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Abstract: In this paper we have considered the population dynamics of dogs subjected to rabies disease. A new 

mathematical model  𝑆𝐸𝐼𝑃𝐼𝐹𝑅  is presented which is designed and developed with some reasonable 

modifications to the corresponding epidemic  𝑆𝐸𝐼𝑅  model. Disease spread controlling technique called 

vaccination is included in the present model and studied its impact. Vaccine can be given to both susceptible 

and exposed individuals so as to control the spread of epidemic. The basic reproduction number is derived 

using the next generation matrix method. Disease free equilibrium point is found and endemic equilibrium state 

is identified. It is shown that the disease free equilibrium point is locally and globally asymptotically stable if 

the reproduction number takes a value less than one unit and unstable if it is more than one unit. Numerical 

simulation study is conducted using ode45 of MATLAB. The results and interpretations are elaborated and 

included in the text. 
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I. Introduction 

Rabies is a fatal disease for both humans and all other mammals. Rabies is caused by a virus and is 

associated with animal bites. The rabies disease has been in existence for more than 3000 years and thus is the 

oldest infectious disease known to medical science [1]. The rabies disease is being occurred with more intensity 

in about 150 countries and territories around the world. The occurrence of rabies is very high in developing 

countries of African and Asian continents.  

It is quite common that poor and rural people interact more with animals including dogs. Hence, these 

people have more chances to be bitten, wounded, and injured by animals and get rabies disease. About 55 

thousands of people die with rabies worldwide every year. Children are the most affected by rabies. More than 

40% of the people bitten by infected animals are children. Among children also those who play with infected 

animals have more probability to be effected by rabies. More than a hundred thousands of people are exposed to 

rabies disease every year worldwide but only about 15 million people receive post exposure vaccination [15, 

16].  

A large number of rabies cases have been reported to occur among the wild life animals such as 

raccoons, skunks, bats and foxes. The rabies virus also circulates among the domestic animals. In fact dogs 

stand as a main vector in transmitting rabies virus between animals and humans. 

Most of the North American and European countries had fought against the rabies disease and were 

successful in eradicating the virus. Even than about 61 thousand deaths occurred in the year 2010 due to rabies 

disease world wide as reported by the WHO. Ofcourse about 95% of these deaths occurred in the African and 

Asian continents [3].  

The rabies disease born by animals of dog family or canine born rabies has been found recently in large 

scale in India and China. Increasing number of these cases in these countries has drawn worldwide attention. 

The complexity of the problem was made known to the world by these findings. The rabies epidemic has been 

attributed to several social, economical and cultural factors, poor waste management systems etc. Dog – human 

interaction is the main problem underlying the rabies epidemic [5, 6].  

In Ethiopia rabies is a main infectious disease that has been recognized many centuries ago. According 

to the Ethiopian Health and Nutrition Research Institute (EHNRI), rabies has been endemic in Ethiopia since 

early seventeenth
 
century. The first major outbreak of rabies

 
due to dogs occurred in many parts of Ethiopia in 

the year 1884. The first case of rabies epidemic
 
was reported and had a high prevalence in Addis Ababa, the 

capital city of Ethiopia. According to EHNRI, rabies disease in Ethiopia is
 
generally born from domestic 

animals specially dogs. However, the involvement
 
of other domestic animals like cats, cattle, sheep, goats and 

equines also cannot be ruled out [14].
 
 

 

1.1 Signs and Symptoms of Rabies Disease 

Rabid animals or the animals infected by rabies disease behave different during the period of disease 

(K. M. Addo,
 
2012). Mainly the disease period is divided in to three stages viz., Prodromal stage, Excitative 

stage, and Dumb or paralytic stage. 
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Prodromal Stage: It is the first phase of the disease. The prodromal period may last for one to three days.  In 

this beginning stage there will be some changes in the behavior of animals. But, these changes are slight and 

thus they are neglected very often. The rabid animals of this stage do not feel comfortable in company. They do 

not mix easily with others, excite easily, feel uneasy, and also finds difficult in swallowing and salivation. There
 

is a frequent irritation or stimulation in the body parts connecting the urinary and genital organs. These facts are 

evidenced by frequent
 
urination, erection and sexual desire. The rabid animals may also stop eating

 
and 

drinking.  

 

Excitative Stage: This is the second or middle phase of the disease. This stage is also known as ‘raging fury’ or 

‘mad dog
 
syndrome’ stage. The behavior of animals of this stage is irrational, aggressive, restless, and

 
excite. 

These animals also develop mental disorders and mania for battings and making sounds. These animals loose 

both caution
 
and fear for natural enemies. They roam aimlessly in the streets and on the highways. They bite 

other animals and
 
people without any reason and aim. They hunt and chase moving objects and swallow foreign 

bodies. During this stage
 
the saliva is highly infectious. Also the muscles and legs of the rabid animal begin to

 

tremble making the animal unable to walk steadily. Breathing too becomes very difficult.  

 

Dumb or Paralytic Stage: This is the third or last stage of the disease. This stage happens shortly before the 

death. In this stage the animal develops paralysis
 
in the muscles of the throat, face, trunk and the limbs. More 

salivation is produced in the mouth and swallowing anything becomes difficult. Dropping of the lower jaw, 

rarely attempt or the effected animals are able to bite.
 
Animals with dumb rabies appear depressed, lethargic and 

uncoordinated. Gradually
 
they become completely paralyzed. If paralysis is prominent, this stage is also called

 

silent fury. Paralysis progresses to all parts of the body with coma and death in a
 
few hours. 

 

Treatment: the first step in treating a person bitten by any animal is to wash the wound with soap and water. 

