Pgrw-closed map in a Topological Space

R. S. Wali¹ and Vijayakumari T. Chilakwad²

¹Department of Mathematics, Bandari & Rathi, College, Guledgudd, Bagalkot, Karnataka State, India ²Department of Mathematics, Government First Grade College, Dharwad, Karnataka State, India

Abstract: The aim of this paper is to introduce pgrw-closed maps and pgrw*-closed maps and to obtain some of their properties. In section 3 pgrw-closed map is defined and compared with other closed maps. In section 4 composition of pgrw-maps is studied. In section 5 pgrw*-closed maps are defined. **Keywords:** pgrw-closed set, pgrw-closed maps, pgrw*-closed maps.

I. Introduction

Different mathematicians worked on different versions of generalized closed maps and related topological properties. Generalized closed mappings were introduced and studied by Malghan [1]. wg-closed maps and rwg-closed maps were introduced and studied by Nagaveni [2]. Regular closed maps, gpr-closed maps and rw-closed maps were introduced and studied by Long [3], Gnanambal [4] and S. S. Benchallli [5] respectively.

II. Preliminaries

Throughout this paper, (X, τ) and (Y, σ) (or simply X and Y) represent the topological spaces. For a subset A of a space X, cl(A) and int(A) denote the closure of A and the interior of A respectively. X\A or A^c denotes the complement of A in X.

We recall the following definitions and results.

Definition 2.1

A subset A of a topological space (X, τ) is called

1. a semi-open set[6] if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$.

2. a pre-open set[7] if $A \subseteq int(cl(A))$ and a pre-closed set if $cl(int(A)) \subseteq A$.

3. an α -open set [8] if $A \subseteq int(cl(int(A)))$ and an α -closed set if $cl(int(cl(A))) \subseteq A$.

4. a semi-pre open set $[9](=\beta$ -open)[10] if A \subseteq cl(int(cl(A))) and a semi-pre closed set (= β -closed) if int(cl(int(A))) \subseteq A.

5. a regular open set [10] if A = int(clA) and a regular closed set if A = cl(int(A)).

6. δ -closed [11] if A = cl δ (A), where cl δ (A) = {x \in X : int(cl(U)) \cap A \neq \Phi, U \in \tau and x \in U}

7. a regular semi open [12] set if there is a regular open set U such that $U \subseteq A \subseteq cl(U)$.

8. a regular α -closed set (briefly, $r\alpha$ -closed)[13] if there is a regular closed set U such that $U \subset A \subset \alpha cl(U)$.

9. a generalized closed set (briefly g-closed)[14] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

10. a regular generalized closed set(briefly rg-closed)[15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.

12. a generalized pre regular closed set(briefly gpr-closed)[4] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.

13. a generalized semi-pre closed set(briefly gsp-closed)[16] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

14. a w-closed set [17] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.

15. a pre generalized pre regular closed set[18] (briefly pgpr-closed) if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is rgopen in X.

16. a generalized semi pre regular closed (briefly gspr-closed) set [19] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.

17. a generalized pre closed (briefly gp-closed) set[20] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

18. a #regular generalized closed (briefly #rg-closed) set [21] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is rw-open.

19. a g*s-closed [22]set if scl (A) \subseteq U whenever A \subseteq U and U is gs open.

20. rwg-closed [2] set if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular -open in X.

21. a rw-closed [5] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is regular semi-open in X.

22. α g-closed[23] if α cl(A) \subseteq U whenever A \subseteq U and U is open in X.

23. a $\omega\alpha$ -closed set[24] if α cl(A) \subseteq U whenever A \subseteq U and U is ω -open in X.

24. an α -regular w closed set(briefly α rw -closed)[25] if α cl(A) \subseteq U whenever A \subseteq U and U is rw-open in X.

The complements of the above mentioned closed sets are the respective open sets.

Definition 2.2 A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be 1. α -closed [8] if f(F) is α -closed in Y for every closed subset F of X. 2. ag-closed [23] if f(F) is ag-closed in Y for every closed subset F of X. 4. rwg-closed [2] if f(V) is rwg-closed in Y for every closed subset V of X. 6. gp-closed [20] if f(V) is gp-closed in Y for every closed subset V of X. 7. gpr-closed[4] if f(V) is gpr-closed in Y for every closed subset V of X. 8. $\omega\alpha$ -closed [24] if f(V) is $\omega\alpha$ -closed in Y for every closed subset V of X. 9. gspr-closed [19] if f(V) is gspr-closed in Y for every closed subset V of X. 10. ω -closed [17] if f(V) is ω -closed in Y for every closed subset V of X. 11. $r\omega$ -closed [5] if f(V) is rw-closed in Y for every closed subset V of X. 12. regular-closed if f(F) is closed in Yfor every regular closed set F of X. 13. g*s-closed [22]map if for each closed set F in X,f(F) is a g*s-closed in y. 14. α r ω -closed [25] if the image of every closed set in (X, τ) is α r ω -closed in (Y, σ). 15. pre-closed [26] if f (V) is pre-closed in Y for every closed set V of X. 16. δ -closed [11] if for every closed set G in X, f (G) is a δ -closed set in Y. 17. #rg-closed [21] if f(F) is #rg-closed in (Y, σ) for every #rg-closed set F of (X, τ). 18. gsp-closed [16] if f(V) is gsp-closed in (Y, σ) for every closed set V of (X, τ) . 19. semi-closed [27] if image of every closed subset of X is semi-closed in Y. 20. Contra-closed [28] if f(F) is open in Y for every closed set F of X. 21. Contra regular-closed if f(F) is r-open in Y for every closed set F of X. 22. Contra semi-closed [29] if f(F) is s-open in Y for every closed set F of X. 23. Semi pre-closed [30] (Beta-closed) if f(V) is semi-pre-closed in Y for every closed subset V of X. 24. g-closed [14] if f(V) is g-closed in Y for every closed subset V of X. 25. ra-closed [13] if f(V) is ra-closed in Y for every closed subset V of X. The following results are from [31] Theorem: Every pgpr-closed set is pgrw-closed. Theorem: A pre-closed set is pgrw-closed. **Corollary:** Every α - closed set is pgrw- closed. Corollary: Every closed set is pgrw-closed. **Corollary:** Every regular closed set is pgrw-closed. **Corollary:** Every δ - closed set is pgrw- closed. Theorem: Every #rg- closed set is pgrw- closed. **Theorem:** Every arw-closed set is pgrw-closed. **Theorem:** Every pgrw-closed set is gp-closed Theorem: Every pgrw- closed set is gsp-closed. Corollary: Every pgrw- closed set is gspr- closed. Corollary: Every pgrw- closed set is gpr- closed. Theorem: If A is regular open and pgrw-closed, then A is pre-closed. Theorem: If A is open and gp-closed, then A is pgrw-closed. Theorem: If A is both open and g-closed, then A is pgrw -closed. Theorem: If A is regular- open and gpr-closed, then it is pgrw-closed.

