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Abstract: In interference theory of reliability, reliability expressions for multi-component systems are not 

simple enough to facilitate analytical estimation of reliability and its other characteristics. Here, we have shown 

how reliability R = P(X<Y<Z) can be estimated by Monte-Carlo simulation (MCS) for n-standbys when stress-

strength both follows a particular continuous distribution.  
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I. Introduction 

The interference theory, which is the subject matter of this paper, has acquired an important place in 

reliability study of the systems. In it, reliability of a system is studied from the interaction of strength of the 

system, say X, and the stress working on it, say Y, which is the sole cause of its failure; where X and Y both are 

assumed to be random variables. Here, reliability, say R, of the system is defined as R = P(X > Y). So, the 

reliability (R) can be expressed in terms of parameters of stress (Y) and strength (X). Generally, there are two 

ways to estimate R, viz. (1) Non parametric estimation of R, where data consists only of the number of „success‟ 

in a specified number of „trials‟ and (2) Parametric estimation where the parameters are estimated separately by 

two unrelated sets of data, viz., the observations on components strengths Xi, and on the impinging stresses Yj, 

(Tong [15]). In the parametric method of estimation of reliability, these parameters are estimated from separate 

measurements of stress and strength and substituting back in the reliability expressions, the estimated reliability 

is obtained. If the estimates of parameters used here are maximum likelihood estimators then from the 

invariance property of MLE‟s, the corresponding estimators of reliability are also MLE‟s. There exists extensive 

literature in estimation of R = P(X > Y) for single component system analytically, e.g., Lloyd and Lipow [6], 

Church and Harris [3], Mazumder [8], Singh [12] etc. However, the reliability expressions for multi-component 

systems are not simple enough to facilitate analytical estimation of reliability and its other characteristics. Also, 

due to lack of real life data of X and Y, one way out is simulation, in particular Monte-Carlo simulation (MCS). 

Manders et al. [7], Aldrisi [2], Stumpf and Schwartz [14], Zhang et al. [17] used MCS to estimate reliability. 

Further, Rezaei et al. [11] estimated reliability of stress-strength model, using MCS. Moreover, Ahmad et al. [1] 

obtain Bayes estimates of P (Y< X) using MCS. Similarly, Uddin et al. [16] estimated reliability for multi-

component system using MCS. Moreover, Patowary et al. [9] estimated reliability for n-standby system by 

Monte-Carlo simulation technique. Also, Rao et al. [10] compared reliability estimates for multi-component 

systems evaluated by different methods such as method of moments, modified Maximum Likelihood method 

and Best Linear Unbiased Estimator through MCS technique. Similarly, very limited literature are available for 

estimation of R= P(X<Y<Z) analytically. The works of Guangming [5] is noteworthy in this context. The model 

consists of three random variables and so the reliability expressions are quite complicated in case of n-standby 

system, so the analytical estimation of R is difficult. In this paper, an attempt has been made to estimate R= 

P(X<Y<Z) for n standby-systems by MCS when stress-strength either follow exponential or normal distribution. 

In Section 2, we have described the system undertaken in this study. The technique of Reliability estimation for 

P(X<Y<Z) of n-standby system (n=1, 2), through Monte-Carlo simulation (MCS) technique is explained in 

Section 3. We have also drawn normal probability plot for each estimated reliability data sets to check the 

normal approximation. For distribution fitting, we have considered sample of size (k = 20). Since we have taken 

a small sample, when using 
2 -test, the number of classes becomes too few, due to pooling. Therefore, the 

goodness of fit is tested by Kolmogorov-Smirnov (K-S) one sample test (Seigel [13]). We have also tested 

normal approximation for sample size of 50 and 100 also for illustration purpose, using 
2 -test.  

  

II. Description of the system 
Let us consider a system with n components working under the impact of stresses. Let Xi and Zi be the 

lower and upper strengths, respectively, of the i
th

 component, and let Yi be the stress acting on it, i=1,2,3,…,n, 
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are all assumed to be independent random variables.  The i
th

 component works if the stress Yi  lie in the interval 

(Xi, Zi).  