Dangerous as it is, the rabies virus also happens to be one of the most delicate organisms known. It dies in dried 

saliva within a few hours. It is also killed by ordinary sunlight, heat, household detergent and disinfectants. Pure 

iodine and hydrogen peroxide however have no effect on the virus. The animal should either be caged and 

watched for signs of rabies or killed and its brain tissues watched for signs of rabies. Because there is no cure 

and death is almost certain when the symptoms begin to show up, treatment for rabies involves supportive care. 

However, if a dog or a person is bitten by a rabid animal and has not yet experienced symptoms, there is an 

extremely effective post-exposure treatment. Most of the time, stitches should not be used for animal bite 

wounds. There are vaccines that are derived from a variety of tissue culture or chicken embryo origins in live or 

inactivated forms which are used for treating rabies. Some of these require revaccination, others protect 

adequately for three years. Vaccination of Rabies: Rabies research scientists have developed an extremely 

effective rabies vaccine regimen that provides protection against rabies [12]. This vaccine works in two ways; 

either after an exposure or for before an exposure. A person, who becomes infected with rabies and does not 

obtain treatment before the symptoms occur, dies in a short period after experiencing convulsions and other 

violent nervous symptoms. Dogs continue to be the main carrier of rabies in Africa and Asia and are responsible 

for most of the human rabies deaths worldwide. Pre – exposure rabies vaccines are available for dogs, cats, 

ferrets, horses, sheep, and all other mammals. To be effective, these rabies vaccines must be injected before an 

animal is exposed to rabies. If exposed, the dog should get a booster shot. Post-exposure treatment for rabies 

should begin as soon as possible after an exposure. Administration of rabies vaccine is a medical urgency, not a 

medical emergency. Post – exposure rabies treatment consists of a regimen of one dose of rabies immune 

globulin and five doses of rabies vaccine given over a 28 day period. 

Here we now introduce some important terminology that is frequently used in this work. 

Compartmentalize a group of dogs with similar status or with respect to the same disease [20]. A dog is said to 

be susceptible if that has not yet infected by the disease but likely to get the disease in future. A dog is said to be 

exposed to a disease when the virus enters into the dog’s body. At this stage the effects of the disease cannot be 

identified with the dog, because the effects are in sleeping state. A dog is said to be infected if it has the disease 

in its body and is able to transfer the disease to other susceptible dogs.  

Incubation period is defined as the time duration between an individual gets exposed to an infection 

and it gets sickness or confirmation of the disease. The dog may be tested positive of the infection after this 

period. This is the time taken by a dog to shift from the compartment 𝐸 to the compartment 𝐼 for 𝑆𝐸𝐼𝑅 and for 

𝑆𝐸𝐼𝑃𝐼𝐹𝑅 model. The incubation period is also known as latent period. A dog is said to be in the removed 

compartment if he will never again get infection or infect others. The dog of this compartment is dead. 

Contagious diseases are the diseases which spread by physical contact between susceptible and infected dogs. 

       Mathematical modeling has become an important tool in analyzing the epidemiological 

characteristics of infectious diseases. Several mathematical models have been proposed for modeling the spread 

of infectious diseases. The earliest account of the mathematical modeling of the spread of a disease was carried 
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out in 1766 by Daniel Bernoulli [Ref]. Trained as a physician, Bernoulli created a mathematical model to defend 

the practice of inoculating against smallpox. The calculations from this model showed that universal inoculation 

against smallpox would increase the life expectancy from 26 years 7 months to 29 years 9 months [10]. During 

all these years since, mathematicians, biologists, physicians, epidemiologists, and others have contributed to the 

maturing discipline of mathematical epidemiology. Several books have played a significant role in the 

development of theory [11].  

Mathematical models associated with the study of rabies in various countries have existed over the 

years [12].  Early models of rabies dynamics followed the 𝑆𝐸𝐼𝑅 framework where populations were subdivided 

into specific classes corresponding to susceptible  𝑆, exposed  𝐸, infectious  𝐼, and removed  𝑅 individuals [13]. 

The dynamics were encapsulated through the construction of a system of ordinary differential equations  𝑂𝐷𝐸𝑠  
representing either single populations or linked Meta populations from which a variety of predictions can be 

drawn concerning temporal and spatial pattern. These early models made use of the basic  𝑆𝐸𝐼𝑅  compartmental 

framework and these models were used to derive several critical features of disease emergence and spread. The 

models were used to calculate the critical threshold for epidemic emergence and the basic reproductive number 

𝑅0 for the virus. When 𝑅0 is greater than 1, the infection will spread and an epidemic will result.  

 

II. Model Formulation 
Here we now formulate 𝑆𝐸𝐼𝑅 and 𝑆𝐸𝐼𝑃𝐼𝐹𝑅 models for describing the dynamics of dog rabies. We 

categorize the whole dog population into susceptible, exposed, infected and removed groups for 𝑆𝐸𝐼𝑅 model 

and susceptible, exposed, infected but in prodromal stage), infected but furious stage and recover groups for 

𝑆𝐸𝐼𝑃𝐼𝐹𝑅 model. Susceptible groups have no disease, but they are likely to be infected in case of contact with 

rabid dogs, Exposed individuals are those who contracted the virus via bites or scratch, but still they have not 

shown symptoms. Infected individuals are those who develop clinical symptoms and they are unlikely to 

recover due to the nature of rabies [15]. The recovered classes are those who recovered through vaccination 

before they reach to infectious stage, whereas the rest get infected and die eventually. 

 

2.1 SEIR Model And Transmission Of Rabies Without Vaccination 

In a standard 𝑆𝐸𝐼𝑅 model, the population is divided into four compartments. These are the susceptible 

compartment is neither exposed nor infected by rabies disease now.  But they are very sensitive or easily 

influenced, likely to be affected by or having the quality of receiving the disease in future. Dogs that have been 

bitten by infected dogs but are not infectious make up the exposed class. Dogs that are infected with rabies virus 

and contagious make up the infective class. The removed class constitutes dogs which have died from the 

infection.  

