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Abstract: Multivariate data depth functions are designed to provide a center- outward ordering (and thus a 

ranking) of points in
pR . Three multivariate depth functions are studied in this article and used to test the 

equality of mean vectors. The depths of three different datasets were found and used as rank in Kruskal-Wallis 

non-parametric test to test the hypothesis of equality of means. The three data depth functions were compared 

based on the results of our analysis and we found Mahalanobis data depth to be the best among the three.  
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I. Introduction 
Hotelling’s t-squared test is the multivariate extension of Student’s t-test used in multivariate analysis 

to test for the differences between the mean vectors of two different populations. Here we are interested in 

testing the hypothesis that the population mean vectors are equal against the general alternative that these mean 

vectors are not equal. This test is carried under the assumptions that the populations involved must be normally 

distributed, the samples will be independently drawn and the population covariance matrices will be equal. Most 

often, especially in real life situation it is not easy to come in contact with data that meet up with all these 

conditions and so the need for robust methods arises. Robust statistics develops methods that are less influenced 

by abnormal observations, often at the cost of higher computational complexity. Many robust methods, 

especially those based on ranks, are closely related to geometric or combinatorial problems. An often used 

criterion to judge the robustness of an estimator is its breakdown point. The breakdown point is the smallest 

fraction of data points that we need to replace in order to move the estimator of the contaminated data set 

arbitrarily far away.  

In multivariate analysis some of the robust methods are discussed under non-parametric or semi-

parametric methods. To test the equality of two or more multivariate populations under non-normality we wish 

to resort to the use of data depth. Multivariate depth statistics are particularly suited to analyze non-Gaussian or, 

more general, non-elliptical distribution in 
pR . The notion of depth has been extended from data clouds, that is, 

empirical distributions, to general probability distribution on 𝑅𝑝 , thus allowing for laws of large numbers and 

consistency results. It has also been extended from p-variate data to data in functional spaces (Mosler 2012) and 

also from finite to infinite dimensional spaces (see Chakraborty and Chaudhuri 2014). Associated with a given 

distribution  F on 
pR , a depth function is designed to provide a F -based center- outward ordering (and thus a 

ranking) of points 𝑥 in 
pR .  The depth of a data point is reversely related to its outlyingness, and the depth 

trimmed regions can be seen as multivariate set-valued quantiles. Higher depth corresponds to “centrality”, low 

depth to “outlyingness”. The “center” consists of the point(s) that globally maximize depth. Multimodality 

features of  F are ignored in depth function. 

The depth function will be used in this article to reduce the mult-dimensional data set to lower 

dimension where we can apply a classical univariate non-parametric method and get a useful result. The idea of 

using a depth function to generate contours in higher dimensional space as analogues to rank and order statistics 

in univariate inference was introduced by Turkey (1975). Since our interest here is in testing the equality of two 

or more multivariate populations we intend to apply depth function on the data sets and then use Kruskal-Wallis 

test statistic to do the analysis. It is good to recall that Kruskal-Wallis test sometimes also called the “One way 

ANOVA on ranks” is a useful tool for testing the equality of k independent groups in non-parametric univariate 

statistics. 

 

II. Multivariate Depth 
In this section different multivariate data depth functions and their properties will be studied in details. The 

depths functions are as follows: 

Spatial Depth 

Spatial depth (SPD) of a point 𝑥 can be defined as simply the difference between one and the norm of 

the mean of distances of 𝑥 from all the other points of X when divided by the norm of all such deviations. 
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Spatial depth or 2L of a point
px R  where  1( ,..., ) : , 1,...,p

p iR x x x x R i p     with respect to the 

probability distribution of a random vector 
pRx is defined as  
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This depth has been widely used for various statistical procedures including MANOVA, classification, 

clustering (see, e.g Okeke et. al 2015,Ghosh and Chaudhuri 2005, Jornsten 2004), construction of depth-based 

central and outlying regions and depth-based trimming (see Serfling 2006). This depth function according to 

Chakraborty and Chadhuri (2014) extends naturally to any Hilbert space н and it has many interesting properties 

like: 

 It is invariant under the class of linear transformations, that is, If :T н н  

       where ( )T cA b x x  for some 0c  , bн and an isometry A on н . 