 

   R = P(X<Y<Z)                  (2.1) 

Whenever a stress fall lie outside these two limits, the component fails and another from standby (if 

there remains any) takes place of the failed component and the system continues to work. The system fails when 

all the components are failed. The system reliability, Rn, of the system is given by Dutta and Sriwastav [4] 

   Rn=R(1)+R(2)+   …+ R(n)                 (2.2) 

where, R( r), r = 1, 2, …,n is the marginal reliability due to r
th

 component 

 

    R(r)= [1 – R(1)][1 –R(2)] … [P(Yr > Xr) – P(Yr > Xr, Yr > Zr)], 

      r = 1, 2, …, n               (2.3) 

Here, we have assumed that all the components are having the same strength distribution and are 

working under the same environment (stress), i.e. all Xi‟s , Yi‟s and Zi‟s  are i.i.d. with probability density 

functions (pdf‟s) f(x), g(y) and h(z) respectively. In this paper, we have assumed that both stress and strength are 

either exponential or normal variates. Here, for simulation, the programs are developed in MATLAB, separately 

when stress-strength either follows exponential and normal distribution. First, a set of M = 5000 values of 

particular r.v. viz. either exponential or normal, are generated for a particular value of the parameter(s) of X, Y 

and Z. Using these values an estimate of the parameter involved is obtained. Substituting this estimate(s) in the 

expression of reliability we get an estimate of the reliability. This process is repeated (say) k times to give k 

estimates of the parameter(s) and subsequently k estimates of reliability. The whole process is repeated for 

different true values of the parameters; for a particular true value of the parameter(s), k is the sample size. 

We have considered here the cases of n = 1, 2. Then, form Eq.(2.2) and Eq.(2.3) we can easily see that 

      R1 = R(1)                                                 (2.4)

      R2 = R1 + (1 – R1) R1                                                                     (2.5) 

 

III. Stress-strength follows particular distribution 
We have seen that in interference models system reliability is a function of stress-strength parameters. Let f(x) 

and h(z) be the p.d.f. of upper strength (X), the lower strength of the system respectively. Also, g(y) be the p.d.f. 

of the stress (Y) on the system. Here, we have considered two cases. 

  Case I: When f(x), h(z) and g(y) follows exponential distribution 

 Case II: When f(x), h(z) and g(y) follows normal distribution  

 

3.1 Stress-strength exponentially distributed 

When all Xi‟s, Yi‟s and Zi‟s are i.i.d and follow exponential distribution with densities f(x), g(y) and h(z) with 

means  ,   and  , then by Dutta and Sriwastav [4] 

   
1R

 
 
                     (3.1.1) 

 

    R2 = (1 – R1)×R1                                        (3.1.2) 

 

For MCS, first we have generated exponential r.v.s X, Y and Z of different values of  ,  and  of 

size M = 5000. The mean of these 5000 values give an estimate of  ,  and   for particular true values of  , 

 and  . Substituting these estimates in Eq.(3.1.1), we get an estimate of R1 then from Eq.(3.1.2), we get 

estimates of  R2 respectively. For each true value of  ,  and  , the complete process is repeated  k times 

there by giving k estimates of R‟s. Here, we have taken ( ,  , ) = [(0.5, 0.7, 0.6), (0.5, 0.7, 0.8), (0.5, 0.7, 

1.0), (0.5, 0.7, 1.5), (0.5, 0.7, 2.0), (0.7, 0.7, 0.6)]  and k = 20. Then, in each case, we have drawn normal 

probability plot for the 1R̂ , 2R̂  which suggest that their distribution may be normal. For illustration purpose, 

we have reproduced only the normal probability plots of 2R̂ , for k = 20 as well as k(= 50, 100) when ( ,  ,

 ) = (0.5, 0.7, 0.6) in Fig.3.1.1 to check the normal approximation. After that, normal distribution is fitted and 

tested for the goodness of fit by one sample K-S test for k =20. The tabulated values of D i.e. maximum 

differences between empirical CDF and theoretical CDF for sample size k = 20 at 5% level of significance is 

0.2940 (Seigel [13]). For test of significance between true value and estimated value (which is mean) we have 

used one sample t-test only between 2R and 2R̂ for sample size k = 20. The values are tabulated in Table 3.1.1. 
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From Table 3.1.1, it is observed that the calculated D for 1R̂ and 2R̂ for different values of true  ,  ,  are 

smaller than the tabulated D = 0.2940 for k =20 at 5% level of significance. So, it is clear that normal 

distributions give a good fit to the values of 1R̂ and 2R̂ for k = 20. Also, all t-values are insignificant i.e. there is 

no difference between estimated reliability 2R̂ and true reliability 2R . 