The proportions of individuals divided into the compartments 𝑆, 𝐸, 𝐼, 𝑅 are denoted by the time 

dependent parameter notations: 𝑆(𝑡) denotes the number of dogs in the susceptible compartment where the dogs 

are capable of getting infected (ii)  𝐸 𝑡  denotes the number of dogs in the exposed compartment where the dogs 

are incubating the infection (iii) 𝐼 𝑡   denotes the number of dogs in the infected compartment where the dogs 

are infected with the virus and (v)  𝑅 𝑡  is the number of dogs in the removed compartment where the dogs are 

considered to be died [18].  

Let 𝑁 denotes the total population size. We assume that the duration of the epidemic is short compared 

to the life time of its hosts. So that we can neglect new births and non – disease related deaths during the 

epidemic 

The population is therefore closed of constant size  𝑁  and the situation is therefore illustrated as 

follows:  

S    β           E       β            I        β              R      

 

Here, 𝛽 denotes the transmission coefficient among dogs;   𝜆   denotes the latency or incubation rate in 

dogs; and  𝛾  denotes the death rate in dogs.  The 𝑆𝐸𝐼𝑅 model can be described by the following set of ordinary 

differential equations  𝑂𝐷𝐸𝑠 : 
ds dt   =  − βSI N               (1) 

dE dt   =    βSI N    – λE      (2) 

ds dt  =   λE –  γI                (3) 
dR dt    =   γI                       (4) 

Here we assumed that 𝑁 is a constant and denotes the total number of population in the system. After 

transmission of the virus, susceptible individuals enter the exposed class  𝐸 before they become infectious 

individuals and later either they recover or die. Also  𝛽 is transmission rate of disease from susceptible to 

exposed,  𝜆  and  𝛾  are the average durations of incubation and death rate in dogs respectively. 
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We now consider the scaling of the SEIR model (1) to (4). Scaling is the technique that changes the 

dimensional equations in to into those of dimensionless. The dimension of a dimensionless quantity is 

considered as a unity. To scale an equation means to introduce dimensionless variables based on the scales of 

the variables in the equations. When the equations are scaled, it is easy to see which parts are more important 

and which are less important. Scaling removes unnecessary parameters and reduces the number of parameters. 

Now we scale 𝑆𝐸𝐼𝑅 model 𝑂𝐷𝐸𝑠 (1) to (4) by introducing a set of new variables as 𝑢 = 𝑆𝑁,   𝑣 = 𝐸,   𝑤 = 𝐼𝑁,
𝑧 = 𝑅𝑁 and also obtain the new dimensionless time coordinate as  𝜏 =  𝛾𝑡. In terms of these scaled relations, the 

system (1) to (4) takes the form as below: 

du dτ      =   R0uw                   (5) 
dv dτ     =    R0uw −   kv         (6) 
dw dτ      =    kv  −  w             (7) 

Here in (5) to (7), we denote  𝑧 =  1 −  𝑢 −   𝑣 −   𝑤 ,    𝑅0  = 𝛽 𝛾   is the basic reproductive ratio and 

𝑘 = 𝜆 𝛾    is the average infection period.  The system (5) to (7) is the dimensionless equations of the 𝑆𝐸𝐼𝑅 

epidemic model (1) to (4). It is used to manage and understand the model in a simpler manner. Then simulation 

study can be done using the 𝑀𝐴𝑇𝐿𝐴𝐵 code.  

 

2.2 𝑺𝑬𝑰𝑷𝑰𝑭𝑹  Model Representing Rabies Transmission 

2.2.1 Assumptions of the Model   

The modified  SEIPIFR  model is the extension of the existing  𝑆𝐸𝐼𝑅  model used to describe the 

dynamics of dog rabies and to compute the amount of susceptible, exposed, infected and recovered due to 

vaccination dogs in a population groups.   Rabid animals exhibit three different behaviors during the disease [1, 

2]. Upon infection, the dogs enter the first phase called prodromal phase associated with shyness and isolation. 

After that, they enter into the second phase called furious phase and exhibit high aggressiveness. Lastly, they 

enter the phase called paralytic stage and then die. Since their contact behavior is very different, the infected 

population is divided into two groups for prodromal and furious dogs. The paralytic stage is excluded since dogs 

are assumed not to bite any one as they suffer with paralysis. This model is an appropriate one to use. 

The assumptions of the model are as follows: (i) the birth rate of dogs is assumed to be equal to their 

death rate so that the population under consideration is closed, (ii) the way a dog can leave the susceptible group 

is to become recovery class at the rate of  𝜃  due to pre expose vaccination and exposed class at the transmission 

rate of  𝛽, (iii) the lose rate of the recovered class go to the susceptible class directly at the rate of   𝛿, (iv) the 

way a dog can leave the exposed group is to recover from the disease with the rate of  𝜃  due to post exposed 

vaccination and infected or prodromal 𝐼𝑃  with the rate of  𝜆, (v) the way the dog can leave from the infected 

prodromal 𝐼𝑃    group to infected furious 𝐼𝐹  class is with the rate of  𝛼, (vi) the rate  𝛾  of the infected furious  𝐼𝐹   
go to death due to rabies,  (vii)  there is no chance to recover from the disease for all infected dogs, (viii)   age, 

sex, social status, and race do not affect the probability of being infected and (ix) all the parameters and state 

variables of the model are positive. The flow diagram of the SEIPIFR   model is given in Figure 1.   