 Spatial depth is a continuous function in x if the distribution of X is non-atomic. 

 It has a unique maximum at the spatial median m of X and its maximum value is 1. 

 If we consider the sequence 0( )nm n  x for any fixed non-zero x н , it follows by a simple application 

of dominated convergence theorem that ( ) 0 as nsD m nx   (see Mosler and Polyakova 2012, 

Liu 1990, and Zuo and Serfling 2000). 

 The distribution of ( )sD x is actually supported on the entire unit interval [0,1] for a large class of 

probability measures in a separable Hilbert space н including Gaussian probabilities. 

One advantage of this depth is that its infinite dimensional extension does not suffer from degeneracy 

and thus can be conveniently used for analyzing infinite dimensional data. This depth function has attractive 

robustness and computational properties, however and serves as a basis for useful non-parametric multivariate 

descriptive measures.    

 

Projection Depth: 
Projection depth (PD) is the depth of datapoints defined using linear function (obtained through the 

projection of the original data) of a random element X. The PD of x  with respect to the distribution of X is 

defined as  
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where  ( )a x is the projected data point, ( )med y is the median of the univariate random variable y, 

and ( ) ( ( ) )MAD y med y med y  is the median of the absolute deviations from the median. The median 

of the projected dataponts were used in place of mean because mean has zero breakdown value (only one 

observation is needed to explode it when it is moved far away). Ф is the space of the random element X. It is 

worthy to note that Chakraborty and Chaudhuri (2014) showed that infinite extension of this depth has 

degenerate behavior in infinite dimensional space. 

 

Mahalanobis depths.  

Mahalanobis depth (MD) is obtained from little adjustment of Mahalanobis distance. Recall the 

mahalanobis distance  
2 1( ) ' ( )i id y y S y y

 
   , if xm is the vector that measures the location of X in a 

continuous and affine equivariant way and 𝐶𝑥 the matrix that measures the scatter of the distribution such that  

𝐶𝑋𝐴+𝑐 = 𝐴𝐶𝑋𝐴′ holds for any matrix A of full rank and any constant c. Then based on these parameters a simple 

depth fuction called the Mahalanobis depth is constructed as  

𝑀𝐷 𝑥 =  1 +  𝑥 − mx 𝐶𝑥
2  

−1
                  3 

𝑀𝐷 𝑥  takes its unique maximum at the center xm . Mahalanobis depth is continuous on 𝑥 and in the 

distribution of X.  In particular, with mx = E(X) and 𝐶𝑥 = Ʃ𝑥     the moment Mahalanobis distance is given as 
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𝑀𝑚𝐷  𝑥 = [1 + (𝑥 − 𝐸(𝑋))′Ʃ𝑥
−1(𝑥 − 𝐸(𝑋))]−1                          4 

The sample version is  

𝑀𝐷 𝑥1, … , 𝑥𝑛 ;  𝐹𝑥 =  1 + (𝑥 − 𝑥 )′𝑆𝑥
−1(𝑥 − 𝑥 ) −1              5                       

  

where 𝑥  is the mean vector and 𝑆𝑥
−1 is the empirical covariance matrix 

 

III. Kruskal –Wallis Test 
Kruskal-Wallis test (sometimes also called the “One way ANOVA on ranks”) was developed by 

Kruskal and Wallis (1952) as a useful tool for testing the equality of k independent populations. Consider k 

independent samples 
1 211 1 21 2 1,... , ,..., ,..., ,...,

kn n k knY Y Y Y Y Y of sizes 1 2, ,..., kn n n drawn from k independent 

continuous (not necessarily normal) populations. We wish to test the hypothesis that these populations are 

identically distributed against its alternative that the populations are not identically distributed. To carry out the 

test we calculate the sum of ranks 1,..., kR R of the samples iY s (that is 
1 211 1 21 2 1,... , ,..., ,..., ,...,

kn n k knY Y Y Y Y Y ) 

in an ordered arrangement of the k samples and use the Kruskal-Wallis test statistic H to carry out the test 
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where 

1

k

i

i

n n


 is the sum of the samples sizes.  The null hypothesis is rejected if 𝐻 ≥ 𝐻1−𝛼  where 𝐻1−𝛼  is 𝛼 

exact critical value of the H statistic. 

