Real Interpolation of Operators in Banach-Saks and Invariant Spaces WithApplications

NafisaAlgorashy $^{(a)}\,$, Adam zakria $^{(b,c)}$

University King Khalid university College of Sciences and Arts Department of Mathematics Kingdom (a)of Saudi Arabia

University of Kordofan, Faculty of Science, Department of Mathematics, Sudan (b)

Jouf University College of Sciences and Arts Department of Mathematics Kingdom of Saudi Arabia (c)

Abstract: LinearOperators on invariant spaces and between Banach spaces we define a semi norm vanishing on the subspace of operators having the alternate signs Banach-Saks property. In particular, the estimates show that the alternate signsinvariant spaces and Banach-Saks property are inherited from a space of an interpolation pair (A_0, A_1) to the real interpolation spaces $A_{\theta,p}$. Finally, examples are given to support our results.

Keywords: invariant spaces ,*Banach-Saks* , *Lions-Peetre*

Date of Submission: 01-11-2019

Date of Acceptance: 16-11-2019 _____

I. Introduction

A linear transformation $T: V \rightarrow V$ and $\leq V$. T is invariant under T if $TW \subset W$ and a bounded linear operator $T: V \rightarrow W$ acting between Banach spaces is said to have the Banach-Saks (BS) property if every bounded sequence (v_n) in V contains a subsequence (v'_n) such that the Cesáro means of (Tv'_n) converge in Y. If we restrict this definition to all weakly null sequences (v_n) in *X*, we say that *T* has the weak Banach-Saks (WBS) property or the Banach-Saks-Rosenthal property. We say that T has the alternate signs Banach-Saks (ABS) property if every bounded sequence (v_n) in V contains a subsequence (v'_n) such that the Cesáro means of $((-1)^n T v'_n)$ converge in Y.

A Banach space V is called to have the BS, WBS or ABS property if the corresponding property is possessed by the identity operator $I: V \to V$. For a detailed study of these properties we refer the reader to [11].

A natural question is the behavior of invariant spaces and Banach-Saks properties under interpolation. Beauzamy [11] proved that if (A_0, A_1) is an interpolation pair such that A_0 is continuously embedded in A_1 and the embedding has the ABS property, then the real interpolation spaces $A_{\theta,n}$ with respect to (A_0, A_1) have the ABS property for all $0 < \theta < 1$ and 1 . This in turn served to show that every operator with the BSor ABS property factors through a space with the same property (see also [13]). Heinrich [3] proved that if the embedding $I: A_0 \cap A_1 \to A_0 + A_1$ has the BS property, then so has $A_{\theta,p}$ with respect to (A_0, A_1) for all $0 < \theta < 1$ and 1 (see also [1,12]). We find a measure of deviation from the ABS property withgood interpolation properties.

Our work is motivated by [2, 9, 11, 14], where similar results for a measure of weak noncompactness were obtained.

Invariant spaces and Banach-Saks property and spreading models II.

One of the basic results on invariant spacesBanach-Saks properties is the following one of Rosenthal [8]: if a Banach space X does not have the WBS property, then there exist a number $\delta > 0$ and a bounded double sequence (v_n^m) in V such that for all $k \in \mathbb{N}$, all subsets $A \subset \mathbb{N}$ with $|A| = 2^k$ and $k \leq minA$, and all sequences of scalars (c_n) , we have

$$\left\|\sum_{m,n\in A}c_n\nu_n^m\right\|\geq \delta \sum_{n\in A}|c_n|.$$

Definition 1. Let $\begin{pmatrix} v & m \\ n \end{pmatrix}$ be a bounded sequence in a Banach space V. Define

$$\phi_{vsm}(v_{n}^{m}) = \inf \left\| |A|^{-1} \sum_{m,n \in A} \epsilon_{n} v_{n}^{m} \right\|, \phi_{am}(v_{n}^{m}) = \inf \left\| |A|^{-1} \sum_{m,n \in A} v_{n}^{m} \right\|,$$

the infimum for $\phi_{vsm}(v \mid m)$ being taken over all finite subsets $A \subset \mathbb{N}$ and all sequences of signs (ϵ_n) , the infimum for φ ambeing taken over all finite subsets $A \subset \mathbb{N}$. If (w_n^m) is a sequence of sysm for $\begin{pmatrix} v & n \\ n \end{pmatrix}$, in particular, $\begin{pmatrix} w & n \\ n \end{pmatrix}$ is double a subsequence of $\begin{pmatrix} v & m \\ n \end{pmatrix}$ or $\begin{pmatrix} w & m \\ n \end{pmatrix}$ is double a sequence of sam for (v_n) , then $\phi_{vsm}(v & m \\ n \end{pmatrix} \leq \phi_{vsm}(w & m \\ n \end{pmatrix}$. **Definition 2** $T: V \to V$ and $W \leq V.T$ is invariant under T if $TW \subset W$.