 

 
Figure 1: Flow diagram of the  𝑆𝐸𝐼𝑃𝐼𝐹𝑅  model 

 

The  SEIP IFR  model described in the Figure 1 can be expressed using a set of five ordinary differential 

equations as shown from (8) to (12).                                                                           

𝑑𝑠 𝑑𝑡   =    𝑏 −  𝛽  𝐼𝑃  +  𝐼𝐹  𝑆 –  𝜃𝑆 −  µ𝑆 +  𝛿𝑅     (8) 

𝑑𝐸 𝑑𝑡   =  𝛽  𝐼𝑃  +  𝐼𝐹  𝑆 −  𝜆𝐸 −  𝜃𝐸 −  µ𝐸           (9) 
dIp dt   =  λE −  αIP  −  µIP                                       (10) 

dIF dt =  αIP  −  γIF  −  µIF                                       (11) 

dR dt   =  θS +  θE –  δR − µR                                (12) 
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In this model (8) to (12), individuals in the susceptible compartment are subjected to an infected host 

with a contact rate of  𝛽. Once infected with the disease, they then enter the exposed phase. From the exposed 

compartment a portion  𝜆𝐸  of individuals enter the infected phase  𝐼𝑃  while the remaining portion  𝜃𝐸 of the 

individuals enters the recovery phase. Recovery class from the susceptible phase is achieved with the rate of  𝜃  
due to pre exposed vaccinations and again recovered from exposed phase is achieved with the rate of  𝜃  due to 

post exposed vaccination. Another possibility is for the individual to die from Furious compartment   𝐼𝐹   infected 

at the rate of  𝛾  due to the rabies. In this model the total population size 𝑁 is equal to the sum of the populations 

of these compartments and hence  𝑁 = 𝑆 +  𝐸 + 𝐼𝑃  +  𝐼𝐹  +  𝑅. 

 

2.2.2 Basic Reproductive Number 

The basic reproduction number 𝑅0 is a threshold parameter defined as the average number of secondary 

infection caused by an infectious individual by introducing in to a completely susceptible population. It is also 

called basic reproduction ratio or basic reproductive rate [7]. If more than one secondary infection is produced 

from one primary infection that is, 𝑅0  >  1 then an epidemic occurs. When 𝑅0  <  1 then there is no epidemic 

and it means that the disease dies out over a period of time. When Ro = 1 then the disease becomes endemic, 

meaning the disease remains in the population at a constant rate as one infected dog transmits the disease to one 

susceptible [Ref] (H. W. Hethcote, 2006 ). We compute the basic reproduction number using the next generation 

matrix approach by taking the infected compartments to be  𝐸,   𝐼𝑃  and  𝐼𝐹   from the equations (9) to (11). We 

construct the matrices  𝑓𝑖  and Vi   and the corresponding matrices of partial derivatives  𝐹  and  V . Also we find 

the inverse matrix  V−1  of  V. Finally we compute the reproduction number  𝑅0 as the trace of the matrix   FV−1. 

All these matrices are computed and constructed and given below:  

  𝑓𝑖 =  
β IP  +  IF S

0
0

   ,  𝐹 =
𝜕𝑓𝑖

𝜕𝑥𝑗
=   

0 βS βS
0 0 0
0 0 0

   ,  Vi =  

 λ +  θ + µ E
αIP + µIP − λE

γIF +  µIF −  αIP

  

 V =  
∂Vi

∂xj
=   

λ +  θ + µ 0 0
−λ α +  µ 0
0 −α γ +  µ

 ,   V−1 =

 

 
 

1

λ+θ+µ
0 0

λ

 λ+θ+µ (α+µ)

1

(αµ)
0

λα

 λ+θ+µ  α+µ (γ+µ)

α

 α+µ (γ+µ)

1

γ+µ 

 
 

 

Also the reproductive number is obtained as 

R0 =  ρ FV−1 =  
βλ(γ+ µ+α)

 λ+θ+µ  α+µ (γ+µ)
          (13) 

 

2.2.3 Disease Free Equilibrium Point 𝑬𝟎 of   𝑺𝑬𝑰𝒑𝑰𝑭𝑹   Model 

Let  𝐸0  =   𝑆∗, 𝐸∗, 𝐼𝑃
∗  , 𝐼𝐹

∗ , 𝑅∗   represents the disease free equilibrium point of the   SEIpIFR  model 

given by the system (8) to (12). Disease free equilibrium points are steady state solutions of a mathematical 

model indicating that there is no disease [19]. The compartmental classification of dog population reveals that 

the diseased dog population is distributed only in exposed and infected compartments. Hence, in the absence of 

infection we have 𝐸∗ =  𝐼𝑃
∗ =  𝐼𝐹

∗ = 0   and the equilibrium points are obtained by setting the right hand sides of 

the model equations (9), (10) and (11) to zero, then the disease free equilibrium point  E0    will be obtained as  

𝐸0    =      𝑆∗, 0, 0, 0, 𝑅∗       (14) 

Here in (14) we used the notations S∗ =   b δ + µ   µ θ + δ + µ      
and   R∗ =   bθ  µ θ + δ + µ     . The disease free equilibrium point 𝐸0 given in (14) satisfies two properties 

and those are stated as Theorem 1.  

Theorem 1: If  𝑅0  <  1  then the disease free equilibrium point 𝐸0 of  SEIp IFR  system is (a) locally 

asymptotically stable and (b) globally asymptotically stable in the region  Ω.  