 

IV. Basic Mathematical Technique 
In this section we are to describe some basic mathematical techniques that are used by various data depths.  

 Metric space 

We shall recall that from the knowledge of topology that the following notions hold: 

For any finite space 𝑝 

  1( ,..., ) : , 1,...,p

p iR x x x x R i p     

is a metric space with the metric 𝑑 𝑥, 𝑦 defined by 

 

1

2
2

1

( , ) ( ) ,  ,
p

p

i i

i

d x y x y x y R


 
   
 
                            7 

If l is the set of all bounded sequence  kx x of real or complex number, it is a metric space with the natural 

metric 

 ( , ) sup k k

k

d x y x y            8 

Let 
pX R and : * *...d X X R  be defined by  

  1 1 2 2, max , ,..., p pd x y x y x y x y
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where 
1( ,..., )px x x



 and 1( ,..., )py y y


  are arbitrary element of X and Y, then d  is a metric on 
pR  

 Norm 

Given the 𝑑-dimensional vector 

𝑥 =  

𝑥1

⋮
𝑥𝑑

  

A general vector norm  𝑥 or 𝑥  is a non-negative norm defined such that  

I.  𝑥  > 0 when ≠ 0 and  𝑥 = 0 if = 0 

II.  𝑘 =   𝑘   𝑥  for any scalar k. 

III.   𝑥 + 𝒚 <  𝑥 +   𝒚  
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The norm 𝑝 of a vector x  can be written as  𝑥 𝑝 . This can be calculated thus 

   𝑥 𝑝 =  𝑥1
𝑝

+ 𝑥2
𝑝

+ ⋯ + 𝑥𝑑
𝑝𝑝

=   𝑥1
𝑝

+ 𝑥2
𝑝

+ ⋯ + 𝑥𝑑
𝑝
 

1
𝑝             10 

 

for 𝑑 number of variables. When 𝑝 = 2 we have this to be  

 𝑥 2 =  (𝑥1
2 + 𝑥2

2 + ⋯ + 𝑥𝑑
22

)             11 

 Mahalanobis Distance 

To obtain a useful distance measure in a multivariate setting, we must consider not only the variances 

of the variables but also their covariances or correlations. The simple Euclidean distance between y and 𝑦 , 

  𝑦𝑖 − 𝑦   𝑦𝑖 − 𝑦   is not useful because there is no adjustment for the variance or the covariance. For a statistical 

distance, we standardize by inserting inverse of the covariance matrix: 

2 1( ) ' ( )i id y y S y y
 

  
         12          

  

The (squared) distance d
2
 between two vectors were first proposed by Mahalanobis (1936) and are 

often referred to as Mahalanobis distances. If a random variable has a larger variance than another, it receives 

relatively less weight in a Mahalanobis distance. Similarly, two highly correlated variables do not contribute as 

much as two variables that are less correlated. In essence, then, the use of the inverse of the covariance matrix in 

a Mahalanobis distance (involving random variables) has the effect of (1) standardizing all variables to the same 

variance and (2) eliminating correlations. 