Note that $g(T)W \subset W$ for any polynomial g.

Proposition 3. suppose (v_n^m) be double a bounded sequence in a Banach space X. There exist double a subsequence $(v \ {}^m_n)$ of $(v \ {}^m_n)$ and a seminorm L in the set S of all finite sequences of scalars (real or complex), with the following property: for every $\epsilon > 0$ and every $a = (a_1, \dots, a_m) \in S$ there exists $v \in$ Nsuch that, if $v \leq n_1 < \ldots < n_m$, then

$$\left\| \left\| \sum_{i=1}^{m} a_i v \right\|_{ni}^{m} \right\| - L(a) \right\| < \varepsilon.$$

If $(v \stackrel{m}{}_{n})$ has no Cauchy subsequence, the formula

 $\|a_1v_1^{'1} + ... + a_mv_m^{'m}\|_E = L(a), \ a = (a_1,...,a_m),$ defines a norm in the space spanned by vectors $v_n^{'m}$. Let Ebethe completion of span $\{v_n^{'m}\}$ under this norm. The space E is called the spreading model of V built on (v_n^m) . The sequence (v_n^m) is called the fundamental sequence of *E*. The norm of *E* is invariant under spreading; that is $||a_1v_1^{'1} + ... + a_mv_m^{'m}||_E = ||a_1v_{n_1}^{'1} + ... + a_mv_m^{'m}||_E$ amvnm'mEfor all

 $n_1 < \ldots < n_m$.

The next proposition will play a key role in our considerations. Its assertion is related to property (P'_1) of [11] ,15]. In the proof, we follow the main line of the proof of Theorem II.2 of [11].

Proposition 4. Let $\begin{pmatrix} v & m \\ n \end{pmatrix}$ be double a bounded sequence in a Banach space X. Then for every $\epsilon > 0$ there exist a sequence $\begin{pmatrix} w & m \\ n \end{pmatrix}$ of svsm for $\begin{pmatrix} v & m \\ n \end{pmatrix}$ and a sequence $\begin{pmatrix} v & m \\ n \end{pmatrix}$ of sam for $\begin{pmatrix} v & m \\ n \end{pmatrix}$ such that for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs (ϵ_n) ,

$$|A|^{-1}\sum_{m,n\in A}\epsilon_n w \binom{m}{n} \leq \phi_{vsm}(w \binom{m}{n} + \epsilon, ||A|^{-1}\sum_{m,n\in A}v \binom{m}{n} \leq \phi_{am}(v \binom{m}{n} + \epsilon)$$

Proof.We prove the assertion for the relation sysm. The proof for the relation sam is almost the same. Fix $\varepsilon > 0$. First assume that (v_n) contains a Cauchy subsequence $(v_n'^m)$.Let $w_n^m = \frac{v_{2n}'^1 - v_{2n-1}'^m}{2}$. Ignoring a finite number of terms of $\begin{pmatrix} w & n \\ n \end{pmatrix}$, we see that $\begin{pmatrix} w & m \\ n \end{pmatrix}$ satisfies the assertion. Now assume that $\begin{pmatrix} v & m \\ n \end{pmatrix}$ has no Cauchy subsequence. Let a double subsequence $(v_n^{'m})$ of $(v_n^{'m})$ be the fundamental sequence of the spreading model Ebuilt on $(v_n^{'m})$, given by Proposition 3. Taking $(v_n^{'m})$ in the norm $\|.\|_E$, we put $K = \phi_{vsm}(v_n)$. There exists $u = m^{-1} \sum_{i=1}^{m} \epsilon_i v_{n_i}^{m}$, where $n_1 < \ldots < n_m$ and $\epsilon_1, \ldots, \epsilon_m$ is a finite sequence of signs, such that $K \le ||u||_E \le 1$ $K + \frac{\varepsilon}{4}$ Let $u_n^m = m^{-1} \sum_{i=1}^m \epsilon'_i v'_{(n-1)m+i}^m$ for every $n \in \mathbb{N}$.Since $\|.\|_E$ is invariant under spreading, $K \leq \left\| u \right\|_{E}^{m} \leq K + \varepsilon/4$. Clearly,

for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs (ϵ_n) ,

$$K \leq \left\| |A|^{-1} \sum_{n \in A} \epsilon_n u_n^m \right\|_E \leq K + \varepsilon/4.$$

Let $k \in N$.By Proposition 3, we get n_k such that if $B \subset \mathbb{N}$ with $|B| \leq 2^k$ and $n_k \leq minB$, then for all sequences of signs (ϵ_n) ,

$$\left\| |B|^{-1} \sum_{n \in B} \epsilon_n v \Big\|_n^m \right\| - \left\| |B|^{-1} \sum_{m,n \in B} \epsilon_n v \Big\|_E^m \right\|_E < \varepsilon/4.$$

