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Abstract: In this article we found the numerical solution of singularly perturbed one dimensional convection 

diffusion equation using Non-Standard finite difference method by following the Mickens Rules. To compare the 

results with the known methods we also found solution of one dimensional convection diffusion equation using 

standard backward and central finite difference schemes. The work has been illustrated through the examples 

for different values of small parameter ϵ, with different step lengths. The approximate solution is compared with 

the solution obtained by standard finite difference methods and exact solution. It has been observed that the 

approximate solution is an excellent agreement with exact solution. Low absolute error indicates that our 

numerical method is effective for solving perturbation problems. 
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I. Introduction 
The non-standard finite difference approach was initiated almost three decades ago byMickens [1]. An 

important observation fromthis pioneer researcher [2] was that the traditional procedures in the design of finite 

difference schemes have to be suitably changed by nonstandard procedures to avoid instabilityand chaotic 

behavior. Subsequently, a remarkable effort was made to designnonstandard finite difference approach for a 

variety of ordinary and partial differentialequations of interest in applications [3]. One of the culminating points 

of this effortwas fromthe author’s point of view, the identification byMickens’s five rules for the constructionof 

non-standard finite difference schemes as more reliable numerical methods.Since the publication ofMickens’s 

book, the nonstandard finite difference approach wasextensively been applied to differential models originating 

problems from Engineering, Physics, Biology, Chemistry, etc. In all these contributions of different areas 

ofapplication, the non-standard finite difference scheme have shown a great potential inreplicating the essential 

physical properties of the exact solutions of the involved differentialmodels.Despite the success of the new 

approach, Mickens’s himself acknowledgethat the general rules for constructing the nonstandard finite 

difference scheme are notprecisely known at present time. Consequently, there exists a certain level of 

ambiguityin the practical implementation of non-standard procedures to the formulation offinite difference 

schemes for differential equations. 

Singularly perturbed differential equations is one of the area of increasing interest in theapplied 

mathematics and engineering since recent years.In this type of problems, thereare regions where the solution 

varies very rapidly known as boundary layers and the regionwhere the solution varies uniformly known as the 

outer region. Standard finite difference or finite element methods are applied on the singularly 

perturbeddifferential equation on uniform mesh give unsatisfactory result as ϵ→ 0 [4]. Since for most 

application problems, finding the analytical solutionof singularly perturbed one dimensional convection 

diffusion problems is difficult even impossible, so we are applying the efficient numerical technique, the non-

standard finite difference scheme to singularly perturbed one dimensional convection diffusion problem for 

numerical simulations. 

Kadalbajooand Vikasgupta [5] presented a survey on numerical methods for solving 

singularlyperturbed problems. Spline approximation method for solving self-adjoint singular 

perturbationproblems on non-uniform grids have been investigated by Kadalbajoo andK.C. Patidar [6]. Reddy 

and Chakravarthy [7] constructed an exponentially fitted finitedifference method for solving singularly 

perturbed two-point boundary value problems. Ravikanth [8] has given numerical treatment of singular 

boundary valueproblems.Chawla and Katti [9] employed finite difference method for a class of singulartwo-

point BVPs. A class of BVPs has been solved by Rama Chandra Rao [10] usingnumerical 

integration.ParchaKalyani [11] has employed numerical integration method to solve perturbation problems, by 

reducing it to a differential equation of first order with a small deviating argument.Ravikanthand Reddy [12] 

dealt with cubic spine for a class of singulartwo-point boundary valueproblems.Adomian et al. [13] solved a 

generalizationof Airy’s equation by decomposition method. For the numerical solution of singularlyperturbed 
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two-point boundary value problems a numerical algorithm based on optimalmonitor function for mesh selection 

has been developed by Capper and Cash [14]. Rashidinia.et.al.[15] have developed quintic non polynomial 

spine functions to obtainapproximate solutions of BVPs with singular perturbation. Linand Cheng [16] 

consideredspline scaling functions and wavelets for singularly perturbed problems arising inbiology and 

discussed their convergence.  A conventional approach for the solution of fifth order boundary value problems 

using sixth degree spline functions has been given by ParchaKalyani et al. [17]. 

In this study we applied the non-standard finite difference scheme by applying Mickens Rules on 

singularlyperturbed one dimensional convection diffusion problems. 

The governing equation of the problem is given by 

 

𝐿𝑢 =  −𝜖𝑢′′ +  𝑎 𝑥 𝑢′ =  𝑟 𝑥  , 0 < 𝑥 < 1      (1) 

𝑢 0 =  𝛼 , 𝑢 1 =  𝛽 , 𝑎 𝑥 > 𝑎𝑜 > 0 

 

Whereϵis a small parameter 0 < 𝜖 << 1 , is used to measure the relative amount of diffusionto 

convection.We also solved one dimensional convection diffusion problems with standard finite difference 

schemes and compared the solutions with exact solution.We simulated the solution of the standard and 

nonstandard finite difference and theexact solution with the same window.The errors obtained from the standard 

and non-standard schemes are plotted on the same windowand shown that the non-standard finite difference 

scheme is more powerfulthan the standard finite difference scheme in solving the one dimensional 

convectiondiffusion problems. 

