control Strategy on Human Papilloma Virus (HPV) model with Backward Bifurcation .. 

DOI: 10.9790/5728-1506026587                                     www.iosrjournals.org                                        80 | Page 

7.2 Numerical results in the presence of treatment only 

We applied treatment only as intervention that is treating individuals who develop disease symptom. . Figures 

3(a) and 3(b) clearly show that the infectious and asymptomatic population has gone to zero at the end of the 

implementation period. Therefore, we conclude that this strategy is effective in eradicating the HPV from the 

community in a specified period of time.  

 

 
Figure 2(a):  Simulations of optimal control with treatment only (combined plot) 

 

 
Figure 3(b): Simulations of optimal control with treatment only (individual plot) 

 
7.3 Numerical results in the presence of Screening only 

As we know screening helps asymptomatic to identify their status as they are leaving with the virus or 

not. Therefore, Figures 4(a) and 4(b) show that the infectious and asymptomatic population goes down by 

screening effort but their number cannot be zero. New infection always appears in the community because the 

diseases are not prevented and individuals who develop the symptom of the disease are not getting treatment. 

Therefore, control with screening only reduces the burden in some extent but it is not helpful to eradicate HPV 

totally from the community. 
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Figure 4(a): Simulations of optimal control with screening only (combined plot) 

 

 
Figure 4(b): Simulations of optimal control with screening only (individual plot) 

 
7.4 Numerical results in the presence of prevention and treatment 

We simulate the model using a combination of prevention and treatment as intervention strategy for control of 

HPV in the community. Figures 5(a) and 5(b) shows that the number of infectious individuals and asymptomatic 

did not go to zero over the period of implementation of this intervention strategy. The reason is that due to lack 

of prevention susceptible individuals still get infected and due to lack of treatment individuals develop disease 

symptom. Therefore, this strategy is not 100% effective in eradicating the HPV in the specified period of time. 
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Figure 5(a): Simulations of optimal control with prevention and treatment (combined plot) 

 

 
Figure 5(b): Simulations of optimal control with prevention and treatment (individual plot) 

 
7.5 Numerical results in the presence of prevention and screening 

In this strategy, we applied prevention and screening as intervention to control HPV. Figures 6(a) and 

6(b) shows that the number of infectious individuals and asymptomatic did not go to zero over the period of 

implementation of this intervention strategy. The reason is that due to lack of prevention susceptible individuals 

still get infected and due to lack of screening asymptomatic individuals. Therefore, control with prevention and 

screening reduces the burden in some extent but it is not helpful to eradicate HPV totally from the community. 
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Figure 6(a): Simulation of optimal control with prevention and screening (combined plot) 

 

 
Figure 6(b): Simulations of optimal control with prevention and screening (individual plot) 

 

7.6 Numerical results in the presence of treatment and screening 

We simulate the model using a combination of treatment and screening as intervention strategy for 

control of HPV in the community. Figures 7(a) and 7(b) clearly show that the infectious and asymptomatic 

population has gone to zero at the end of the implementation period. Therefore, we conclude that this strategy is 

effective in eradicating HPV from the community in a specified period of time. 
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Figure 7(a): Simulations of optimal control with treatment and screening (combined plot) 

 

 
Figure 7(b): Simulations of optimal control with treatment and screening (individual plot) 

 
7.7 Numerical results in the presence of prevention, screening and treatment 

In this strategy, we implemented all the three controls (prevention, treatment, and screening) as intervention to 

eradicate HPV from the community. Figures 8(a) and 8(b) show that the number of infectious individuals and 

asymptomatic goes to zero at the end of the implementation period. Therefore, applying this strategy is effective 

in eradicating HPV form the community in a specified period of time. 
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Figure 8(a): Simulations of optimal control with prevention, treatment and screening (combined plot) 

 

 
Figure 8(b): Simulations of optimal control with prevention, treatment and screening (individual plot) 

 

VII. Sensitivity Analysis of Model Parameters 
We carried out the sensitivity analysis to determine the model robustness to parameter values. The normalized 

forward sensitivity index of a variable to a parameter is a ration of the relative change in the variable to the 

relative change in the variable to the relative change in the parameter. If a variable is a differentiable function of 

the parameter, the sensitivity index may be alternatively defined using partial derivatives [20]. 