We may assume that $n_k < n_{k+1}$ for all k. It follows that for the double sequence $(u_k^{'m})$ with $u_k^{'m} = u_{n_k}^m$, all $B \subset \mathbb{N}$ with $|B| \leq 2^k$ and $k \leq minB$, and all sequences of signs (ϵ_n) ,

$$K - \varepsilon/4 \leq \left\| |B|^{-1} \sum_{m,n \in B} \epsilon_n u_n^{'m} \right\| \leq K + \varepsilon/2.$$

Let $A \subset \mathbb{N}$ be finite and $A_0 = \{n \in A : n < \log_2 |A|\}$. Then

$$\left\|\sum_{m,n\in A_0}\epsilon_n u_k^{'m}\right\| \le |A_0| \left(K + \varepsilon/2\right) \text{ and } \left\|\sum_{m,n\in A\setminus A_0}\epsilon_n u_k^{'m}\right\| \ge |A\setminus A_0| \left(K - \varepsilon/4\right).$$

DOI: 10.9790/5728-1506025864

Of course, we assume that the sum over the empty set is 0.Consequently,

$$\left\| |A|^{-1} \sum_{m,n \in A} \epsilon_n u_k^{'m} \right\| \ge \left\| |A|^{-1} \sum_{m,n \in A \setminus A_0} \epsilon_n u_k^{'m} \right\| - \left\| |A|^{-1} \sum_{m,n \in A_0} \epsilon_n u_n^{'} \right\|$$
$$\ge K - \varepsilon/4 - |A_0| |A|^{-1} (2K + \varepsilon/4).$$

There is an $m_0 \in \mathbb{N}$ such that if $|A| \ge m_0$, then $|A_0| |A|^{-1}(2K + \varepsilon/4) \le \varepsilon/4$. Then

$$K - \varepsilon/2 \le \left\| |A|^{-1} \sum_{m,n \in A} \epsilon_n u_k^{'m} \right\| \le K + \varepsilon/2$$

Let $w_n = m_0^{-1} \sum_{i=1}^{m_0} Z'_{(n-1)m_0+i}$ for every $n \in \mathbb{N}$. Then for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs (ϵ_n) ,

$$K + \varepsilon/2 \ge \left\| |A|^{-1} \sum_{m,n \in A} \epsilon_n w \left\| {m \atop n} \right\| \ge \left\| |A|^{-1} m_0^{-1} \sum_{m,n \in A} \sum_{i=1}^{m_0} \epsilon_n u_{(n-1)m_0 + i}^{'m} \right\|$$
$$\ge K \frac{\varepsilon}{2}.$$

Thus

 $||A|^{-1} \sum_{m,n \in A} \epsilon_n w \binom{m}{n}|| \le \phi_{vsm}(w \binom{m}{n}) + \varepsilon$ for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs (ϵ_n) . Of course, $(w \binom{m}{n})$ is boublea sequence of symfor $(v \binom{m}{n})$. **Definition 5.** Let *V*, *Y* be Banach spaces and $T \in \mathcal{L}(V, Y)$. Define

 $\Phi_{ABS}(T) = \sup\{\phi_{vsm}(Tv \ _n^m) : (v \ _n^m) \subset B(V)\}.$ **Proposition 6.** Φ_{ABS} is a seminorm $in\mathcal{L}(V, Y) . \Phi_{ABS}(T) = 0$ if and only if $T \in ABS(V, Y)$. **Proof.**Clearly, $\Phi_{ABS}(\lambda T) = |\lambda| \Phi_{ABS}(T)$ for all scalars λ . We show that for all $S, T \in \mathcal{L}(V, Y), \Phi_{ABS}(S + T) \leq \Phi_{ABS}(S) + \Phi_{ABS}(T)$. Let $\varepsilon > 0$ and $(v \ _n^m) \subset B(V)$. By Proposition 4, there exists a sequence $(v_n'^m)$ of sysm for $(v \ _n^m)$,

$$\left\| |A|^{-1} \sum_{m,n \in A} \epsilon_n \, Sv_n^{\prime m} \right\| \leq \phi_{vsm}(Sv_n^{\prime m}) + \varepsilon$$

for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs (ϵ_n) . Alsoby Proposition 4, we get a sequence $(v_n^{''m})$ of svsm for $(v_n^{'m})$, such that for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs (ϵ_n) ,

$$\left\||A|^{-1}\sum_{m,n\in A}\epsilon_n Tv_n^{''m}\right\| \leq \phi_{vsm}(Tv_n^m) + \varepsilon.$$

Since the relation sysm is transitive,

$$\begin{aligned} \phi_{vsm} \left((S + T)v_{n}^{m} \right) &\leq \phi_{vsm} \left((S + T)v_{n}^{"m} \right) \leq \left\| |A|^{-1} \sum_{m,n \in A} \epsilon_{n} (S + T)v_{n}^{"m} \right\| \\ &\leq \left\| |A|^{-1} \sum_{m,n \in A} \epsilon_{n} Sv_{n}^{"m} \right\| + \left\| |A|^{-1} \sum_{m,n \in A} \epsilon_{n} Tv_{n}^{"m} \right\| \\ &\leq \phi_{vsm} (Sv_{n}^{'m}) + \phi_{vsm} (Tv_{n}^{"m}) + 2\varepsilon \leq \phi_{ABS} (S) + \phi_{ABS} (T) + 2\varepsilon. \end{aligned}$$