 

II. Approximation Of Convection Diffusion Problem With Non - Standard Finite Difference 

Scheme 
In this section we apply the non-standard modeling rulesof Mickens to find the solution of the one 

dimensional convection diffusion equation by constructing the appropriate denominator function.  

Consider the one dimensional convection diffusion equation (1) i.e. 

−𝜖𝑢′′ +  𝑎 𝑥 𝑢′ =  𝑟 𝑥  

 

assume a(x) = 1, then the equation (1) becomes  

−𝜖𝑢′′ +  𝑢′   =  𝑟 𝑥 (2) 

 

 The discretization is as follows 

−𝜖
𝑢𝑖+1−2𝑢𝑖+ 𝑢𝑖−1

ℎ2 +  𝑎
𝑢𝑖+1−𝑢𝑖

ℎ
= 𝑟(𝑥𝑖) (3) 

 

As per the rules of Mickens the denominator of the highest derivative ( ℎ2)  of the discretized equation 

(3) must be replaced by the functionϕ (h), where 

 

ϕ(h) =
 exp  

−ℎ

𝜖
 − 1 ℎ

−1

𝜖

    ,    0<(h) <1. 

Equation (3) becomes 

 

−𝜖
𝑢𝑖+1−2𝑢𝑖+ 𝑢𝑖−1

𝛷(ℎ)
+  𝑎

𝑢𝑖+1−𝑢 𝑖

ℎ
= 𝑟(𝑥𝑖)                                                                             (4) 

−𝜖
𝑢𝑖+1−2𝑢𝑖+ 𝑢𝑖−1

 exp  
−ℎ
𝜖  −1 ℎ

−1
𝜖

+  𝑎
𝑢𝑖+1−𝑢𝑖

ℎ
= 𝑟(𝑥𝑖) (5) 

For a = 1 we have 
𝑢𝑖+1− 2𝑢𝑖+ 𝑢𝑖−1

 exp  
−ℎ

𝜖
 −1 ℎ

+
𝑢𝑖+1 −𝑢𝑖

ℎ
 = 𝑟(𝑥𝑖)                                                                        (6) 

Simplifying, we get 

𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1 +   exp  
−ℎ

𝜖
 − 1  𝑢𝑖+1 − 𝑢𝑖 =  𝑟 𝑥   exp  

−ℎ

𝜖
 −  1 ℎ (7) 

Arranging the coefficients of the same indices, we get 

 exp  
−ℎ

𝜖
  𝑢𝑖+1 −  1 + exp  

−ℎ

𝜖
  𝑢𝑖 +  𝑢𝑖−1  = 0(8) 

 

Now we find the roots of equation (8) by considering homogeneous case  𝑢𝑖  = 𝑟𝑖  

 

 exp  
−ℎ

𝜖
  𝑟𝑖+1 −  1 + exp  

−ℎ

𝜖
  𝑟𝑖 +  𝑟𝑖−1 = 0     (9) 
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 exp  
−ℎ

𝜖
  𝑟2 −  1 + exp  

−ℎ

𝜖
  𝑟 +  1 = 0(10) 

 

𝑟1 ,2 =   
 1+exp (

−ℎ

𝜖
) ± (1+exp (

−ℎ

𝜖
))2−  4exp (

−ℎ

𝜖
)

2exp (
−ℎ

𝜖
)

                                                 (11) 

⟹ 𝑟1 = 1 𝑎𝑛𝑑𝑟2 =  
1

exp(
−ℎ

𝜖
)
 

This indicates that for all values of h and ϵ, 𝑟2is always positive so that it is stable and we also observed 

that for all values of ϵthere will not be any oscillations. 

 

III. Approximation of convection diffusion problem with standard finite difference schemes 
In this section, we present and analyze central-difference and back ward-difference approximations for 

convection diffusion problem. We simulate some numerical results for different values of small parameter ϵ and 

discuss the behavior of the numerical solution. 

