Properties of Complemented Semirings

G. Mallikarjuna¹, Dr. G. Shobhalatha²

¹Research scholar, Dept. of Mathematics, S.K.University, Ananthapuramu- (A.P.), India. ² Professor, Dept. of Mathematics, S.K.University, Ananthapuramu- (A.P.), India.

Abstract: Semiring theory is one of the most developing branch of Mathematics with wide application in many disciplines such as Computer science, Coding theory, Topological space and many researchers studies different structure of semirings like Boolean like semirings, ternary semirings, complemented ternary semirings, gamma semirings, Complemented semirings etc. In this paper, we discuss some properties of Complemented semirings. We determine the additive and multiplicative structures of Complemented semirings by assuming different properties on the additive (multiplicative) structures.

Keywords: Band, left singular, right singular, multiplicatively sub idempotent, commutative, rectangular band.

I. Introduction

Historically semirings first appear implicitly in Dedekind and later in Macaulay, Noether and Lorenzo in connection with the study of a ring. However semirings first appear explicitly in Vandiver, also in connection with the axiomatization of arithmetic of natural numbers. Semirings have been studied by various researchers in an attempt to broaden techniques coming from semigroup theory or ring theory or in connection with applications.

However in semirings it is possible to derive the additive structures from their special multiplicative structures and vice versa. The semiring identities are taken from the book of Jonathan S. Golan, entitled "semirings and their Applications". In this paper we investigate the additive and multiplicative properties of Complemented semi rings.

II. Preliminaries

Definition 2.1: A Triple (S,+,.) is said to be a semiring if S is a non-empty set and '+' and '.' are binary operations on S satisfying that

i. (S,+) is a semigroup

ii. (S, .) is a semigroup

iii. a(b+c) = ab+ac and (b+c) a = ba+ca for all a, b, c in S.

Definition 2.2: An element 'a' of a semiring S is complemented if there exists an element 'b' in S satisfying a+b=1 and ab=ba=0 for all a, in S.

Definition 2.3: An element 'a' of a semiring S is multiplicatively sub idempotent if $a + a^2 = a$ and S is multiplicatively sub idempotent if each of its element is multiplicatively sub idempotent.

Definition 2.4: A Semigroup (S, +) is said to be a band if it satisfies the identity a+a=a for all a in S.

Definition 2.5: A semigroup (S, .) is said to be a rectangular band if it satisfies the identity aba = a for all a, b in S.

Definition 2.6: A Semigroup (S, .) is said to be a left (right) singular if it satisfies the identity ab=a (ab=b) for all a,b in S.

III. Mainresults

Theorem 3.1: Let (S,+,.) be a complemented semiring. If (S,+) is commutative, then a+1=1+a=a if and only if (S,+) is a rectangular band.

Proof: Let (S,+,.) be a complemented semiring and let (S,+) be a commutative, that is a+b=b+a for all $a,b \in S$.

Since S complemented semiring, we have a + b = 1 and ab = ba = 0 for all $a, b \in S$.

 $\Rightarrow b + a = 1$ (since (S,+) is commutative)

Adding 'a' on both sides, we get $\Rightarrow a+b+a=a+1$ \Rightarrow a = a + 1 (since (S,+) is rectangular band) (1)Again for a + b = 1 and ab = ba = 0Adding 'a' on both sides, we get $\Rightarrow a+b+a=1+a$ $\Rightarrow a = 1 + a$ (2)Therefore from (1) & (2) a+1=1+a=aConversely We have a + b = 1 and ab = ba = 0 for all $a, b \in S$. $\Rightarrow b + a = 1$ (since (S, +) is commutative) Adding 'a' on both sides, we get $\Rightarrow a+b+a=a+1$ $\Rightarrow a+b+a=a$ (since a = a + 1) Therefore (S,+) is a rectangular band.

Theorem 3.2: Let (S,+,.) be a complemented semiring containing the multiplicative identity 1. If S contains an additive identity zero. Then (S,.) is a band.

Proof: Let (S,+,.) be a complemented semiring, and let '1' be the multiplicative identity of S.