  
2.2.4 The Endemic Equilibrium Point  𝑬𝟏  of   𝑺𝑬𝑰𝒑𝑰𝑭𝑹   Model 

We shall now study the existence of the endemic equilibrium state of the modified model. Endemic 

equilibrium point  𝐸1   is a steady state solution where the disease persists in the population. We now consider 

the existence and uniqueness of the endemic equilibrium point. Let  𝐸1  be denoted 

by   E1  =  S1 , E1, IP
1 , IF

1, R  and its coordinates should satisfy the conditions   S1 , E1, IP
1 , IF

1 , R >

0. Upon imposing these conditions in the system of equations (8) to (12) we have respectively    𝑏 −

𝛽 𝐼𝑃+ 𝐼𝐹𝑆 – 𝜃𝑆−µ𝑆+ 𝛿𝑅=0 , 𝛽𝐼𝑃 + 𝐼𝐹𝑆−𝜆𝐸−𝜃𝐸−µ𝐸=0,   𝜆𝐸–𝛼+µ𝐼𝑃= 0,  𝛼𝐼𝑃 – 𝛾+µ𝐼𝐹=0 and    𝜃𝑆 + 𝜃𝐸 – 𝛿𝑅 
− µ𝑅 =  0. On solving the foregoing system of equations we get the following: 
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S∗ =
1

R0

=  
 λ + θ + µ  α + µ  γ + µ 

βλ γ + µ + α 
  

E∗  =  
 α + µ  γ + µ   µ R0   θ + δ + µ − b δ + µ  

 δθ γ + µ + a  α + µ − βλ δ + µ  γ + µ + a  
  

IP
∗  =  

λ γ + µ   µ R0   θ + δ + µ − b δ + µ  

δθ γ + µ  α + µ − βλ δ + µ  γ + µ + α 
   

IF
∗ =  

αλ  
µ

R0
 θ + δ + µ − b δ + µ  

δθ γ + µ  α + µ − λβ δ + µ  γ + µ + α 
 

R∗ =
θ  α + µ  γ + µ  µ θ + δ + µ − R0b δ + µ  + θδ γ + µ  γ + µ − βλ δ + µ  γ + µ + α  

R0 δ + µ [δθ γ + µ  α + µ − βλ(δ + µ)(γ + µ + α)
 

 
III. Stability Analysis 

3.1. Local Stability Of The Disease Free Equilibrium Point 

Here we now investigate the local stability of the disease free equilibrium point. 

Theorem 1: If 𝑅0  < 1 then (i) the disease – free Equilibrium  𝐸0  of system (3) is locally asymptotically stable 

(ii) The disease - free equilibrium  𝐸0  of system (3) is globally asymptotically stable in the region  Ω.  

From (6) the disease free equilibrium point is given by E0 =  S∗, E∗, I∗, IF 
∗ , R∗  where   S∗ =

  𝑏 𝛿 + µ   µ 𝜃 + 𝛿 + µ     ,  E∗ =  I∗ =   IF 
∗ = 0  and  R∗ =  𝑏𝜃 µ 𝜃 + 𝛿 + µ   . 

Theorem 2: (Routh - Hurwitz Criteria) given a characteristic polynomial P (k)  =  kn + a1kn−1 + ⋯ +
an−1k + an  where the coefficients 𝑎𝑖  for all 𝑖 = 1 …𝑛 are all real constants, we define the 𝑛 dimensional 

Hurwitz matrices in terms of the coefficients 𝑎𝑖  of the polynomial as follows: 

H1 =  a1 ,H2 =  
a1 1
a3 a2

 , H3 =   
a1 1 0
a3 a2 a1

0 0 a3

   and Hn =

 

 
   

a1 1 0 0 … 0
a3 a2 a1 1 … 0
a5

⋮
0

a4

⋮
0

a3

⋮
0

a2

⋮
0

…
⋮
…

0
⋮

an 

 
        

Here in the matrices 𝑎𝑗  =  0 whenever  𝑗 > 𝑛. All the roots of the polynomial 𝑝 (𝑘) are negative or 

have negative real part if and only if the determinants of all Hurwitz matrices are positive i.e. Det Hj > 0 for all   

j =  0, 1, 2 … , n. Complete details on Routh – Hurwitz criteria are available in the literature [2, 15]. Next we 

derive the Jacobin matrices for the system (3). This is done by differentiating each of the equations of the 

system (3) in terms of state variables viz.,    𝑆, 𝐸,  𝐼𝑃 , 𝐼𝐹   and  𝑅.      

       

JE0
 =  

 
 
 
 
 
 
−β Ip

∗ + IF
∗ −  θ + µ 0 −βS∗ −βS∗ δ

β Ip
∗ + IF

∗ − µ + λ + θ βS∗ βS∗ 0

0 λ − µ + α 0 0

0 0 α − µ + γ 0

0 0 0 0 − δ + µ 

 

 
 
 
 
 
 

       (7) 

 

Up on evaluating the matrix given in (7) at the disease free equilibrium point E0 =  S∗, E∗, I∗, IF 
∗ , R∗  where   

S∗ =   𝑏 𝛿 + µ   µ 𝜃 + 𝛿 + µ     ,  E∗ =  I∗ =   IF 
∗ = 0  and  R∗ =  𝑏𝜃 µ 𝜃 + 𝛿 + µ    we have 

 

JE0
 =  

 
 
 
 
 
− θ + µ 0 −βS∗ −βS∗ δ

0 − µ + λ + θ βS∗ βS∗ 0

0 λ − µ + α 0 0

0 0 α − µ + γ 0

0 0 0 0 − δ + µ 

 

 
 
 
 
 

 

JE0
=

 
 
 
 
 
 
 
 
−(θ + µ) 0

0 −(µ + λ + θ)
0
0
0

λ

0
θ

    

−βb δ + µ 

µ θδµ 

βb δ + µ 

µ θδµ 

− µ + α 
α

0

   