By an arbitrary choice of $\varepsilon > 0$ and $(v_n^m) \subset B(V)$, we obtain the conclusion. *T* has the ABS property if and only if for every bounded sequence (v_n^m) in *X* there exist a subsequence $(v_n^{'m})$ of v_n and a sequence of signs (ϵ_n) such that the Cesàro means of $(\epsilon_n T v_n^{'m})$ converge to 0 in *Y*. From this *T* has the ABS property if and only if for every bounded sequence (v_n^m) in *V*, $\phi_{vsm}(Tv_n^m) = 0$. By positive homogeneity of ϕ_{ABS} , *T* has the ABS property if and only if $\phi_{ABS}(T) = 0$.

III. Operators on invariant spaces and Banach-Saks property and $l_p(X)$ spaces

Let X be a Banach space, $1 and let <math>(e_i)$ be the unit vector basis of l_p . We denote by $l_p(V)$ the Banach space of all sequences

v = (v(i)) such that $v(i) \in V$ for every $i \in \mathbb{N}$ and

$$\|v\|_{l_p(V)} = \left\|\sum_{i=1}^{\infty} \|v(i)\|_V e_i\right\|_{l_p} < \infty$$
.

In the sequel, we also deal with $l_p(V)$ of the families $(\nu(i))_{i \in \mathbb{Z}}$ indexed by integers. Partington [6] proved that $l_p(V), 1 , has the BS property if and only if so has <math>V($ in fact, a more general setting of direct sums was used). We use similar arguments as in the proof of Theorem 3 of [6] to show the next lemma.

Lemma7. Suppose V be a Banach space and $\begin{pmatrix} v & m \\ n \end{pmatrix}$ a boundeddobule sequence in $l_p(X), 1 . Then for every <math>\varepsilon > 0$ there exist $m \in \mathbb{N}$ and double a sequence $\begin{pmatrix} w & m \\ n \end{pmatrix}$ of sam for $\begin{pmatrix} v & m \\ n \end{pmatrix}$ such that for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs (ϵ_n) ,

$$\left\|\sum_{i=m+1}^{\infty} \left\||A|^{-1} \sum_{m,n \in A} \epsilon_n w \left\|_n^m(i)\right\|_V e_i\right\|_{l_p} < \varepsilon$$

Proof. For $v_n^m = (v_n^m(i)) \in l_p(V)$, put $t_n^m = \sum_{i=1}^{\infty} ||v_n^m(i)||_V e_i \in l_p$. Since l_p has the BS property, by ErdÖs-Magidor's theorem in [2], there exists a subsequence (t_n^m) of (t_n^m) such that the Cesàro means of all subsequences of (t_n^m) converge to the same limit tin l_p . Then $\phi_{am}(s_n^m - t) = 0$ for every sequence (s_n^m) of sam for (t_n^m) . By Proposition 4, there exists a sequence (s_n^m) of sam for (t_n^m) such that for everyfinite subset $A \subset \mathbb{N}$,

$$\left\|\sum_{i=1}^{\infty} (s_n^m) - t\right\|_{l_p} < \varepsilon/2.$$

There exist $k_0 \in \mathbb{N}$ and a sequence (A_n) of finite subsets of \mathbb{N} with $\max A_n < \min A_n + 1$ and $|A_n| = k_0$ for all *n* such that

 $s_n^m = k_0^{-1} \sum_{k \in A_n} t'_k$. Let (w_n^m) be the corresponding sequence of sam for (v_n^m) . That is, first we take the subsequence (v_n^m) of (v_n^m) such that

subsequence $(v \stackrel{m}{n})$ of $(v \stackrel{m}{n})$ such that $t \stackrel{m}{n} = \sum_{i=1}^{\infty} ||v \stackrel{m}{n}(i)||_{V} e_{i}$, and then we put $w_{n} = k_{0}^{-1} \sum_{k \in A_{n}} v'_{k}$.