 

3.1Approximationofthe Convection Term by Central Difference Scheme 

We study one dimensional convection diffusion problem (1 and 2) with central difference method. i.e., 

−𝜖𝑢′′ +  𝑎 𝑥 𝑢′ =  𝑟 𝑥  

 

We approximate the diffusion term with second order central difference operator and convective term 

by central-difference operator as described below 

 

−𝜖
𝑢𝑖+1−2𝑢𝑖+ 𝑢𝑖

ℎ2 +  𝑎
𝑢𝑖+1 −𝑢𝑖

2ℎ
= 𝑟(𝑥𝑖)(12)  

 

Rearranging the coefficients of like terms gives 

 

 
𝜖

ℎ2 +
𝑎

ℎ
 𝑢𝑖+1 +   

2𝜖

ℎ2 𝑢𝑖 +  
−𝜖

ℎ2 −
𝑎

ℎ2 𝑢𝑖−1 = 𝑟(𝑥𝑖)(13) 

 

 
−𝜖+𝑎ℎ

ℎ2  𝑢𝑖+1 +   
2𝜖

ℎ2 𝑢𝑖 +   
−𝜖−𝑎ℎ

ℎ2  𝑢𝑖−1 =  𝑟(𝑥𝑖)                                         (14) 

 

Let 𝑎1 =  
−𝜖

ℎ2 + 
𝑎

2ℎ
 , 𝑏1 =  

−𝜖

ℎ2  , 𝑐1 =  
−𝜖

ℎ2 −
𝑎

2ℎ
                                              (15) 

 

 Now let us see the solution of equation (14), by considering homogeneous case 𝑢𝑖 =  𝑟𝑖  

𝑎1𝑟
𝑖+1 −  2𝑏1𝑟

𝑖 +  𝑐1𝑟
𝑖−1 = 0  (16) 

 

𝑎1𝑟
2 −  2𝑏1𝑟 + 1 = 0(17) 

 

The characteristic roots of equation (17) can be obtained as 

𝑟1 ,2 =  
2𝑏1± 4𝑏1

2−4𝑎1𝑐1

2𝑎1
      →  𝑟1 ,2 =  

𝑏1± 𝑏1
2−𝑎1𝑐1

𝑎1
 

 

From equation (15) we have  

𝑏1
2 − 𝑎1𝑐1 = ( 

𝑎1 + 𝑐1

2
 )2 − 𝑎1𝑐1 =  

𝑎1
2 +  2𝑎1𝑐1 +  𝑐1

2 −  4𝑎1𝑐1

4
= ( 

𝑎1 −𝑐1

2
 )2 

𝑟1 ,2 =  𝑏1 ±  
𝑎1−𝑐1

𝑎1

 ⟹ 𝑟1 = 1 𝑎𝑛𝑑𝑟2 =  
𝑐1

𝑎1

 

𝑟2 =  
𝑐1

𝑎1
 =  

−2ϵ− ah

2h 2

−2ϵ + ah

2h 2

 =  
−2ϵ− ah

−2ϵ + ah
 =  

−2ϵ−
2ϵah

2ϵ

−2ϵ+
2ϵah

2ϵ

             (From (15)) 

Let α =
𝑎ℎ

2𝜖
then we have 𝑟2 =  

−2𝜖−2𝜖𝛼

−2𝜖+2𝜖𝛼
=  

1+ 𝛼

1−𝛼
 

This result shows that if 𝝰< 1 the approximate solution to be consistent but if 𝝰>1 the numerical 

solution oscillates this is because when we take 𝝰>1,𝑟2 will be negative. 

3.2 Approximation of the convective term by back ward difference scheme 
We study one dimensional convection diffusion problem (1 and 2) with backward difference method.  

i.e. 
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−𝜖𝑢′′ +  𝑎 𝑥 𝑢′ =  𝑟 𝑥  

 

In this case the diffusive term is discretized with second order central difference whereas the convective term of 

the equation discretized using first order back ward difference. 

−𝜖
𝑢𝑖+1 − 2𝑢𝑖 +  𝑢𝑖

ℎ2
+  𝑎

𝑢𝑖−𝑢𝑖

ℎ
= 𝑟(𝑥𝑖) 

 

 
−𝜖

ℎ2 𝑢𝑖+1 +  
2𝜖

ℎ2 + 
𝑎

ℎ
 𝑢𝑖 +  

−𝜖

ℎ2 −
𝑎

ℎ
 𝑢𝑖−1 =  𝑟(𝑥𝑖)(18) 

 

Let 𝑎2 =  
𝜖

ℎ2  , 𝑏2 =  
2𝜖

ℎ2 +  
𝑎

ℎ
 , 𝑐2 =  

−𝜖

ℎ2 −
𝑎

ℎ
(19) 

 

Consider the homogeneous case of equation (18)𝑢𝑖 =  𝑟𝑖 , then we have the following equation. 