Theorem: If A is both semi-open and w-closed, then it is pgrw-closed.

Theorem: If A is open and ag-closed, then it is pgrw -closed.

III. Pgrw-CLOSED MAP

Definition 3.1: A map $f:(X, \tau) \to (Y, \sigma)$ is said to be a pre generalized regular weakly-closed map(pgrwclosed map) if the image of every closed set in (X, τ) is pgrw-closed in (Y, σ) .

Example 3.2: $X = \{a,b,c\}, \tau = \{X, \phi, \{a\}\}$ and $Y = \{a,b,c\}, \sigma = \{Y, \phi, \{a\}, \{b,c\}\}$.

Closed sets in X are X, ϕ , {b, }. pgrw-closed sets in Y are Y, ϕ , {a}, {b}, {c}, {a,b}, {a,c}, {b,c}.

A map $f: X \to Y$ is defined by f(a)=b, f(b)=c, f(c)=a. Image of every closed set in X is pgrw-closed in Y. So f is a pgrw-closed map.

Theorem 3.3: Every closed map is a pgrw-closed map.

Proof: f: $(X, \tau) \rightarrow (Y, \sigma)$ is a closed map.

```
\Rightarrow f is a pgrw-closed map.
```

 $[\]Rightarrow \forall$ closed set A in X f(A) is closed in Y.

 $[\]Rightarrow$ \forall closed set A in X f(A) is pgrw-closed in Y.

The converse is not true.

Example: 3.4: In the example 3.2 f is a pgrw-closed map and as $\{b,c\}$ is closed in X and $f(\{b,c\})=\{a,c\}$ is not closed in Y, f is not a closed map.

Theorem 3.5: Every pre-closed (regular-closed, α -closed, δ -closed, #rg-closed, pgpr-closed, arw-closed) map is pgrw–closed.

Proof: f: $(X, \tau) \rightarrow (Y, \sigma)$ is a pre-closed map.

 \Rightarrow \forall closed set A in X f(A) is pre-closed in Y.

 \Rightarrow \forall closed set A in X f(A) is pgrw-closed in Y.

 \Rightarrow f is a pgrw-closed map.

Similarly remaining statements can be proved.

The converse is not true.

Example 3.6: X={a,b,c}, $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$ and Y={a,b,c,d}, $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$. Closed sets in X are X, $\phi, \{c\}, \{b,c\}, \{a,c\}$.Pgrw-closed sets in Y are Y, $\phi, \{c\}, \{d\}, \{b,c\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}, \{a,c,d\}, \{a,c,d\}, \{a,c,d\}, \{a,c,d\}, \{a,c,d\}, \{a,c,d\}, \{b,c,d\}$. Pre-closed sets in Y are Y, $\phi, \{c\}, \{d\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}$. Pre-closed sets in Y are Y, $\phi, \{c\}, \{d\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}$. Pre-closed sets in Y are Y, $\phi, \{c,d\}, \{a,c,d\}, \{b,c,d\}$. A map f:X \rightarrow Y is defined by f(a)=b, f(b)=c, f(c)=d. f is a pgrw-closed map. {a,c} is closed in X. f({a,c})={b,d} which is neither a pre-closed nor a pgpr-closed set. So f is neither a pre-closed map. {c} is closed in X. f({c})={d} is not \delta-closed. So f is not a δ -closed map.

Example 3.7: In the example 3.2 regular closed sets in Y are Y, ϕ , {a}, {b,c}, α -closed sets in Y are Y, ϕ , {a}, {b,c}, #rg-closed sets in Y are Y, ϕ , {a}, {b,c} and α rw-closed sets are Y, ϕ , {a}, {b,c}. f is a pgrw closed map, but $f(\{b,c\})=\{a,c\}$ is neither a regular closed set nor α -closed nor #rg-closed nor α r ω -closed. So f is neither a regular closed nor π rg-closed nor α -closed nor π rg-closed nor π rg-closed nor π -closed nor π rg-closed nor π -closed nor π -clos

Theorem 3.8: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a contra-r-closed and pgrw-closed map, then f is pre-closed.

Proof: f: $(X, \tau) \rightarrow (Y, \sigma)$ is a contra-r-closed and pgrw-closed map.

 $\Rightarrow \forall$ closed set A in X f(A) is regular open and pgrw-closed in Y.

 $\Rightarrow \forall$ closed set A in X f(A) is pre- closed in Y.

 \Rightarrow f is a pre-closed map.

Theorem 3.9: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a pgrw–closed map, then f is a gp-closed(gsp-closed, gspr-closed, gspr-closed) map.