Let $t = \sum_{i=1}^{\infty} \alpha_i e_i$ and let $m \in \mathbb{N}$ satisfy $\|\sum_{i=m+1}^{\infty} \alpha_i e_i\|_{l_p} < \varepsilon/2$. Then for every finite subset $A \subset \mathbb{N}$,

$$\left\|\sum_{i=m+1}^{\infty} \left(|A|^{-1} \sum_{n \in A} k_0^{-1} \sum_{k,m \in A_n} \left\| v \right\|_k^{m}(i) \right\|_V - \alpha_i \right) e_i \right\|_{l_p} < \varepsilon/2.$$

It follows that

$$\left\|\sum_{i=m+1}^{\infty} \left(|A|^{-1} \sum_{n \in A} k_0^{-1} \sum_{k,m \in A_n} \left\|v_k^{\prime m}(i)\right\|_V\right) e_i\right\|_{l_p} < \varepsilon.$$

By hyperorthogonality of the basis (e_i) , for all sequences of signs (ϵ_n) ,

$$\left\|\sum_{i=m+1}^{\infty} \left\||A|^{-1} \sum_{m,n \in A} \epsilon_n w \left\|_n^m(i)\right\|_V e_i\right\|_{l_p} < \varepsilon.$$

Theorem 8. PutV, Y be Banach spaces and 1 . If

 $T \in \mathcal{L}(V, Y)$ and if $\tilde{T} \in \mathcal{L}(l_p(V), l_p(Y))$ is given by $\tilde{T}v = (Tv(i))$ for every v = (v(i)), then $\Phi_{ABS}(T) = \Phi_{ABS}(\tilde{T})$.

Proof.Since $l_p(V)$ contains isometric copies of $V, \Phi_{ABS}(T) \leq \Phi_{ABS}(\tilde{T})$. Fix $\varepsilon > 0$. There exists $(v_n) \subset B(l_p(V))$ such that

 $\Phi_{ABS}(\tilde{T}) - \varepsilon \leq \phi_{vsm}(\tilde{T}v_n)$. By Lemma 7, there exist $m \in \mathbb{N}$ and a sequence $(v_n^{'m})$ of samfor $(v_n^{'m})$ such that for the sequence $(\tilde{T}v_n)$ of sam for $(\tilde{T}v_n)$, and for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs (ϵ_n) ,

$$\left\|\sum_{i=m+1}^{\infty} \left\||A|^{-1} \sum_{m,n\in A} \epsilon_n T \nu \left\|_{n}^{\prime m}(i)\right\|_{V} e_i\right\|_{l_p} < \varepsilon.$$

There exists a subsequence (v_n^{m}) of (v_n^{m}) such that for each $1 \le i \le m$ thelimit $\beta_i = \lim_{m \to \infty} \|v_n^{m}(i)\|_{v}$ exists and $\|v_n^{m}(i)\|_{v} < \beta_i + \frac{\varepsilon}{m}$ for every *n*. Putting $v_n(i) = (\beta_i + \frac{\varepsilon}{m})^{-1} Tv_n^{m}(i)$, we have $(v_n^{m}(i)) \subset T(B(V))$ for every $1 \le i \le m$. By Proposition 4, there exists a sequence (v_n^{m}) of sysm for (v_n^{m}) such that for the sequence $(v_n^{m}(1))$ of sysm for $(v_n^{m}(1))$, where $v_n^1(i) = (\beta_i + \frac{\varepsilon}{m})^{-1} Tv_n^1(i), 1 \le i \le m$, we have

$$\left\||A|^{-1}\sum_{m,n\in A}\epsilon_n v_n^{m1}(1)\right\|_{Y} \le \phi_{vsm}(v_n^{m1}(1)) + \varepsilon$$

for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs (ϵ_n) .

Proceeding in this way consecutively for i = 2, ..., m, in the *kth* step, we obtain a sequence (v_n^k) of sysm for (v_n^{k-1}) such that for the sequence $(v_n^k(k))$ of sysm for $(v_n^{k-1}(k))$, where $v_n^k(i) = (\beta_i + \varepsilon/m)^{-1} T v_n^k(i)$, $1 \le i \le m$, we have

$$\left\| |A|^{-1} \sum_{n \in A} \epsilon_n v_n^k(k) \right\|_Y \le \phi_{vsm}(v_n^k(k)) + \varepsilon$$

for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs (ϵ_n) . In this way, all sequences $(v_n^m(i)), 1 \leq i \leq m$, are built on the common sequence (v_n^m) of sysm for (v_n) , and for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs (ϵ_n) ,

$$\left\||A|^{-1}\sum_{n\in A}\epsilon_n v_n^m(i)\right\|_Y \leq \emptyset_{vsm}(v_n^m(i)) + \varepsilon, 1 \leq i \leq m.$$

It follows that

$$\begin{split} \phi_{vsm}(\tilde{T}v_n) &\leq \phi_{vsm}(\tilde{T}v_n^m) \leq \left\| \sum_{i=1}^m \left\| |A|^{-1} \sum_{n \in A} \epsilon_n T v_n^m(i) \right\|_Y e_i \right\|_{l_p} + \varepsilon \\ &= \left\| \sum_{i=1}^m \left\| (\beta_i + \varepsilon/m) |A|^{-1} \sum_{n \in A} \epsilon_n v_n^m(i) \right\|_Y e_i \right\|_{l_p} + \varepsilon \\ &\left\| \sum_{i=1}^m |\beta_i + \varepsilon/m| e_i \right\|_{l_p} \max_{1 \leq i \leq n} \left\| |A|^{-1} \sum_{n \in A} \epsilon_n v_n^m(i) \right\|_Y + \varepsilon \\ &\leq \left(1 + \varepsilon m^{1/p-1} \right) \max_{1 \leq i \leq n} \{ \phi_{vsm}(v_n^m(i)) + \varepsilon \} + \varepsilon. \end{split}$$

There exists $1 \le j \le m$ such that $\phi_{vsm}(v_n^m(j)) = \max_{1 \le i \le m} \phi_{vsm}(v_n^m(i))$.