−βb δ + µ 

µ θδµ 

βb δ + µ 

µ θδµ 

0
− µ + γ 

0

   

δ

0
0
0

− δ + µ 
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The characteristic equation of the matrix JE0
 is   𝐽𝐸𝑜 − 𝑘𝐼 = 0. Here  𝐼  is an identity matrix of class 

 5 × 5  and k is the eigenvalue. Using this characteristic equation we derive the characteristic polynomial as 

P (k)  =  k5 +   x + z + w + y + r  k4  +    xz + xw + xy + xr + zw + zy + zr + wy + wr + yr −
 λc+δθ k3  + xzw+xzy+xzr+xwy+xwr+xyr+zwy+zwr+zyr+wyr  −  xλc+zλc+λcw+λcα+θδw+θδy+θδr 
k2    +    xzwy + xzwr + xzyr + xwyr + zwyr + θδλc  −    xzλc + xλcw + xλcα + zλcw + zλcα + θδwy +
θδwr +θδyr k  +  xzwyr+θδλcw+θδλcα – xzλcw+xzλcα+θδwyr     

             Here in what precedes we have used the notations   x =  θ + µ , y =  µ + λ + θ  ,   c =
 βb δ + µ µ θ + δ + µ   ,    r =  µ + α ,   w =  µ + r    and  z =  δ + µ . The characteristic polynomial  𝑃 𝑘   
can also be expressed as 

𝑃(𝑘)  =  𝑘5  +  𝐴1𝑘
4  +  𝐴2𝑘

3  +  𝐴3𝑘
2  +  𝐴4𝑘 + 𝐴5                        (8) 

Here in (8), the coefficients  𝐴1, 𝐴2, 𝐴3, 𝐴4  and  𝐴5 are functions representing respectively  A1  =
  x + z + w + y + r   ,   A2  =   xz + xw + xy + xr + zw + zy + zr + wy + wr + yr −  λc + δθ    ,   A3  =
  xzw + xzy + xzr + xwy + xwr + xyr + zwy + zwr + zyr + wyr −  xλc + zλc + λcw + λcα + θδw +
θδy+θδr,   A4 =  xzwy+xzwr+xzyr+xwyr+zwyr+θδλc − xzλc+xλcw+xλcα+ 
zλcw+Zλcα+θδwy+θδwr+θδyr  and   A5 = xzwyr+θδλcw+θδλcα – xzλcw+xzλcα+θδwyr.                                      

Using the characteristic polynomial represented by (8) the Hurwitz matrices can be constructed and 

their determinants are computed as 

(a)  H1 =  A1   and     det H1  = A1 

(b)  H2 =  
A1 1
A3 A2

   and   det(H2)  =  A1A2 − A3 > 0 

(c) H3 =   

A1 1 0
A3 A2 A1

A5 A4 A3

    and   det H3 = A1A2A3  −  A3
2   

(d) H4 =   

A1 1 0 0
A3 A2 A1 0

0
0

A4

0

A3 A2

0 A4

   and   det  H4  =  −A4  A1
2 A4 − A1A2A3 + A3

2 > 0 or equivalently it can be 

observed that    A1A2A3 > A1
2 A4 + A3

2     

(e) H5 =   

 

 
 

A1 1 0 0 0
A3 A2 A1 1 0

A5

0
0

A4

0
0

A3 A2 A1

A5 A4 A3

0 0 A5  

 
 

 and after some rearrangement the determinant of the Hurwitz matrix 𝐻5 

simplifies to        det  H5 = A5A1A2 A3A4 − A2A5 − A3 A3A4 − A2A5 + A1A4A5 A5 − A1A4 −
A5(A5 − A1A4). 

 

By Routh – Hurtwiz criteria of Theorem 2 the determinant of Hurtwiz matrix becomes positive if the 

following conditions hold true 𝐴1 > 0 , 𝐴2 > 0, 𝐴3 > 0, 𝐴4 > 0, 𝐴5 > 0,   𝐴3𝐴4 > 𝐴2𝐴5, 𝐴5𝐴1𝐴2 > 𝐴3, 
and   𝐴5  > 𝐴1𝐴4. It required that all these requirements should hold true in our present model. Therefore, 

 𝐴1  =  𝑥 + 𝑧 + 𝑤 + 𝑦 + 𝑟  is greater than zero. The parameter  𝐴2 is positive if and only if  𝑥𝑧 + 𝑥𝑤 + 𝑥𝑦 +
𝑥𝑟 + 𝑧𝑤 + 𝑧𝑦 + 𝑧𝑟 + 𝑤𝑦 + 𝑤𝑟 + 𝑦𝑟 > 𝜆𝑐 + 𝛿𝜃. The parameter  𝐴3 is positive if and only if   xzw + xzy +
xzr+xwy+xwr+xyr+zwy+zwr+zyr+wyr > xλc+zλc+λcw+λcα+ θδw+θδy+θδr. The parameter  𝐴4 is 

positive if and only if    𝑥𝑧𝑤𝑦 + 𝑥𝑧𝑤𝑟 + 𝑥𝑧𝑦𝑟 + 𝑥𝑤𝑦𝑟 + 𝑧𝑤𝑦𝑟 + 𝜃𝛿𝜆𝑐  >   𝑥𝜆𝑐 𝑧 + 𝑤 + 𝛼  +  𝑧𝜆𝑐𝑤 +
𝑧𝜆𝑐𝛼+𝜃𝛿𝑤𝑦+𝜃𝛿𝑤𝑟+𝜃𝛿𝑦𝑟. Finally, the parameter  𝐴5 is positive if and only if 𝑥𝑧𝑤𝑦𝑟+𝜃𝛿𝜆𝑐𝑤+𝜃𝛿𝜆𝑐𝛼 > 
 𝑥𝑧𝜆𝑐𝑤 + 𝑥𝑧𝜆𝑐𝛼 + 𝜃𝛿𝑤𝑦𝑟  . Hear all the requirements on the parameters  A1, A2 , A3, A4    and    𝐴5   are 

found hold well.  