Proof: f: $(X, \tau) \rightarrow (Y, \sigma)$ is a pgrw-closed map.

 $\Rightarrow \forall$ closed set A in X f(A) is a pgrw-closed set in Y.

 \Rightarrow \forall closed set A in X f(A) is a gp-closed set in Y.

 \Rightarrow f is a gp-closed map. Similarly the other results follow.

The converse is not true.

Example 3.10: $X = \{a,b,c\}, \tau = \{X,\phi,\{a\},\{b,c\}\}, Y = \{a,b,c\}, \sigma = \{Y,\phi,\{a\}\}.$

Pgrw-closed sets in Y are Y, ϕ , {b}, {c}, {b,c}. gp-closed sets in Y are , ϕ , {b}, {c}, {a,b}, {b,c}, {a,c}. gpr-closed sets in Y are all subsets of Y. A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is defined by f(a)=b, f(b)=a, f(c)=c. f is gp-closed and gpr-closed. $f(\{b,c\})=\{a,c\}$ is not pgrw-closed. So f is not pgrw-closed.

Example 3.11:X= $\{a,b,c,d\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$ and Y= $\{a,b,c\}$,

 $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}\}$. Closed sets in X are X, $\phi, \{b,c,d\}, \{a,c,d\}, \{c,d\}, \{d\}$.

gsp-closed sets in Y are all subsets of Y.gspr-closed sets in Y are all subsets of Y. pgrw-closed sets in Y are Y, ϕ , {c}, {a,c}, {b,c}. A map f :X \to Y is defined by f(a)=b, f(b)=a, f(c)=c, f(d)=a. f is gsp-closed and gsprclosed, but f is not pgrw-closed.

Theorem 3.12: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a contra closed and gp-closed map, then f is pgrw-closed.

Proof: f: $(X, \tau) \rightarrow (Y, \sigma)$ is a contra closed and gp-closed map.

 $\Rightarrow \forall \mbox{ closed set } V \mbox{ in } X \ f(V) \mbox{ is open and gp-closed in } Y \ .$

 $\Rightarrow \forall$ closed set V in X f(V) is pgrw-closed in Y.

 \Rightarrow f is a pgrw-closed map.

Theorem 3.13: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a contra-closed and α g-closed map, then f is pgrw-closed.

Proof: f: $(X, \tau) \rightarrow (Y, \sigma)$ is a contra closed and αg -closed map.

 $\Rightarrow \forall$ closed set V in X f(V) is open and αg -closed in Y.

 $\Rightarrow \forall$ closed set V in X f(V) is pgrw-closed in Y.

 \Rightarrow f is a pgrw-closed map.

Theorem 3.14: If $f: (X, \tau) \to (Y, \sigma)$ is a contra regular-closed and gpr-closed map, then f is a pgrw-closed map. **Proof:** $f: (X, \tau) \to (Y, \sigma)$ is a contra regular-closed and gpr-closed map.

 $\Rightarrow \forall$ closed set V in X f(V) is regular-open and gpr-closed in Y.

 \Rightarrow \forall closed set V in X f(V) is pgrw-closed in Y.

 \Rightarrow f is a pgrw-closed map.

Theorem 3.15: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a contra semi-closed and w-closed map, then f is a pgrw-closed map.

Proof: f: $(X, \tau) \rightarrow (Y, \sigma)$ is a contra semi-closed and w-closed map.

 $\Rightarrow \forall \mbox{ closed set } V \mbox{ in } X \ f(V) \mbox{ is a semi-open and w-closed set in } Y \ .$

 $\Rightarrow \forall \text{ closed set } V \text{ in } X \ f(V) \text{ is pgrw-closed in } Y.$

 \Rightarrow f is a pgrw-closed map.

Theorem 3.16: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a contra closed and g-closed map, then f is pgrw-closed.

Proof: f: $(X, \tau) \rightarrow (Y, \sigma)$ is a contra closed and g-closed map.

 $\Rightarrow \forall \text{ closed set } V \text{ in } X \ f(V) \text{ is an open and g-closed set in } Y \ .$

 $\Rightarrow \forall$ closed set V in X f(V) is pgrw-closed in Y.

 \Rightarrow f is a pgrw-closed map.

The following examples illustrate that the pgrw-closed map and rw-closed map (g^*s -closed map, r\alpha-closed map and w α -closed map, β -closed map, semi-closed map) are independent.

Example 3.17: To show that pgrw-closed map and rw-closed map are independent.

 $i)X{=}\{a,b,c\} \ , \ \tau {=}\{X, \ \varphi, \ \{a\}, \ \{a,c\}\}. \ Y{=}\{a,b,c,d\} \ , \ \sigma {=}\{Y, \ \varphi, \ \{a,b\}, \{c,d\}.$

pgrw-closed sets in Y are all subsets of Y. rw-closed sets in Y are $Y,\phi,\{a,b\},\{c,d\}$. A map

 $f:(X, \tau) \rightarrow (Y, \sigma)$ is defined by f(a)=b, f(b)=c, f(c)=a. f is pgrw-closed, but f is not rw-closed.

ii) $X = \{a,b,c\}, \tau = \{X, \phi, \{a\}\}, Y = \{a,b,c\}, \sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}\}.$

pgrw-closed sets in Y are Y, ϕ , {c}, {b,c}, {a,c}. rw-closed sets in Y are Y, ϕ ,{c},{a,b},{b,c},{a,c}}. A map

f:(X, τ) \rightarrow (Y, σ) is defined by f(a)=c, f(b)=a, f(c)=b. f is not pgrw-closed but f is rw-closed.