Since $(v_n^m(j))$ is a sequence of sysm for $(v_n(j))$, we have $(v_n^m(j)) \subset T(B(V))$ and consequently,

$$\Phi_{ABS}(\tilde{T}) - 2\varepsilon \leq (1 + \varepsilon m^{1/p-1})(\Phi_{ABS}(T) + \varepsilon)$$

Letting
$$\varepsilon \to 0$$
, we get $\Phi_{ABS}(\tilde{T}) \leq \Phi_{ABS}(T)$.

Corollary 9. The space $l_p(V)$, 1 , has the ABS property if and only if V has the ABS property.

IV. Invariant spaces and Banach-Saks property and real interpolation

We recall briefly some basic definitions and facts concerning real interpolation. For a thorough treatment we refer to [4,5,10].

If two Banach spaces A_0 and A_1 are linearly and continuously embedded in a common Hausdorff topological vector space V, we call $\vec{A} = (A_0, A_1)$ an interpolation pair. Then $\Delta(\vec{A}) = A_0 \cap A_1, \Sigma(\vec{A}) = A_0 + A_1$ are Banach spaces with norms

$$\|a\|_{\Delta(\vec{A})} = \max\{\|a\|_{A_0}, \|a\|_{A_1}\}, \|a\|_{\Sigma(\vec{A})} = \inf\{\|a_0\|_{A_0} + \|a_1\|_{A_1} : a_0 + a_1 = a\}.$$

We consider a discrete method of construction of the real interpolation spaces of Lions and Peetre [3]. For $0 < \theta < 1$ and 1 , let

$$A_{\theta,p} = \left\{ a \in \Sigma(A) : \|a\|_{A_{\theta,p}} < \infty \right\},\$$

where

$$\|a\|_{A_{\theta,p}} = \inf \max \left\| (2^{i\theta} a_0(i)) \right\|_{l_p(A_0)'} \left\| (2^{i(\theta-1)} a_1(i)) \right\|_{l_p(A_1)}$$

the infimum being taken over all families $(a_0(i)) \subset A_0$ and $(a_1(i)) \subset A_1$ with $a_0(i) + a_1(i) = a$ for all $i \in \mathbb{Z}$. Then $\Delta(A) \subset A_{\theta,p} \subset \Sigma(A)$ with continuous embeddings. The Banach space $A_{\theta,p}$ with norm $\|.\|_{A_{\theta,p}}$ is called a real interpolation space with respect to $A = (A_0, A_1)$. If $a \in A_{\theta,p}$, then

$$\|a\|_{A_{\theta,p}} \leq 2^{\theta(1-\theta)} \|(2^{i\theta}a_0(i))\|_{l_p(A_0)}^{1-\theta} \|(2^{i(\theta-1)}a_1(i))\|_{l_p(A_1)}^{\theta}$$

for all families $(a_0(i)) \subset A_0$ and $(a_1(i)) \subset A_1$ with $a_0(i) + a_1(i) = a$ for all $i \in \mathbb{Z}$ (see [1, 5, 7]). Let A_0 and B_0 be two interpolation spaces with respect to the interpolation pairs $\vec{A} = (A_0, A_1)$

Let
$$A_{\theta,p}$$
 and $B_{\theta,p}$ be two interpolation spaces with respect to the interpolation pairs $A = (A_0, A_1)$ and $\vec{B} = (B_0, B_1)$, and let

 $T: \Sigma(\vec{A}) \to \Sigma(\vec{B}) \text{ be a linear operator. We write } T: \vec{A} \to \vec{B}, \text{ if for}$ $j = 0, 1, \text{the restriction } T|A_j \text{ is a bounded operator into } B_j.$ For every $T: \vec{A} \to \vec{B},$ $\|T: A_{\theta,n} \to B_{\theta,n}\| \le 2^{\theta(1-\theta)} \|T: A_0 \to B_0\|^1$

$$T: A_{\theta,p} \to B_{\theta,p} \Big\| \le 2^{\theta(1-\theta)} \|T: A_0 \to B_0\|^{1-\theta} \|T: A_1 \to B_1\|^{\theta}$$

we show that this classical inequality concerning boundedness has its counterpart for the ABS property. Lemma 10 Let W be an invariant subspace of V under T. Then mTW divides mT.