 

V. Demonstration Using Real Data 
In this section, we try to compare the performance of three multivariate depth functions in testing for 

the equality of mean vectors of two independent samples using Kruskal-Wallis univariate non-parametric 

method. When we have p-dimensional Gaussian random vector, this study is better carried out using Hotellings 

T
2
. But since this test has some constraints and can produce misleading result when some of the assumptions are 

not met we decided to find the depth of the datasets and then applied Kruskal-Wallis to the transformed data to 

get result.  Then here, we try to investigate to what extend those results reflected what it should be when the data 

is not transformed. First we shall consider a real life observation on a p-dimensional Guassian random vector 

1( ,..., ).px xx The data is obtained from Methods of Multivariate Analysis, second edition by Rencher (2002) 

or http://www.amazon.com/methods-multivariate-Analysis...Rencher/dp/0470178965 and the data contains 2 

types of coating for resistance to corrosion on 15 pieces of pipe. Two pipes, one with each type of coating were 

buried together and left for the same length of time at 15 different locations that provided a natural pairing of the 

observations. Corrosion for each type of coating was measured on 𝑝 = 2 variable (maximum depth of pit in 

thousandths of an inch, and number of pits.) The Hotellings T
2
 result has it that the two coatings differ in their 

effect on corrosion. The depths of the datasets were obtained using three multivariate different methods we 

discussed above. The depths obtained were used as ranks in Kruskal-Wallis non-parametric test. The three 

different methods have it that the two coatings do not differ in their effect on corrosion at different level of 

significant.  

The second dataset is from a retrospective study of 823 women admitted for the treatment of female 

genital cancer at the Department of Obstetrics and Gynecology, University of Ibadan, Nigeria. The data is 

published in the Proceeding of Nigeria Statistical Association by Folorunso et. al (2015). The cancer types they 

studied include Cervix, Endometrium, Ovary, Placental, Vagina, and Vulva. The data was analyzed using cox 

regression model and the results as presented there have that all the age groups are not significant and that 

cancer type (ovary) was statistically significant factors that affect patient’s survival probabilities, and that the 

factors levels are significant at 5% α level. This data is categorical, so we first analyzed it using Chi-squared and 

Akaike Information criteria on categorical data and discovered that the variables of classification are associated. 

It was also revealed by cluster analysis as shown in Fig. 1 that there exist two groups in the dataset.  The groups 

were used to partition the data into two classes and the depths of the dataset computed using three different 

methods we have. The obtained depths were analyzed with Kruskal-Wallis test statistic and the results have it 

that the test is not significant, though Mahalanobis depth showed the test to be significant at 𝑝 = 0.25 .   

The last dataset is available at http:www.real-statistics.com/multivariate-statistics/hotellings-t-squ… 

and is on tropical disease characterized by fever, low blood pressure and body aches. A pharmaceutical 

company who is working on a new drug to treat this type of disease wanted to determine whether the drug is 

effective at reducing these three symptoms. In the data a random sample of 20 people treated with the new drug 

and 18 with a placebo were selected for the analysis and result has it that the test in not significant. The depths 

of this dataset were computed and analyzed and our results from the three depth functions also revealed also that 

the test is not significant. 

http://www.amazon.com/methods-multivariate-Analysis...Rencher/dp/0470178965
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Fig 1  Dendrogram of different types of cancer suffered by Nigerian women. The horizontal axis corresponds to 

different age group while vertical axis shows different similarity level. 

 

Comparing the performance of the three different multivariate depth functions we studied using their 

different 𝑝-values, we have it from Table 1 that Mahalanobis depth function has best performance among the 

three, followed by Projection depth. Spatial depth performed poorly in all our datasets.  

 

Table1 Performance of three Different Multivariate Data Depth Functions According to their P-values 
                  Data set 1   Data set 2 (Cancer data)                         Data set 3 

 Data depth p-value Data depth p-value Data depth p-value 

SPD 0.778 SPD 0.827 SPD 0.982 

PD 0.724 PD 0.513 PD 0.640 

MD 0.619 MD 0.275 MD 0.984 

 

VI. Comments 
This results we obtained do not mean that spatial depth is worse than the other two methods. I supposed 

that different data sets may produce results that may be different from our own. It is also good to note that 

among the three methods, SPD is the most computational intensive. PD and MD can easily be done by any 

person that is good in using MATLAB and Microsoft office Excel. We could not cover infinite dimensional 

space in this study because we could not lay our hands on any of the algorithms that will handle that.  
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