Example 3.18: To show that pgrw-closed map and g^* s-closed map are independent.

i)X={a,b,c,d}, $\tau =$ {X, ϕ , {a}, {a,c}}. Y={a,b,c}, $\sigma =$ {Y, ϕ , {a},{b,c}}.

pgrw-closed sets in Y are all subsets of Y. g*s-closed sets in Y are Y, ϕ ,{a}, {b,c}. A map

f:X \rightarrow Y is defined by f(a)=c, f(b)=a, f(c)=b,f(d)=b. f is pgrw-closed, but f is not g*s-closed. ii)X={a,b,c,d}, $\tau =$ {X, ϕ , {b,c},{b,c,d} {a,b,c}}. Y={a,b,c,d}, $\sigma =$ {Y, ϕ , {a}, {b},{a,b}, {a,b,c}}. pgrw-closed sets in Y are Y, ϕ , {c}, {d}, {b,c}, {c,d}, {a,d}, {b,d}, {b,c,d}, {a,c,d}, {a,b,d}. g*s-closed sets in Y are Y, ϕ , {a},{b},{c},{d},{b,c},{c,d},{a,c},{b,c,d},{a,c,d}. A map f :X \rightarrow Y is defined by f(a)=c, f(b)=d, f(c)=b, f(d)=a. f is not pgrw-closed, but f is g*s-closed.

Example 3.19: To show that pgrw-closed map and rα-closed map are independent.

i) X={a,b,c}, τ ={X, ϕ ,{a},{a,c}}and Y={a,b,c}, σ ={Y, ϕ , {a},{b,c}}. Pgrw-closed sets in Y are Y, ϕ ,{a}, {b}, {c}, {a,b},{b,c}, {a,c}. r\alpha-closed sets in Y are Y, ϕ , {a},{b,c}. A map f :X \rightarrow Y is defined by f(a)=c, f(b)=a, f(c)=b. f is a pgrw-closed map, but f is not r\alpha-closed.

ii)X={a,b,c,d}, $\tau =$ {X, ϕ , {a}, {c,d}, {a,c,d}}. Y={a,b,c,d}, $\sigma =$ {Y, ϕ ,{a}, {b}, {a,b,c}}. Pgrw-closed sets in Y are Y, ϕ , {c}, {d}, {b,c}, {c,d}, {b,d}, {b,c,d}, {a,c,d}, {a,b,d}.

 $r\alpha$ -closed sets in Y are Y, ϕ ,{a},{b}, {b,c,d},{a,c,d},{a,d},{b,d},{a,c},{b,c}.

A map $f: X \rightarrow Y$ is defined by f(a)=c, f(b)=a, f(c)=c, f(d)=d. f is not a pgrw-closed map, but f is ra-closed.

Example 3.20: To show that pgrw-closed map and w α -closed map are independent.

 $i)X = \{a,b,c,d\}, \tau = \{X,\phi,\{a,b\}, \{c,d\}\}. Y = \{a,b,c,d\}\sigma = \{Y,\phi,\{b,c\},\{b,c,d\},\{a,b,c\}\}$

Pgrw-closed sets in Y are Y, ϕ , {a}, {b}, {c}, {d}, {a,c}, {c,d}, {a,d}, {a,c,d}, {a,b,d}.w\alpha-closed sets in Y are Y, ϕ , {a}, {d}, {a,c,d}, {a,c,d}, {a,b,d}. A map f :X \rightarrow Y is defined by f(a)=a, f(b)=c, f(c)=d, f(d)=a. f is pgrw-closed, but f is not w\alpha-closed.

ii) $X = \{a,b,c\}, \tau = \{X,\phi,\{a\},\{b\},\{a,b\}\}. Y = \{a,b,c,d\} \sigma = \{Y,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$

pgrw-closed sets in Y are $Y,\phi,\{c\},\{d\},\{b,c\},\{c,d\},\{a,d\},\{b,d\},\{b,c,d\},\{a,c,d\},\{a,b,d\}.$

wa-closed sets in Y are Y, ϕ ,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,d}. A map f :X \rightarrow Y is defined by f(a)=c, f(b)=a, f(c)=b. f is not pgrw-closed, but wa-closed.

Example 3.21: To show that pgrw-closed map and β -closed map are independent.

i) $X=\{a,b,c,d\},\sigma=\{X,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$ and $Y=\{a,b,c,d\},\sigma=\{Y,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\}\}$ pgrw-closed sets in Y are Y, ϕ , {c}, {d}, {b,c}, {c,d}, {a,d}, {b,c}, {b,c,d}, {a,c,d}, {a,c,d}, {a,b,d}. \beta-closed sets in Y are Y, ϕ , $\{a\},\{b\},\{c\},\{d\},\{b,c\}, {a,c}, {b,d}, {c,d}, {a,d}, {b,c,d}, {a,c,d}. A map f:X \rightarrow Y$ is defined by f(a)=b, f(b)=a, f(c)=b, f(d)=d. f is pgrw-closed map, but not β -closed.

ii) A map $f: X \rightarrow Y$ is defined by f(a)=c, f(b)=c, f(c)=d, f(d)=a in the above example. f is β -closed, but not pgrw-closed.

Example 3.22: To show that pgrw-closed map and semi-closed map are independent.

i) X={a,b,c}, $\tau =$ {X, ϕ ,{a}} and Y={a,b,c,d}, $\sigma =$ {Y, ϕ ,{a},{b},{a,b},{a,b,c}}

Pgrw-closed sets in Y are $Y, \phi, \{c\}, \{d\}, \{b,c\}, \{c,d\}, \{a,d\}, \{b,c,d\}, \{a,c,d\}, \{a,b,d\}.$

Semi-closed sets in Y are Y, ϕ , {a}, {b}, {c}, {d}, {a,c}, {b,c}, {c,d}, {a,d}, {b,c,d}, {a,c,d}.