We have also used 
2 -test to test the goodness of fit for k = 50 and 100. For illustration purpose, we 

have given only the case of R2 for one value of  ,   and  . For example, for  = 0.5,  =0.2 and  = 0.6; 

mean 2
ˆ(R ) = 0.7000, SD 2

ˆ(R ) = 0.0037, 
2 = 4.7813 (d.f. = 4) when k = 50. Similarly, mean 2

ˆ(R )  = 0.7034, 

SD 2
ˆ(R ) = 0.0042, 

2 =1.5466 (d.f. = 4), when k = 100. It is observed that calculated 
2  for k = 50 and 100 is 

less than the tabulated 
2  = 9.488 for d.f. = 4 at 5% level of significance. So from 

2 -test also we find that the 

data fits the normal distribution well for k =50 and 100.  The results are given in Table 3.1.1. 

 

   Table 3.1.1: Stress-Strength exponentially distributed   
True 

  

True 

  

True 


 

True 

R1 

Mean 

1R̂  

SD 

1R̂  

D for 

1R̂  

True 

 R2 

Mean 

2R̂  

SD 

2R̂  

D for 

2R̂
 

t for 

2R̂  

0.5 0.7 0.6 0.3121 0.3134 0.0032 0.1095 0.5268 0.5286 0.0044 0.1096 0.6157 

0.5 0.7 0.8 0.3353 0.3357 0.0036 0.1090 0.5583 0.5587 0.0048 0.1098 0.3427 

0.5 0.7 1.0 0.3485 0.3490 0.0037 0.1506 0.5755 0.5761 0.0049 0.1517 0.5827 

0.5 0.7 1.5 0.3611 0.3603 0.0046 0.1105 0.5918 0.5907 0.0058 0.1096 0.8272 

0.5 0.7 2.0 0.3625 0.3616 0.0048 0.1204 0.5936 0.5925 0.0062 0.1194 0.8188 

0.7 0.7 0.6 0.2515 0.2513 0.0028 0.0778 0.4394 0.4394 0.0042 0.0773 0.0391 

0.8 0.7 0.6 0.2286 0.2281 0.0039 0.1284 0.4049 0.4042 0.0060 0.1275 0.5558 

0.5 0.6 0.6 0.3580 0.3581 0.0028 0.1515 0.5878 0.5879 0.0036 0.2000 0.2000 

0.5 0.4 0.6 0.3855 0.3853 0.0036 0.1038 0.6223 0.6222 0.1047 0.0045 0.0608 

0.5 0.2 0.6 0.4531 0.4541 0.0036 0.1412 0.7010 0.7020 0.0039 0.1423 1.1131 

 

 

Fig.3.1.1: Normal Probability plot 2R̂ for n=20, 50 and 100 

 

3.2 Stress-strength normally distributed 

When all Xi‟s, Yi‟s and Zi‟s are i.i.d and follow Normal densities f(x), g(y) and h(z) with means  ,   

and   and standard deviations  ,   and   then by Dutta and Sriwastav [4] 
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                   (3.2.1)

 

 R2 = R1 + (1 – R1)×R1                              (3.2.2) 

As in Section 3.1, similarly for MCS, we have generated r.v.s X, Y and Z of size M (= 5000) which are 

normally distributed for different values of means for X, Y, Z i.e.  ,   and   and standard deviations (SD) 

,   and    by MATLAB. Then, the mean and SDs of generated r.v.s X, Y and Z give the estimates of  ,  , 

   ,   and  , respectively. Substituting these estimates, in Eq.(3.2.1), we get an estimate 1R̂
 
of R1 and 

from Eq.(3.2.2), 2R̂
 
of R2 respectively. Obviously, no closed form expression for R1 and R2, can be obtained 

and it is bound to go for numerical integration. Using the Gauss-Hermite quadrature formula, we have evaluated 

estimated 1R̂ and 2R̂  for different true values of  ,  ,   ,   and  . The complete process is repeated k 

times thereby we get a set of 1R̂ and 2R̂  of size k. Here, we have also taken k = 20 as in Section 3.2. Moreover, 

in each case, we have drawn normal probability plot of 1R̂ , 2R̂  which suggest that their distribution may be 

normal. For illustration purpose, we have reproduced only the normal probability plots of 2R̂ , for k = 20 as 

well as k(= 50, 100) when  (  ,  ,  ,  ,   and  ) = (1, 1, 1, 1, 3, 1) in Fig.3.2.2. Finally, K-S test is applied 

in each case for the goodness of fit for k =20. Also, as in section 3.1, for test of significance between true value 

R2and estimated value 2R̂ , we have used one sample t-test for sample size k = 20. The values are tabulated in 

Table 3.2.2. In Table 3.2.2, it is observed that the calculated D for 1R̂ and 2R̂ for different values of true  , 

,  ,  ,   and   are smaller than the tabulated D = 0.2940 for k =20 at 5% level of significance. So, it is 

apparent that the normal distributions give a good fit to the values of 1R̂ and 2R̂ for k = 20. In addition, all t-

values are insignificant i.e. there is no difference between estimated reliability and true reliability. 