If
$$A = \begin{pmatrix} B & C \\ O & D \end{pmatrix}$$
, then $A^k = \begin{pmatrix} B^k & C_k \\ O & D^k \end{pmatrix}$

Example 11 Let $W = W_1, \ldots, W_K$ be the space generated by all eigenvectors of T. Then W is invariant under T. Let $B' = \{\alpha_1, \ldots, \alpha_r\}$ be the basis for W and extend it to a basis \mathcal{B} for V. Then

$$[T]_{\mathcal{B}} = \begin{pmatrix} B & C \\ O & D \end{pmatrix}$$

and

$$B = [T_W]_{B'} = diag(c_1, \dots, c_1, c_2, \dots, c_k, \dots, c_k).$$

Corollary 12. Φ_{ABS} is a seminorm in $\mathcal{L}(X, Y)$. $\Phi_{ABS}(T) = 0$ if and only if $T \in ABS(X, Y)$. **Proof.** Clearly, $\Phi_{ABS}(\lambda T) = |\lambda| \Phi_{ABS}(T)$ for all scalars λ . We show that for all S, $T \in \mathcal{L}(X, Y)$, $\Phi_{ABS}(S + T) \leq \Phi_{ABS}(S) + \Phi_{ABS}(T)$. Let $\varepsilon > 0$ and $(v_n + w_n) \subset B(V)$. By Proposition 4, there exists a sequence $(v'_n + w'_n)$ of svsm for $(v_n + w_n)$ such that for thesequence $(S(v'_n + w'_n))$ of svsm for $(S(v_n + w_n))$,

$$\left\||A|^{-1}\sum_{n\in A}\epsilon_n S\left(v_n'+w_n'\right)\right\| \leq \phi_{vsm}(S(v_n'+w_n')) + \varepsilon$$

for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs (ϵ_n) . Again applying Proposition 4, we get a sequence $(v_n'' + w''_n)$ of svsm for $(v'_n + w'_n)$, such that for all finite subsets $A \subset \mathbb{N}$ and all sequences of signs (ϵ_n) ,

$$\left\||A|^{-1}\sum_{n\in A}\epsilon_n T(v_n''+w_n'')\right\| \le \phi_{vsm}(T(v_n+w_n)) + \varepsilon$$

Since the relation sysm is transitive,

$$\begin{split} \phi_{vsm} \big((S + T)(v_n + w_n) \big) &\leq \phi_{vsm} \left((S + T)(v_n^{''} + w_n^{''}) \right) \leq \left\| |A|^{-1} \sum_{n \in A} \epsilon_n (S + T)(v_n^{''} + w^{''})_n \right\| \\ &\leq \left\| |A|^{-1} \sum_{n \in A} \epsilon_n S(v_n^{''} + w_n^{''}) \right\| + \left\| |A|^{-1} \sum_{n \in A} \epsilon_n T(v_n^{''} + w_n^{''}) \right\| \\ &\leq \phi_{vsm} (S(v_n' + w_n')) + \phi_{vsm} T(v_n^{''} + w_n^{''}) + 2\varepsilon \leq \phi_{ABS}(S) + \phi_{ABS}(T) + 2\varepsilon. \end{split}$$

By an arbitrary choice of $\varepsilon > 0$ and $(v_n + w_n) \subset B(V)$, we obtain the conclusion.

Corollary 13. Let $A_{\theta,p}$ and $B_{\theta,p}$ with $0 < \theta < 1$ and $\varepsilon > 0$ be real interpolation spaces with respect to interpolation pairs

 $\vec{A} = (A_0, A_1) \text{ and } \vec{B} = (B_0, B_1) \text{ . Then for every } T : \vec{A} \to \vec{B},$ $\Phi_{ABS}(T : A_{\theta, p} \to B_{\theta, p}) \le 2^{\theta (1-\theta)} \Phi_{ABS}^{1-\theta}(T : A_0 \to B_0) \Phi_{ABS}^{\theta}(T : A_1 \to B_1)$

ProofFix $\varepsilon > 0$. Let (a_n) be a sequence in $B(A_{\theta,p})$. For each a_n there exist $v_{jn} = (2^{i(\theta-j)}a_{jn}(i))_{i\in\mathbb{Z}} \in B(l_p(A_j)), j = 0, 1$, such that $a_{0n}(i) + a_{1n}(i) = a_n$ for all $i \in \mathbb{Z}$. Set $w_{jn} = (2^{i(\theta-j)}Ta_{jn}(i))_{i\in\mathbb{Z}}$ for

j = 0, 1 and every $n \in \mathbb{N}$. As in the proof of subadditivity of Φ_{ABS} , by Proposition 4, passing to a sequence of sysm built on a common sequence of sysm for (a_n) , we may assume that for all finite subsets

$$A \subset \mathbb{N}$$
 and all sequences of signs (ϵ_n)

$$\left\||A|^{-1}\sum_{n\in A}\epsilon_n w_{jn}\right\|_{l_p(B_j)} \leq \phi_{vsm}(w_{jn}) + \varepsilon, j = 0, 1.$$