A map $f: X \to Y$ is defined by f(a)=b, f(b)=a, f(c)=d. f is pgrw-closed, but f is not semi-closed.

ii) A map $f: X \to Y$ is defined by f(a)=d, f(b)=a, f(c)=a in the above example. f is semi-closed, but not pgrw-closed.

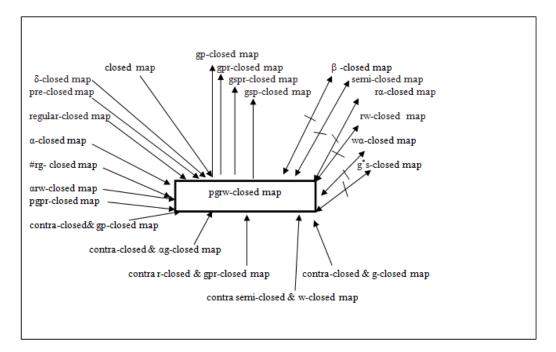
Theorem 3.23: If a map f: $(X, \tau) \rightarrow (Y, \sigma)$ is pgrw-closed and A is a closed subset of X, then $f_A: (A, \tau_A) \rightarrow (Y, \sigma)$ is pgrw-closed.

Proof: A is a closed set of X. Let F be a closed set of $(A, \underline{\tau}_A)$. Then $F = A \cap E$ for some closed set E of (X, τ) and so F is a closed set of (X, τ) . Since f is a pgrw–closed map, f (F) is pgrw-closed set in (Y, σ) . But for every F in A, $f_A(F) = f(F)$ and $\therefore f_A: (A, \tau_A) \rightarrow (Y, \sigma)$ is pgrw-closed.

Theorem 3.24: If a map $f:(X, \tau) \to (Y, \sigma)$ is pgrw-closed, then $pgrwcl(f(A)) \subseteq f(cl(A))$ for every subset A of X.

Proof: Suppose $f:(X, \tau) \to (Y, \sigma)$ is a pgrw-closed map.Let $A \subseteq X$. As cl(A) is closed in X and f is pgrw-closed, f(cl(A)) is pgrw-closed in Y. and so pgrwcl(f(cl(A))) = f(cl(A))....(1)[32]. Next $A \subseteq cl(A)$. $\therefore f(A) \subseteq f(cl(A))$. \therefore $pgrwcl(f(A)) \subseteq pgrwcl(f(cl(A))) \to (ii)[32]$.

From (i) and (ii), pgrw-cl(f(A)) \subseteq f(cl(A)) \forall subset A of (X, τ).



In the above diagram,

A _____ B means'If A, then B.'

A \checkmark B means 'A and B are independent.'

Theorem 3.25: If a map $f:(X, \tau) \to (Y, \sigma)$ is such that $pcl(f(A))=pgrwcl(f(A)) \subseteq f(cl(A)) \forall A \text{ in } X$, then f is a pgrw-closed map.

Proof: Hypothesis: $f:(X, \tau) \to (Y, \sigma)$ is a map such that $pcl(f(A))=pgrwcl(f(A))\subseteq f(cl(A)) \forall A \text{ in } X. A \text{ is a closed subset of } (X, \tau).$

 $\Rightarrow A = cl(A) \Rightarrow f(A) = f(cl(A)).$

 \Rightarrow pgrwcl(f(A)) \subseteq f(A), by the hypothesis pgrwcl(f(A)) \subseteq f(cl(A)) \forall A in X.

 \Rightarrow f(A)= pgrwcl(f(A)) because f(A) \subseteq pgrwcl(f(A)) \forall A in X.

=pcl(f(A)) by hypothesis. $\Rightarrow f(A)$ is pre-closed.

 \Rightarrow f(A) is pgrw-closed in (Y, σ). Thus \forall closed set A in X f(A) is pgrw-closed in (Y, σ).

Hence f is a pgrw-closed map.

Theorem 3.26:A map $f:(X, \tau) \to (Y, \sigma)$ is pgrw-closed if and only if \forall subset S of (Y, σ) and for every open set U containing $f^{1}(S)$ in X, there is a pgrw-open set V of (Y, σ) such that $S \subseteq V$ and $f^{1}(V) \subseteq U$.

Proof:i) $f: (X, \tau) \rightarrow (Y, \sigma)$ is a map, S is subset of Y and $f^{-1}(S) \subseteq U$, a subset of X. $\Rightarrow S \cap f(X - U) = \phi \Rightarrow S \subseteq Y - f(X - U)$.

ii) $f: (X, \tau) \rightarrow (Y, \sigma)$ is a pgrw-closed map and U is an open set in X.

 \Rightarrow f(X-U) is a pgrw-closed set in Y.

 \Rightarrow Y-f(X-U)=V(say) is a pgrw-open set in Y.

 $\Rightarrow f^{-1}(V) = X - f^{-1}(f(X - U)) \subseteq X - (X - U) = U.$

So from (i) and (ii) if $f: (X, \tau) \to (Y, \sigma)$ is a pgrw-closed map, then $\forall S \subseteq Y$ and \forall open set U containing $f^{-1}(S)$ in $X \exists a$ pgrw-open set V=Y- f(X = U) such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$. Conversely Suppose $f: (X, \tau) \to (Y, \sigma)$ is a map such that $\forall S \subseteq Y$ and \forall open set U containing $f^{1}(S)$ in X, there exists a pgrw-open set V in Y such that $S \subseteq V$ and $f^{1}(V) \subseteq U$.