 Similarly, we have also used 
2 -test to test the goodness of fit for k = 50 and 100. For illustration 

purpose, we have given only the case of R2 for one value of  ,   and  . For example, for ( ,  ,  ,  ,   

and  ) = (1, 1, 1, 1, 3, 1); mean 2
ˆ(R ) = 0.4300, SD 2

ˆ(R ) = 0.0032, 
2 = 5.912 (d.f. = 4) when k = 50. 

Similarly, mean 2
ˆ(R )  = 0.6725, SD 2

ˆ(R ) = 0.0040, 
2 =3.66 (d.f. = 4), when k = 100. It is found that 

calculated 
2  for k = 50 and 100 is less than the tabulated 

2  = 9.488 for d.f. = 4 at 5% level of significance. 

So from 
2 -test, it is also uncover that the data fits the normal distribution well for k =50 and 100.  All 

numerical results are tabulated in Table 3.2.2. 

 

Table 3.2.2: Stress-Strength normally distributed 
True 

  

True 

  

True 

  

True 

  

True 

  

True 

  

True 

R1 

Mean 

1R̂  

SD 

1R̂  

D for 

1R̂  

True 

 R2 

Mean 

2R̂  

SD 

2R̂  

D for 

2R̂  

t-value 

for 

2R̂
 

1 1 1 1 1 1 0.1662 0.1652 0.0026 0.1320 0.3048 0.3032 0.0043 0.1313 0.1106 

1 1 1 1 2 1 0.3165 0.3143 0.0043 0.1258 0.5328 0.5299 0.0059 0.1250 0.1307 

1 1 1 1 2.5 1 0.3826 0.3834 0.0036 0.1222 0.6188 0.6198 0.0044 0.1216 1.0264 

1 1 1 1 3 1 0.4325 0.4328 0.0054 0.1103 0.6780 0.6782 0.0062 0.1121 0.1720 

1 1 1 1 1 1.5 0.1854 0.1853 0.0039 0.1233 0.3364 0.3362 0.0064 0.1225 0.1204 

1 1 1 1 1 3 0.2134 0.2147 0.0032 0.0982 0.3812 0.3833 0.0050 0.0986 1.8931 

1 1 2 1 1 1 0.1266 0.1269 0.0029 0.1022 0.2372 0.2378 0.0051 0.1028 0.5005 

1 1 2.5 1 1 1 0.0898 0.0899 0.0022 0.1262 0.1716 0.1717 0.0039 0.1262 0.1597 

1 1 1 2 1 1 0.1010 0.1017 0.0023 0.1031 0.1917 0.1917 0.0041 0.1030 1.4133 

1 1 1 2.5 1 1 0.0831 0.0838 0.0019 0.0743 0.1593 0.1605 0.0035 0.0740 1.5365 

0.7 1 1 1 1 1 0.2098 0.2097 0.0028 0.1662 0.3755 0.3754 0.0044 0.1667 0.1237 

0.5 1 1 1 1 1 0.2398 0.2401 0.0031 0.1036 0.4221 0.4226 0.0048 0.1029 0.4363 

0.3 1 1 1 1 1 0.2698 0.2707 0.0047 0.1169 0.4668 0.4681 0.0068 0.1157 0.8697 

1 2 1 1 1 1 0.1876 0.1886 0.0039 0.1089 0.3401 0.3417 0.0063 0.1082 1.1172 

1 3 1 1 1 1 0.1962 0.1965 0.0040 0.0790 0.3539 0.3545 0.0064 0.0782 0.4245 
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Fig. 3.2.2: Normal Probability plot 2R̂ for n=20, 50 and 100 

 

IV. Conclusion 

In this paper, we have shown how MCS technique can be used in the situation where reliability 

expressions of multi-component systems are not simple enough to facilitate analytical estimation of reliability 

and its other characteristics. We have estimated the reliability of R = P(X<Y<Z) for n-standby system by this 

technique when stress-strength either follows exponential or normal distribution. Also, normal distribution is 

well fitted to estimate reliabilities. Once we know the distribution of estimated reliabilities, it is trouble free to 

study the other reliability characteristics of those samples. Also, here, we have considered only stress-strength 

follow exponential and normal distribution. However, there are so many distributions in the world, we may, 

consider other distributions also and similarly we can estimate reliability of the model R=P(X<Y<Z). Moreover, 

we can estimate reliability of other complex reliability models also by MCS. 
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