Since a+b=1 and ab=ba=0 for all $a,b \in S$, By Theorem 3.1, we have a + 1 = aAdding 'b' on both sides, we get $\Rightarrow a+1+b=a+b$ $\Rightarrow a+1+b=1$ Now consider a+1+b=1 and ab=ba=0Multiplying with 'a' on both sides, we get a(a+1+b) = a1 $\Rightarrow aa + a1 + ab = a$ $\Rightarrow a^2 + a + ab = a$ $\Rightarrow a^2 + a + 0 = a$ $\Rightarrow a^2 + a = a$ $\Rightarrow a(a+1) = a$ $\Rightarrow aa = a$ $\Rightarrow a^2 = a$ Therefore (S,.) is a band.

Example 1: Consider the set $S = \{1, a\}$. We define additive and multiplicative structure on S as shown in the following tables.

+	1	а	•	1	a
1	1	а	1	1	a
а	а	а	а	а	a

Then S is a complemented semiring satisfies all conditions of the above theorem and (S, .) is a band.

Example 2: Consider the set $S = \{0,1,a,b\}$. We define additive and multiplicative structure on S as shown in the following tables.

+	0	1	а	b			
0	0	1	а	b			
1	1	1	а	b			
а	а	а	а	1			
b	b	b	1	b			
then (S_{\ldots}) is a band.							

•	0	1	а	b
0	0	0	0	0
1	0	1	а	b
а	0	а	а	0
b	0	b	0	b

Theorem 3.3: Let (S,+,.) be a complemented semiring containing the multiplicative identity 1. If (S,.) is a band, then (i) (S,+) is singular, (ii) (S,+) is commutative, and (iii) (S,+) is a rectangular band.

Proof: Let (S,+,.) be a complemented semiring and let '1' be a multiplicative identity of S, and (S,.) is a band, that is $a^2 = a$ for all $a \in S$.

Since S complemented semiring, we have a + b = 1 and ab = ba = 0 for all $a, b \in S$. (1)

(i) By Theorem 3.1, we have
$$a + 1 = a$$
 (2)
Adding 'b' on both sides, we get
 $\Rightarrow a + 1 + b = a + b$
 $\Rightarrow a + 1 + b = 1$ From (1)
Now consider $a + 1 + b = 1$ and $ab = ba = 0$ for all $a, b \in S$.
Multiplying with 'a' on both sides, we get
 $a(a + 1 + b) = a1$
 $\Rightarrow aa + a1 + ab = a$
 $\Rightarrow a^2 + a + ab = a$
 $\Rightarrow a^2 + ab + b = a$
 $\Rightarrow a^2 + ab + b = a$
 $\Rightarrow a^2 + ab + b = a + b$
 $\Rightarrow a^2 + ab + b = a + b$
 $\Rightarrow a^2 + ab + b = a + b$
 $\Rightarrow a^2 + ab + b = a + b$
 $\Rightarrow a^2 + ab + b = a + b$
 $\Rightarrow a^2 + ab = a + b$ (Since $ab = 0$)
 $\Rightarrow a^2 = a + b$ (Since $(S, .)$ is a band)
Therefore $(S, +)$ is left singular.
Now consider $a + 1 + b = 1$ and for all $a, b \in S$. (by theorem 3.1)
Multiplying with 'b' on both sides, we get
 $b(a + 1 + b) = b1$
 $\Rightarrow ba + b + bb^2 = b$
 $\Rightarrow b(a + 1) + b^2 = b$
 $\Rightarrow b(a + 1) + b^2 = a + b$
 $\Rightarrow b(a + 1) + b^2 = a + b$
 $\Rightarrow b(a + 1) + b^2 = a + b$
 $\Rightarrow b(a + b) + b^2 = a + b$
 $\Rightarrow b(a + b) + b^2 = a + b$
 $\Rightarrow b(a + b) + b^2 = a + b$
 $\Rightarrow b(a + b) + b^2 = a + b$
 $\Rightarrow b(a + b) + b^2 = a + b$
 $\Rightarrow b(a + b) + b^2 = a + b$
 $\Rightarrow b(a + b) + b^2 = a + b$
 $\Rightarrow b(a + b) + b^2 = a + b$
 $\Rightarrow b(a + b) + b^2 = a + b$
 $\Rightarrow b(a + b) + b^2 = a + b$
 $\Rightarrow b(a + b) + b^2 = a + b$
 $\Rightarrow b(a + b) + b^2 + a^2 + a + ab = (a + 1 + b)b + a(a + 1 + b)$
 $\Rightarrow 0 + b + b^2 + a^2 + a + ab = (a + 1 + b)b + a(a + 1 + b)$
 $\Rightarrow 0 + b + b^2 + a^2 + a + ab = (a + 1 + b)b + a(a + 1 + b)$
 $\Rightarrow b(1 + b) + a(a + 1) = a(b + a) + 1(b + a) + b(b + a)$
 $\Rightarrow b(1 + b) + a(a + 1) = a(b + a) + 1(b + a) + b(b + a)$