 \forall F \subseteq X and for any map $f: X \to Y$, $f^{-1}((f(F))^c) \subseteq F^c$. If F is a closed subset of X, then F^c is open in X. Take $S=(f(F))^c$ and $U=F^c$. Then by the hypothesis \exists a pgrw-open set V in Y such that $S \subseteq V$ and $f^1(V) \subseteq U$. i.e. $(f(F))^c \subseteq V$ and $f^1(V) \subseteq F^c \Rightarrow V^c \subseteq f(F)$ and $F \subseteq (f^1(V))^c$

 $\Rightarrow V^{c} \subseteq f(F) \text{ and } f(F) \subseteq f((f^{-1}(V))^{c}) \subseteq V^{c} \Rightarrow V^{c} \subseteq f(F) \text{ and } f(F) \subseteq V^{c} \Rightarrow V^{c} = f(F)$

As V is pgrw-open, V^c is pgrw-closed in Y i.e. f(F) is pgrw-closed in Y. Thus \forall closed set F in X, f(F) is pgrw-closed in Y. Hence $f: (X, \tau) \rightarrow (Y, \sigma)$ is a pgrw-closed map.

Theorem 3.27: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a surjective, continuous, pgrw-closed and open map and

 $cl(F) = F, \forall pgrw-closed set F in Y where X is regular, then Y is regular.$

Proof:Let U be an open set in Y and $y \in U$.

f is surjective. $\therefore \exists$ a point x in f⁻¹(U) such that f(x)=y.

f is continuous and U is open in Y. \therefore f⁻¹(U) is open in X. X is a regular space. \therefore \exists an open set V in X such that $x \in V \subseteq cl(V) \subseteq f^{-1}(U)$ and so $f(x) \in f(V) \subseteq f(cl(V) \subseteq f(f^{-1}(U))$.

i.e. $y \in f(V) \subseteq f(cl(V)) \subseteq U$(i)

f is a pgrw-closed map and cl(V) is closed in X. \therefore f(cl(V)) is pgrw-closed in Y and so by the hypothesis cl(f(cl(V)))=f(cl(V).....(ii))

Also $V \subseteq cl(V) \implies f(V) \subseteq f(cl(V)) \implies cl(f(V) \subseteq cl(f(cl(V))) = f(cl(V) \dots(iii))$

From (i),(ii) and (iii) we have $y \in f(V) \subseteq cl(f(V) \subseteq U$. V is open in X and f is an open map. $\therefore f(V)$ is open in Y. Thus \forall open set U in Y and $\forall y \in U, \exists$ an open set f(V) in Y such that

y $\in f(V) \subseteq cl(f(V)) \subseteq U$. Hence Y is a regular space.

Theorem 3.28: If f: $(X,\tau) \rightarrow (Y,\sigma)$ is a continuous, pgrw–closed and bijective map and X, a normal space, then for every pair of disjoint closed sets A and B in (Y,σ) , there exist disjoint pgrw-open sets C and D in Y such that $A \subseteq pint(C)$ and $B \subseteq pint(D)$.

Proof: A and B be disjoint closed sets in (Y,σ) . If f is continuous, then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint closed sets of (X,τ) . If X is a normal space, then \exists disjoint-open sets U and V in X such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. Now f is a pgrw-closed map, $A \subseteq Y$ and U, an open set containing $f^{-1}(A)$ in X. $\Rightarrow \exists$ a pgrw-open set C in Y such that $A \subseteq C$ and $f^{-1}(C) \subseteq U$ by theorem 3.26. Similarly for B and V \exists a pgrw-open set D in Y such that B \subseteq D and $f^{-1}(D) \subseteq V$.

To prove $C \cap D = \phi$: If f is an injective map, then $U \cap V = \phi$. $\Rightarrow f(U) \cap f(V) = \phi$. And $f^{-1}(C) \subseteq U$ and

 $f^{1}(D) \subseteq V. \Rightarrow f(f^{1}(C)) \subseteq f(U) \text{ and } f(f^{1}(D)) \subseteq f(V).$

⇒C⊆f(U) and D⊆f(V), f being surjective f($f^{-1}(G)$)=G, \forall G in Y.

 $\Rightarrow C \cap D \subseteq f(U) \cap f(V) = \phi \ \Rightarrow C \cap D = \phi.$

Next A is a closed set in Y and $A\subseteq C$, a pgrw-open set.

 \Rightarrow A is rw-closed and A \subseteq C, a pgrw-open set

 \Rightarrow A \subseteq pint(C) [32 (4.4)]. Similarly B \subseteq pint(D).

IV. Composition Of Maps

Remark 4.1: The composition of two pgrw-closed maps need not be a pgrw-closed map.

Example 4.2: $X = \{a,b,c\}, \tau = \{X,\phi,\{a\},\{a,b\}\}$. The closed sets in X are X, ϕ , $\{b,c\}, \{c\}$.

Y={a,b,c}, σ ={Y, ϕ , {a}}, the closed sets in Y are Y, ϕ , {b,c}. pgrw-closed sets in Y are Y, ϕ , {b},{c},{b,c}. Z={a,b,c}, η ={Z, ϕ ,{a},{c},{a,c}}. pgrw-closed sets in Z are Z, ϕ ,{b},{a,b},{b,c}. Let f: (X, τ) \rightarrow (Y, σ) and g: (Y, σ) \rightarrow (Z, η) be the identity maps. Then f and g are pgrw-closed maps. The composition g°f:(X, τ) \rightarrow (Z, η) is not pgrw-closed , because {c} is closed in X and g°f({c})=g({c})=g({c}) is not pgrw-closed in Z.

Theorem 4.3: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a closed map and g: $(Y,\sigma) \rightarrow (Z, \eta)$ is a pgrw-closed map, then the composition $g \circ f: (X, \tau) \rightarrow (Z, \eta)$ is a pgrw-closed map.

Proof: f: $(X, \tau) \rightarrow (Y, \sigma)$ is a closed map and g: $(Y, \sigma) \rightarrow (Z, \eta)$ is a pgrw-closed map.