Similarly, after exercising the same procedure it can be further observed that   𝐴3𝐴4 > 𝐴2𝐴5  
,  𝐴5 𝐴1 𝐴2 > 𝐴3    and   A5 > A1A4. That is,    𝐴3𝐴4 + 𝐴5𝐴1𝐴2 + 𝐴5  >   𝐴2𝐴5 + 𝐴3 + 𝐴1𝐴4  holds. Hence all 

roots of the characteristic polynomial (8) are negative and this verifies that the system (3) is locally 

asymptotically stable.     

                        

Global Stability of the Disease Free Equilibrium Point 

In this section, we study the global properties of the disease free equilibrium point. the global property 

of the disease free equilibrium point is  provide in the form of a theorem as stated in the following: 

Theorem 2 If the reproduction number satisfies the condition  R0  < 1 then the disease free equilibrium point 

E0 =  
b δ+µ 

µ θ+δ+µ 
, 0, 0, 0,

bθ

µ(θ+δ+µ)
  is globally asymptotically stable in the region Ω. Further, if 𝑅0   >  1 

then 𝐸0  is unstable.  
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Proof of Theorem 2:  By the comparison theorem the rate of change of the variables representing the infected 

components of model given by the system (3) can be rewritten as 

 

E′(t)

IP
′ (t)

IF
′ (t)

 =   F − V  
E
IP

IF

   =  

−(λ + θ + µ) βs βs
λ −(α + µ) 0

0 α −(γ + µ)
  

E
IP

IF

 .  (10) 

Here in (10) the matrices  𝐹  and  𝑉  are defined by the expressions (4). But we also note that 

s ≤   b δ + µ   µ θ + δ + µ      for all 𝑡 ≥ 0 in the region Ω  and hence we obtain 

                

E′(t)

IP
′ (t)

IF
′ (t)

 ≤   F − V  
E
IP

IF

                                     (11) 

We have seen that the eigenvalues of the matrix    F − V   given in (10) are located on its main 

diagonal and are real and negative i.e.  − λ + θ + µ , − α + µ , and  −(γ + µ). The off diagonal elements of 

matrix   F − V   are non – negative, since all the parameters are positive, and thus (10) is a Metzler matrix. It 

follows that the linear differential inequality system (11) is stable whenever the reproduction number satisfies 

the condition  𝑅0  <   1.  

Consequently, it also can be observed that  (E, IP , IF)  =  (0, 0, 0) as   𝑡 → ∞. Further the evaluation of 

the system (3) at  𝐸 = 𝐼𝑃 = 𝐼𝐹 =  0  and when   R0  <  1  it results in 

obtaining     s =   b δ + µ   µ θ + δ + µ    . Hence, the disease free equilibrium point  𝐸0   is globally 

asymptotically stable in the region  Ω. 

Model variables and their descriptions are tabulated in the Table 1.  Model parameters and their 

descriptions are tabulated in the Table 2. 

 
Symbol Description of the variables 

𝑆(𝑡) Susceptible dog population at time t 

𝐸(𝑡) Exposed dog population at time t 

𝐼𝑃(𝑡) Infectious or prodromal stage dog population at time t 

𝐼𝐹(𝑡) Infectious or furious stage dog population at time t 

𝑅(𝑡) Recovered dog population at time t 

Table 1: Model variables and their description 

 
Symbol Description of the variables 

𝛽 Transmission coefficient of the disease among dogs 

𝜆 Latency or incubation rate of the disease in dogs 

𝛾 Death rate of dogs due to diseases 

𝜃 Vaccination rate coefficient 

𝛿 The loss rate of vaccination immunity for dogs. 

𝜇 Natural death rate of dogs 

𝛼 Rate of propagation of furiousness among dogs   

𝑏 Birth rate of dogs 

Table 2: Model parameters and their description 

 

IV. Simulation Study of the Model 
Here we consider simulation study of both  𝑆𝐸𝐼𝑅  and 𝑆𝐸𝐼𝑃𝐼𝐹𝑅 models with varying values of 

reproductive number 𝑅0. The main focus of the simulation study is to investigate the response of model 

parameters up on the rabies epidemic. We have considered  𝑅0 assigning different values few of which are less 

than and the other are greater than one unit and conduct simulation study. 

 

3.1 Summation of 𝑺𝑬𝑰𝑹 Model Describing Rabies Transmission without Vaccination 

In this 𝑆𝐸𝐼𝑅 model, standard values for the parameters of the ordinary differential equations are 

obtained from Ghana Veterinary Medical Association Report, 2010 and are used. The simulation studies and the 

analysis made are based on these standard values which are displayed below in Table 3.  

 
Parameter Description of the parameter Standard values  

𝛽 Transmission coefficient 0.0030417 per month 

𝜆 Rate of latency or incubation in dogs $  0.0000043973 per month 

𝛾 Death rate 0.002293 per month 

𝐾 Average infectious period 0.0019177 per month 

Table 3: standard values of the 𝑆𝐸𝐼𝑅 model parameters 

 

 From the  𝑆𝐸𝐼𝑅  model equations (3) we can obtain the basic reproductive ratio of rabies 

transmission as   𝑅0  =  𝛽 𝛾    =  0.0030417 0.002293    =  1.3267.  Since 𝑅0  >  1 here, the prevalence of 
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rabies is considered as an epidemic. This is because the transmission coefficient among dogs exceeds the death 

rate of dogs. If  𝛽  is reduced and  𝛾  remains the same then the reproduction ration falls below one unit that is, 

for an example  𝑅0  =  𝛽 𝛾    =  0.001908 0.002293    =  0.8321 <  1. That is to conclude that keeping  𝛾  
the same any value assigned for  𝛽  that is less than 0.002293 will result in having  𝑅0  <  1. 