 $\Rightarrow b^2 + a^2 = ab + a^2 + b + a + b^2 + ba$ \Rightarrow b+a=0+a+b+a+b+ba (since (S,.) is a band, and ab=0) $\Rightarrow b+a=a+b+a+b(1+a)$ $\Rightarrow b + a = a + b + a + ba$ (by theorem 3.1) $\Rightarrow b+a=a+b+(1+b)a$ $\Rightarrow b + a = a + b + ba$ (by theorem 3.1) $\Rightarrow b+a=a+b+0$ (since ba=0) $\Rightarrow b + a = a + b$ Therefore (S,+) is commutative. Now consider a+1+b=1 for all $a, b \in S$. (by theorem 3.1). Multiplying with 'b' on both sides, we get b(a+1+b) = b1 $\Rightarrow ba+b+bb=b$ $\Rightarrow ba+b+b^2=b$ $\Rightarrow b(a+1)+b^2=b$ $\Rightarrow ba+b^2=b$ (by theorem 3.1) Adding 'a' on both sides, we get $\Rightarrow a+ba+b^2 = a+b$ $\Rightarrow (1+b)a+b^2 = a+b$ $\Rightarrow ba+b^2 = a+b$ (by theorem 3.1) $\Rightarrow ba+b=a+b$ (since (S, .) is a band) $\Rightarrow b(a+1) = a+b$ $\Rightarrow ba = a + b$ (by theorem 3.1) Adding 'a' on both sides, we get $\Rightarrow ba + a = a + b + a$ $\Rightarrow 0 + a = a + b + a$ (since ba=0) $\Rightarrow a = a + b + a$ Therefore (S,+) is a rectangular band.

Theorem 3.4: Let (S,+,.) be a complemented semiring containing the multiplicative identity 1. If (S,.) is a band, then (S,+) is a band.

Proof: Let (S,+,.) is a complemented semiring and let '1' be the multiplicative identity of S.

Since S complemented semiring, we have a + b = 1 and ab = ba = 0 for all $a, b \in S$.

Now consider a+1+b=1 and ab=ba=0 for all $a,b \in S$. (by theorem 3.1)

Multiplying with 'a' on both sides, we get a(a+1+b) = a1 $\Rightarrow aa + a1 + ab = a$ $\Rightarrow a^2 + a + ab = a$ $\Rightarrow a^2 + a + 0 = a$ (since ab=0) $\Rightarrow a + a = a$ (since (S, .) is a band) Therefore (S, +) is a band.

Theorem 3.5: Let (S,+,.) be a complemented semiring containing the multiplicative identity 1. If (S,+) is a band, then S is multiplicative sub idempotent.

Proof: Let (S,+,.) be a complemented semiring and let '1' be a multiplicative identity of S.

We have a+b=1 and ab=ba=0 for all $a,b \in S$.

(iii)

Now consider a+1+b=1 and ab=ba=0 for all $a,b \in S$. (by theorem 3.1)

Multiplying with 'a' on both sides, we get a(a+1+b) = a1 $\Rightarrow aa + a1 + ab = a$ $\Rightarrow a^2 + a + ab = a$ $\Rightarrow a^2 + a + 0 = a$ (since ab=0) $\Rightarrow a^2 + a = a$ $\Rightarrow a(a+1) = a$ $\Rightarrow aa = a$ (by theorem 3.1) $\Rightarrow a^2 = a$ Adding 'a' on both sides, we get $\Rightarrow a + a^2 = a + a$ $\Rightarrow a + a^2 = a$ (since (S, +) is a band)

Therefore S is a multiplicative sub idempotent.