 $\Rightarrow \forall$ closed set F in X f(F) is closed set in (Y, σ) and g(f(F)) is a pgrw-closed set in (Z, η).

 $\Rightarrow \forall$ closed set F in X g°f(F) =g(f(F)) is a pgrw-closed set in (Z, η).

 \Rightarrow g°f:(X, τ) \rightarrow (Z, η) is a pgrw-closed map.

Remark 4.4: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a pgrw-closed map and g: $(Y, \sigma) \rightarrow (Z, \eta)$ is a closed map, then the composition gof need not be a pgrw-closed map.

Example 4.5: $X = \{a,b,c\}, \tau = \{X,\phi,\{a\},\{b\},\{a,b\}\}, Y = \{a,b,c\}, \sigma = \{Y, \phi, \{a\},\{b,c\}\}, Z = \{a,b,c\}, \eta = \{Z,\phi, \{b\},\{c\},\{b,c\}\}.$ The closed sets in X are $X,\phi,\{c\},\{a,c\},\{b,c\}$. Closed sets in Y are Y, ϕ , $\{b,c\}, \{a\}, pgrw-closed sets$ in Y are all subsets of Y. The closed sets in Z are Z, $\phi,\{a\},\{a,b\},\{a,c\}, pgrw-closed$ sets in Z are Z, $\phi,\{a\},\{a,b\},\{a,c\}$. Let $f:X \rightarrow Y$ be the identity map. Then f is a pgrw-closed map. A map $g:Y \rightarrow Z$ is defined

by g(a)=a, g(b)=a, g(c)=b. Then g is a closed map. $(g \circ f)(\{c\})=\{b\}$ is not pgrw-closed. \therefore composition $g \circ f: (X, \tau) \rightarrow (Z, \eta)$ is not a pgrw-closed map.

Theorem 4.6:Let f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ be two maps such that the composition g°f: $(X, \tau) \rightarrow (Z, \eta)$ is a pgrw-closed map. Then the following statements are true.

(i) If f is continuous and surjective, then g is pgrw-closed.

(ii) If g is pgrw-irresolute[35] and injective, then f is pgrw-closed.

(iii) If g is strongly pgrw-continuous and injective, then f is pgrw-closed.

Proof:(i) Let A be a closed set of Y. Since f is continuous, $f^{-1}(A)$ is a closed set in X and since $g^{\circ}f$ is a pgrw-closed map $(g^{\circ}f)(f^{-1}(A))$ is pgrw-closed in Z. As f is surjective $(g^{\circ}f)(f^{-1}(A)=g(A))$. So g(A) is a pgrw-closed set in Z. Therefore g is a pgrw-closed map.

(ii) Let B be a closed set of (X, τ) . Since g°f is pgrw-closed, (g°f)(B) is pgrw-closed in (Z, η) . Since g is pgrw-irresolute, $g^{-1}(g°f(B))$ is a pgrw-closed set in (Y, σ) . As g is injective,

 $g^{-1}(g0f)(B) = f(B)$. \therefore f(B) is pgrw-closed in (Y, σ) . \therefore f is a pgrw-closed map.

(iii) Let C be a closed set of (X, τ) . Since gof is pgrw-closed, $(g \circ f)(C)$ is pgrw-closed in

(Z, η). Since g is strongly pgrw-continous, $g^{-1}((g^{\circ}f)(C)$ is a closed set in (Y, σ). As g is injective, $g^{-1}(gof(C))=f(C)$. So f(C) is a pgrw-closed set. \therefore f is a pgrw-closed map.

V. Pgrw*-Closed Map

Definition 5.1: A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be a pgrw*-closed map if \forall pgrw-closed set A in (X, τ) the image f(A) is pgrw-closed in (Y, σ) .

Example 5.2: $X=\{a,b,c\}$, $\tau=\{X, \phi, \{a\}, \{a,c\}\}$. pgrw-closed sets in X are X, ϕ , $\{b\}$, $\{c\}$, $\{b,c\}$. $Y=\{a,b,c\}$, $\sigma =\{Y, \phi, \{a\}, \{b,c\}\}$. pgrw-closed sets in Y are Y, ϕ , $\{a\}$, $\{b\}$, $\{c\}$, $\{a,b\}$, $\{b,c\}$, $\{a,c\}$. A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is defined by f(a)=b, f(b)=c, f(c)=a. Then f is a pgrw*-closed map.

Theorem 5.3: Every pgrw*-closed map is a pgrw–closed map.

Proof: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a pgrw*-closed map. Let A be a closed set in X. Then A is pgrw-closed. As f is pgrw*-closed, f(A) is pgrw-closed in Y. Hence f is a pgrw-closed map.

The converse is not true.

Example 5.4: $X = \{a,b,c\}$, $\tau = \{X, \phi, \{a\}\}$. $Y = \{a,b,c\}$, $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}\}$.

Pgrw-closed sets in X are X, ϕ , {b},{c},{b,c}. pgrw-closed sets in Y are Y, ϕ , {c},{b,c}, {a,c}. A map f:(X, τ) \rightarrow (Y, σ) is defined by f(a)= c, f(b)=c, f(c)=b. f is pgrw-closed, but not pgrw*-closed.

Theorem 5.5: If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a pgrw-closed map and g: $(Y, \sigma) \rightarrow (Z, \eta)$ is a pgrw*-closed map, then the composition $g \circ f: (X, \tau) \rightarrow (Z, \eta)$ is pgrw-closed.

Proof: $f:(X, \tau) \to (Y, \sigma)$ is a pgrw-closed map and $g: (Y, \sigma) \to (Z, \eta)$ is a pgrw*-closed map.

 $\Rightarrow \forall$ closed set A in X, f(A) is pgrw-closed in Y and g(f(A)) is pgrw-closed in Z.