Definition: The normalized forward sensitivity index of a variable, u, which depend differentiability on index of 

a parameter, 𝑝 is defined as   Υ𝑝
𝑢 =  𝜕𝑢 𝜕𝑝   𝑝 𝑢  . 

 From an explicit formula for  𝕽𝟎, we derive an analytical expression for the sensitivity of   𝕽𝟎 

as  Υ𝑝
 𝕽𝟎 =  𝜕 𝕽𝟎 𝜕𝑝   𝑝  𝕽𝟎   to each of the parameter involved in  𝕽𝟎. For example, the sensitivity index of 

 𝕽𝟎 with respect to  𝜕 𝕽𝟎 𝜕𝜏   𝜏  𝕽𝟎  = 1 other indices Υ𝜅
 𝕽𝟎 , Υ𝜑

 𝕽𝟎  , Υ𝜇
 𝕽𝟎 ,   Υ𝑝

 𝕽𝟎 , Υ𝛿
 𝕽𝟎 ,   Υ𝜂

 𝕽𝟎 , Υ𝛾
 𝕽𝟎 , Υ𝜃

 𝕽𝟎 ,

Υ𝜙
 𝕽𝟎 , Υ𝜌

 𝕽𝟎 , Υ𝑞
 𝕽𝟎   where obtained and evaluated at, 𝑝 = 0.7, 𝑞 = 0.5, 𝜂 = 0.0238, 𝜅 = 6, 𝜏 = 0.89, 𝜌 =

0.338, 𝜇 = 0.002, 𝜑 = 0.001, 𝜃 = 0.00274,   𝛾 = 0.9,   𝜙 = 0.0115, 𝛿 = 0.33 to obtain the following 

results. 
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Table 5 Sensitivity indices Table. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 shows the sensitivity indices of   ℜ0 to the parameters for the model equation  (1 − 6). The 

parameters are ordered from most sensitive to least. The most sensitive parameter is the contact rate, and the 

least sensitive parameter is the progression proportion of the disease. This result implies that, when the 

parameters  𝜂, 𝜑, 𝛾, 𝜌, 𝑝, 𝜏,   and 𝜅 are increased keeping other parameters constant, they increase the value 

of  ℜ0 thus, they increase the endemicity of the disease as they have positive indices. While the parameters 

 𝜇, 𝛿, 𝑞, 𝜃 and 𝜙 decrease the value of   ℜ0 when they are increased while keeping the other parameters 

constant, implying that they decrease the endemicity of the disease as they have negative indices. 

 

VIII. Discussions and Conclusions 
In this study, we formulated a deterministic model on the transmission dynamics of HPV. The 

qualitative analysis of the model shows that the solution of the model is bounded and positive and also the 

equilibria points of the model are obtained and their local as well as global stability condition is established. The 

study also obtained the basic reproduction number that governs the disease transmission from the largest 

eigenvalue of the next-generation matrix. The model exhibits a backward bifurcation and the sensitivity analysis 

is performed. The optimal control problem is designed by applying Pontryagin maximum principle with three 

control strategies, namely, prevention strategy, treatment strategy and screening strategy. Numerical results for 

the human papillomavirus outbreak dynamics and its optimal control revealed that a combination of prevention, 

screening and treatment is the most effective strategy to eradicate the disease from the community. 

Although eradication of HPV infection remain a challenge especially in developing countries, but from 

results of this study we recommend that, the government should introduce education programmers on the 

importance of voluntary and routinely screening on HPV infection. Also, there is need to increase the number of 

hospitals to deal with HPV infection as well as cancers to ensure that, many people have access to the facilities, 

because HPV infection in long run results into different types of human cancers which pose serious health 

problem. Moreover, the future work should consider; incorporating asymptomatic and treatment against HPV 

transmission dynamics in the model. 
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