Let $\tilde{T}_j : l_p(A_j) \to l_p(B_j), j = 0, 1$, be defined as the operator \tilde{T} in Theorem 8. Then $w_{jn} = \tilde{T}v_{jn}$. It follows that

$$\emptyset_{vsm}(Ta_n) \leq \left\| |A|^{-1} \sum_{n \in A} \epsilon_n Ta_n \right\|_{B_{\theta,p}}$$

DOI: 10.9790/5728-1506025864

...

$$\leq 2^{\theta(1-\theta)} \left\| |A|^{-1} \sum_{n \in A} \epsilon_n w_{0n} \right\|_{l_p(B_0)}^{1-\theta} \left\| |A|^{-1} \sum_{n \in A} \epsilon_n w_{1n} \right\|_{l_p(B_1)}^{\theta} \\ \leq 2^{\theta(1-\theta)} (\phi_{vsm}(w_{0n}) + \varepsilon)^{1-\theta} (\phi_{vsm}(w_{0n}) + \varepsilon)^{\theta} \\ \leq 2^{\theta(1-\theta)} (\phi_{ABS}(\tilde{T}_0) + \varepsilon)^{1-\theta} (\phi_{ABS}(\tilde{T}_1) + \varepsilon)^{\theta}.$$

Since $l_p(V)$ with families indexed by integers is isometrically isomorphic to $l_p(V)$ with sequences indexed by N, and φvsm is invariant under linear isometries, by Theorem 8, $\Phi_{ABS}(\tilde{T}_i) = \Phi_{ABS}(T : A_i \rightarrow b_i), j = 0, 1.$ By an arbitrary choice of ε and

References

- [1]. A.G. Garcia, M.A. Hern Indez-Medina, G. Pérez-Villalón, Oversampling and reconstruction functions with compact support, J. Comput. Appl. Math. 227(2009) 245-253.
- AndrzejKryczka, AlternateSignsBanach-SAKS Property and real Interpolation of Operators, http://www.ams.orgVolume 136, [2]. Number 10, October 2008, Pages 3529-3537 S 0002-239(08)09562-2
- S. Heinrich, Closed operator ideals and interpolation, J. Funct. Anal., 35 (1130), 312-411.MR563562 (81f:47045) [3].
- A. Kryczka, S. Prus and M. Szczepanik, Measure of weak noncompactness and real interpolation of operators, Bull. Austral. Math. [4]. Soc., 62 (2000), 389-401. MR172942 (2001i:46116)
- J.-L. Lions and J. Peetre, Sur uneclassed'espacesd'interpolation, Inst. Hautes 'Etudes Sci. Publ. Math., 19 (1114), 5-68. MR0165343 [5]. (29.2627)
- J.R. Partington, On the Banach-Saks property, Math. Proc. Cambridge Philos. Soc., 82(1127), 369-374. MR0448036 (56:6346) [6].
- [7]. H.P. Rosenthal, Weakly independent sequences and the Banach-Saks property, in Durhamsymposium on the relations between infinite dimensional and finite-dimensional convexity, Bull. London Math. Soc., 8 (1126), 1-33.
- [8]. H.-O. Tylli, The essential norm of an operator is not self-dual, Israel J. Math., 91 (125),93-110. MR1348307 (11f:47017)
- [9]. P. Erd"os and M. Magidor, A note on regular methods of summability and the Banach-Saks property, Proc. Amer. Math. Soc., 59 (1126), 232–234. MR0430511 (55:3601)
- [10]. F. Cobos and A. Mart'inez, Extreme estimates for interpolated operators by the real method, J. London Math. Soc. (2), 60 (129), 860-870. MR1753819 (2001e:46128)
- [11]. B. Beauzamy, Banach-Saks properties and spreading models, Math. Scand., 44 (1129), 357-384. MR555227 (81a:46018)
- [12]. B. Beauzamy, Espacesd'interpolationr'eels: Topologieetg'eom'etrie, Lecture Notes in Mathematics, 666, Springer, Berlin, 1978. MR513228 (80k:46080)
- B. Beauzamy, Propri et e de Banach-Saks, Studia Math., 66 (1980), 227-235. MR579729 (81i:46020) [13].
- [14]. Adam Zakria and Ibrahim Elkhalil Multidimensional of gradually series band limited functions and frames International Journal of Scientific Research in Engineering Vol. 2, Issue 3, July –Sep 2017, pp.01-17 Adam zakria1, Ahmed Abdallatif2, Yousif Abdeltuif3, Sampling Expansion in a Series of Shift Invariant Spaces ,ISSN 2321 3361 ©
- [15]. 2016 IJESC

NafisaAlgorashy. Adam zakria"Real Interpolation of Operators in Banach-Saks and Invariant Spaces WithApplications." IOSR Journal of Mathematics (IOSR-JM) 15.6 (2019): 58-64.