 $\Rightarrow \forall$ closed set A in X, g°f(A) is pgrw-closed in Z.

 \Rightarrow g \circ f: (X, τ) \rightarrow (Z, η) is a pgrw-closed map.

Theorem 5.6: If f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ are pgrw*-closed maps, then the composition g°f: $(X, \tau) \rightarrow (Z, \eta)$ is also pgrw*-closed.

Proof: $f:(X, \tau) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \eta)$ are pgrw*-closed maps.

 $\Rightarrow \forall$ pgrw-closed set A in X, f(A) is pgrw-closed in Y and g(f(A)) is pgrw-closed in Z.

 \Rightarrow \forall pgrw- closed set A in X, g°f(A) is pgrw-closed in Z.

 \Rightarrow g \circ f: (X, τ) \rightarrow (Z, η) is a pgrw*-closed map.

References

- [1]. Malghan S. R. (1982), Generalized Closed Maps, J Karnataka Univ.Sci., 27: 82-88.
- [2]. Nagaveni N. (1999). Studies on Generalizations of Homeomorphisms in Topological Spaces, Ph.D. Thesis, Bharathiar University, Coimbatore,
- [3]. Long ,Herington(1978)., Basic Properties of Regular Closed Functions, Rend. Cir. Mat. Palermo, 27, 20-28,
- [4]. Gnanambal Y. (1997), On generalized pre regular closed sets in topological spaces, Indian J Pure. Appl. Math., 28(3):351-360.
- [5]. S. S. Benchalli, R.S., Wali(2007), On rw-Closed sets is Topological Spaces, Bull, Malays, Math, Sci, Soc., 30, 99-110.

[6]. Levine N. (1963), Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 36-41.

- [7]. Mashhour, Abd. El-Monsef M.E(1982), S. N. El-Deeb, On pre-continuous and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt, 53:47-53.
- [8]. Mashhour, Hasanein, S. N. El-Deeb(1983), Acta Mathematica Hungarica,41(3-4), 213-218 α-Continuous and α-open mappings
- [9]. Abd El-Monsef M.E, El-Deeb S N, Mahmoud RA. (1983) β-open sets and β-continuous mappings, Bull. Fac. Sci.Assiut Univ; 12: 77-90.
- [10]. Stone M.(1937), Application of the theory of Boolean rings to general topology, Trans. Amer. Math.Soc; 41:374-481.
- [11]. Raja Mohammad Latif(2014), Characterizations of delta-open sets and mappings in topological spaces may 12,
- [12]. Cameron D. E., (1978); Properties of s-closed spaces, Proc. Amer. Math. Soc. 72: 581-586.
- [13]. Vadivel Vairamamanickam. (2009); rgα-Closed sets & rgα-open sets in Topological Spaces, Int. J. of math. Analysis., 3(37):1803-1819
- [14]. Levine N. (1970), Generalized closed sets in topology, Rend.Circ Mat. Palermo19(2):89-96.

- [15]. Palaniappan N. and K. C. Rao(1993), Regular generalized closed sets, Kyungpook, Math. J., 33(2) 211-219
- [16]. Dontchev. J(1995), On generalizing semi-pre- open sets. Mem. Fac. Sci. Kochi Uni. Ser. A Math., 35-48.
- [17]. Sundaram P., M. Sheik John(2000); On w-closed sets in topology, Acta Ciencia Indica 4:389-39
- [18]. Anitha M. & P. Thangavelu(2005), On pre generalized pre regular closed sets (pgpr) Acta Ciencia Indian, 31(4), 1035-1040.
- [19]. Navalgi, A.S. Chandrashekharappa and S.V.Gurushantanavar(Jan.2012), Gspr-open functions in Toplogical Spaces. Int. J. of Mathematical Sciences & Applications, 2(1), , pp. 231-237
- [20]. Noiri, H. Maki and J. Umehara(1998), "Generalized Pre-closed Functions". Mem. Fac. Sci. Kochi.Univ. (Math)19, , 13-20
- [21]. Syed Ali Fathima and Mariasingam. M. (2012), "On #RG-Continuous and #RG-irresolute functions", Journal of Advanced Studies in Topology, 3(4), , 28-33
- [22]. Pushpalatha(2011), g*s-Closed Sets in Topological Spaces, Int. J. Contemp. Math. Sciences, 6(19), , 917 929
- [23]. H. Maki Devi R, Balachandran K. ,(1994); Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math15:51-63.
- [24]. Benchalli S. S. ,Patil, P. G. (2010), Some New Continuous Maps in Topological Spaces, Journal of Advanced Studies in Topology, Vol. 1 Issue 2, p 16-21
- [25]. Wali R.S., Prabhavati S Mandalageri(2015); On αrω-closed and αrω-open maps inTopological Spaces, International Journal of Applied Research 1(11): 511-518.
- [26]. Sen A.K. and P.Bhattacharya(1983),, On pre-closed mappings, Bull. Cal. Math. Soc., 85 409-412.
- [27]. Biswas, N. (1970) On characterization of semi-continuous function, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat.Natur., 48(8), 399–402.
- [28]. Baker C. W. (1994) Contra open and Contra closed functions, Math. Sci; 17:413-415.
- [29]. Balasubramanian, Sellamuthu M, Sandhya C, Aruna Swathi Vyjayanthi P (April 2013), Contra regular pre-open mappings, Indian Journal of Science, Volume 3, Number 6.
- [30]. Navalagi(2002); "On Semi-pre Continuous Functions and Properties of Generalized Semi-pre Closed in Topology", Int J. Math Stat. 29(2):85-98.
- [31]. Wali R.S. and Vijayakumari T. Chilakwad(2015), On Pre Generalized Regular Weakly [pgrw]-Closed sets in a Topological Space, International Journal of Mathematical Archive-6(1), 76-85.