 

 
Figure2. The numerical simulation for rabies infected dogs model using the parametric values   𝛽 =

 0.0030417,  𝜆 =  0.0000043973 and   𝛾 =  0.002293 that is R0 < 1 

 

   In Figure 2 it is illustrated the relationship among the model variables. It is represented that 

susceptible 𝑆 with blue curve, exposed 𝐸 with yellow curve, infected  𝐼  with red curve, and removed R with 

green curve. For the purpose the standardized values are used. The analysis of numerical solution of 𝑆𝐸𝐼𝑅 

model representing dog rabies is as follows: Susceptible class decreases slowly in the time interval  0, 10  and 

converges to a small constant for all the times greater than 10. Exposed and infected classes decreasing for time 

when the time is large then both compartment approaching to null or zero and the removed class increases as 

seen in figure. Thus, figure 2 shows that the disease dies out.  

 

.  

Figure 3:  The numerical simulation of 𝑆𝐸𝐼𝑅  model representing dog rabies with   𝛽 =  0.0030417 and 

𝛾 =  0.002293 that is    𝑅0  >  1. 

 

In figure 3 it is illustrated that the relationship among the model variables. Susceptible  𝑆   is 

represented with blue curve, expose  𝐸   is with yellow curve, infected  𝐼   is with red curve, and removed  𝑅   is 
with green curve. The removed dogs in figure 3 increase gradually   throughout all the time while the 

susceptible dogs decrease. The numbers of exposed and infected dogs decrease to zero after the time is 16 units.  

 

3.2 Simulation of 𝑺𝑬 𝑰 𝑷𝑰 𝑭𝑹  Model Representing Rabies Transmission with Vaccination 
Here we consider simulation study of the model (3) and draw some important observations. This 

simulation study is based on the parameter values mentioned in a tabular form in table 3. 

 
Parameters Values Units Source 

𝛽 0.733 Per year assumption 

𝜆 0.965 Per year Assumption 

𝛾 0.925 Per year Assumption 
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𝜃 Variable Per year Assumption 

𝛿 0.02 Per year Assumption 

𝜇 0.41 Per year Assumption 

𝛼 0.975 Per year Assumption 

𝑏 0.41 Per year Assumption 

Table 3 Description of parameters of the model (3) 

 

 
Figure 4: Numerical simulation of dog rabies model with vaccination rate  𝜽  =  𝟎 . 𝟗   and reproduction 

number 𝑹𝟎  =  𝟎 . 𝟕𝟎𝟕  

 

The population dynamics of 𝑆𝐸 𝐼 𝑃 𝐼 𝐹𝑅  epidemic compartmental model with 𝑅 0  =  0.7 and  𝜃  =
 0.9 are considered. The susceptible decreases rapidly, whereas the number of exposed dogs is increasing rapidly 

to about 471 by the end sixth week and starting decreases to zero when the time approaches to 3 year. Also the 

number of infective with early symptom compartment dogs are increasing continuously to about 148 by the 

beginning of the ninth month and decreases and then approach to zero when the time approach to 5 year. The 

number of infected with later symptom compartment dogs are increasing continuously to about 98 and starts 

decreases to about 18 when the time approach to 5 year.  Recover compartment increases steadily and 

approaches to 313 when the time approach to 1.8 years or 21.6 month and starting slowly decreasing to about 

267 when the time approaches to five year. Finally the epidemic seems dies out. 

 

 
Figure 5: Numerical simulation of dog rabies model with vaccination rate  𝜽  =  𝟎 . 𝟏   and the reproduction 

number   𝑹𝟎  =  𝟏 . 𝟐𝟐  

We analyzed the numerical solution of dog rabies with vaccination rate 𝜃  =  0.1 and the other 

parameters are the same as in figure 4. Then we get   𝑅 0  = 1.22. The susceptible compartment decreases rapidly 

whereas the number of exposed dogs is increasing rapidly to about 526 by the beginning of seventh week and 

starts to decrease to about 3 when the time approaches to 5 year. The number of infective with early symptom 

compartment dogs are increasing continuously to about 207 by the beginning of first year and starts decreases 

approach to 17 when the time approach to 5 years. The number of infected with later symptom compartment 

dogs are increasing continuously to about 151 by the beginning of second year and starts decreases to about 46 

when the time approach to 5 years.  Recover compartment slowly increases approaches to 92 when the time 
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approach to 2.28 years or 27.36 months and slowly decreasing to about 82 when the time approaches to five 

year.  

 

V. Conclusions 

In the present study we have formulated and analyzed a deterministic mathematical model for the 

dynamics of rabies transmission. Vaccination of dogs is the best controlling strategy for rabies disease. 

Increasing the vaccination coverage will decrease in the rate of transmission of rabies diseases. The basic 

reproduction number has been computed using next generation matrix method.  We discussed the existence and 

stability of the disease free equilibrium points driven by using the Routh - Hurwitz criteria. The diseases free 

equilibrium points are shown locally asymptotically stable. Also disease endemic equilibrium point of the model 

has been derived.  Simulation study and analysis of the model are performed by varying the vaccinated rate. It is 

observed that increasing of the vaccination rate of rabies has a significant impact on the rate of spread of rabies 

transmission. Further, on increasing the number of recovered in the model and reducing the vaccination rate of 

rabies had decreased the number of recovered in the model. 
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