Theorem 3.6: Let 'a' is a complimented element in a semiring. Then $a^n + b^n = 1$ for all $n \ge 1$. **Proof:** Let 'a' be a complimented element in a S. Then there exists $b \in S$ such that

a+b=1 and ab=ba=0 for all $a,b \in S$. Now consider a+1+b=1 and ab=ba=0 for all $a,b \in S$. (by theorem 3.1) Squaring on both sides, we get $\Rightarrow (a+1+b)^2 = 1^2 = 1$ (1) $\Rightarrow (a+1+b)(a+1+b) == 1$ $\Rightarrow a^2 + a + ab + a + 1 + b + ba + b + b^2 = 1$ $\Rightarrow a^{2} + a(1+b) + a + (1+b) + b(a+1) + b^{2} = 1$ $\Rightarrow a^2 + ab + a + b + ba + b^2 = 1$ (by theorem 3.1) $\Rightarrow a^2 + a(b+1) + b(1+a) + b^2 = 1$ $\Rightarrow a^2 + ab + ba + b^2 = 1$ (by theorem 3.1) $\Rightarrow a^2 + 0 + 0 + b^2 = 1$ (since ab=ba=0) $\Rightarrow a^2 + b^2 = 1$ (2)From (1) & (2) we get $\Rightarrow a^2 + b^2 = (a+1+b)^2$ (3) Now consider a+1+b=1Cubing on both sides, we get $\Rightarrow (a+1+b)^3 = 1^3 = 1$ (4) $\Rightarrow (a+1+b)^2(a+1+b) == 1$ $\Rightarrow (a^2+b^2)(a+1+b) == 1$ [from (3)] $\Rightarrow a^3 + a^2 + a^2b + b^2a + b^2 + b^3 == 1$ $\Rightarrow a^3 + a^2(1+b) + b^2(a+1) + b^3 == 1$ $\Rightarrow a^3 + a^2b + b^2a + b^3 == 1$ (by theorem 3.1) $\Rightarrow a^3 + aab + bba + b^3 == 1$ $\Rightarrow a^3 + a0 + b0 + b^3 == 1$ (since ab=ba=0) $\Rightarrow a^3 + 0 + 0 + b^3 == 1$

(5)

 $\Rightarrow a^3 + b^3 == 1$

From (4) & (5) we get

(6)

$$\Rightarrow a^{3} + b^{3} == (a+1+b)^{3}$$
Also
$$\Rightarrow (a+1+b)^{4} = 1^{4} = 1$$

$$\Rightarrow (a+1+b)^{3}(a+1+b) == 1$$

$$\Rightarrow (a^{3}+b^{3})(a+1+b) == 1 \quad \text{from (6)}$$

$$\Rightarrow a^{4} + a^{3} + a^{3}b + b^{3}a + b^{3} + b^{4} == 1$$

$$\Rightarrow a^{4} + a^{3}(1+b) + b^{3}(a+1) + b^{4} == 1$$

$$\Rightarrow a^{4} + a^{2}b + b^{2}ba + b^{4} == 1$$

$$\Rightarrow a^{4} + a^{2}0 + b^{2}0 + b^{4} == 1$$

$$\Rightarrow a^{4} + 0 + 0 + b^{4} == 1$$

$$\Rightarrow a^{4} + b^{4} == 1$$

$$\Rightarrow a^{4} + b^{4} == 1$$
Continuing like this, we get.

Therefore $a^n + b^n = 1$ for all $n \ge 1$.

IV. Conclusions

In complemented semirings, the algebraic structures of a multiplicative semigroup (S, .) determine the additive structure (S, +) and vice versa.

In a complemented semiring (S,+,.), if 1 is the multiplicative identity, then the multiplicative structure satisfies the band property. If the complemented semiring (S,+,.) contains the multiplicative identity which is also an additive identity 1, then the multiplicative structure satisfies the following properties: band, left (right) singulars, commutative, rectangular band and multiplicative sub idempotent.

References

- [1] Arif Kaya and M. Satyanarayana -- "Semi rings satisfying properties of distributive type". Proceeding of the American mathematical society, volume 82, number 3, July 1981
- [2] Jonathan S. Golan - "semirings and their applications".
- Jonathan S. Golan "semirings and Affine Equations over Them: Theory and Applications". Kluwer Academic Publishers (1999). M. Satyanarayana "On the additive semi group of ordered semirings", semi group forum vol.31(1985), 193-199 M.P. Grillet "subdivision rings of a semiring". Fund. Math., vol.67 (1970), 67-74. [3] [4]
- [5]
- J. Hanumanthachari and T. Vasanthi "Structure of certain classes of semirings". Proc. of the First Internationals Symposium, [6] Algebraic Structures and Number theory, Hong kong, August 8-3, (1988), 132-143.