−𝑎2𝑟
𝑖+1 +  𝑏2𝑟

𝑖 + 𝑐2𝑟
𝑖−1 = 0                                                           (20) 

 

−𝑎2𝑟
2 +  𝑏2𝑟 + 1 = 0(21) 

the characteristic roots of this equation are 

𝑟1,2 =  
−𝑏2 ±  𝑏2

2 − 4𝑎2𝑐2

−2𝑎2

 

 From equation (19) we have 

𝑏2
2 + 4𝑎2𝑐2 =  (𝑎2 − 𝑐2)2 +  4𝑎2𝑐2 =  𝑎2

2 + 2𝑎2𝑐2 +  𝑐2
2 = ( 𝑎2+𝑐2)2 

 

then we have𝑟1,2 =  
−𝑏2 ±(𝑎2+ 𝑐2)

−2𝑎2
 

So the roots of the homogeneous case of the equation are  

 

𝑟1 = 1 𝑎𝑛𝑑𝑟2 =  
−𝑐2

𝑎2

=  
𝜖 + 𝑎ℎ

𝜖
=  

𝜖 + 2𝛼𝜖

𝜖
= 1 + 𝞪 

From this we have that if 𝝰>1 or 𝝰< 1, 𝑟2  will always have positive results and did not 

observeoscillations. Therefore the back ward approximation of the convective term of thegiven convection 

diffusion equation is more stable than the central difference approximation ofthe convective term of the one 

dimensional convection diffusion problem. 

 

IV. Numerical illustrations 
In this section we consider two examples of one dimensional singularly perturbed convection diffusion 

problems. Their numerical solution and absolute errors are given for different values of small parameter ϵ.  The 

approximate solution obtained by non-standard finite difference, standard finite difference, exact solutions and 

absolute errors at the grid points are summarized in tabular form. The approximate solution and exact solution 

have been shown graphically. Further the comparison of numerical solutions obtained by SFDM, NSFD with 

exact solutionand also absolute errors at different step lengthshas been shown graphically. 

 

4.1Numerical solution of convection diffusion problem with non-standard finite difference scheme 

Example 1. 

Consider the singular perturbed convection diffusion problem 

−𝜖𝑢′′ +  𝑎𝑢′ =  1  𝑜𝑛 0 ,1   , 𝑢 0 =  0 , 𝑢 1 =  0                                                                    (22) 

 

The exact solution of (22) is 

𝑢 𝑥 = 𝑥 −
exp  −

1−𝑥

𝜖
 −exp (

−1

𝜖
)

1−exp (
−1

𝜖
)

(23) 

Approximating the derivatives with finite differences 

 

−𝜖
𝑢𝑖+1−2𝑢𝑖+ 𝑢𝑖−1

 exp  
−ℎ
𝜖  − 1 ℎ

−1
𝜖

 + 𝑎
𝑢𝑖+1 −𝑢𝑖

ℎ
= 1                                                                   (24) 

𝑢𝑖+1−2𝑢𝑖+ 𝑢𝑖−1

 exp  
−ℎ

𝜖
 −1 ℎ

+  𝑎
𝑢𝑖+1−𝑢𝑖

ℎ
 = 1(25) 
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𝑢𝑖+1 − 2𝑢𝑖 +  𝑢𝑖−1 + 𝑎  exp  
−ℎ

𝜖
 − 1  𝑢𝑖+1 − 𝑢𝑖 =  exp  

−ℎ

𝜖
 −  1 ℎ                       (26) 

 

Arranging the coefficients of the same indices gives 

 

(1 + 𝑎 exp  
−ℎ

𝜖
 − 1))𝑢𝑖+1 +  (−2 − 𝑎(exp  

−ℎ

𝜖
 − 1))𝑢𝑖  +  𝑢𝑖−1 = [exp  

−ℎ

𝜖
 − 1]ℎ                                       

(27) 

 

In this article, in all experiments of MATLAB coding the value of ais considered as 1. 

The comparison of numerical solution of the discretized equation (27) obtained by non-standard finite difference 

method for several values of ϵ with exact solution has been shown graphically. 

 

Example 2:  

 

𝜖𝑢′′ +  𝑢′ =  2𝑥𝑜𝑛 0 ,1   , 𝑢 0 =  0 , 𝑢 1 =  0 (28) 

The exact solution is  

𝑢 𝑥 = 2𝜖𝑥 + 𝑥2 + 
((2𝜖+1)(exp  

−1

𝜖
 −exp   

𝑥−1

𝜖
  )

(1−exp  
−1

𝜖
 )

                                                                       (29)                                                                         

−𝜖
𝑢𝑖+1−2𝑢𝑖+ 𝑢𝑖−1

 exp  
−ℎ
𝜖  − 1 ℎ

−1
𝜖

 +  
𝑢𝑖+1 −𝑢𝑖

ℎ
= 2𝑥𝑖                                                                                           (30) 

𝑢𝑖+1− 2𝑢 𝑖  + 𝑢𝑖−1

 exp  
−ℎ

𝜖
 − 1 ℎ

 +  
𝑢𝑖+1 −𝑢𝑖

ℎ
 = 2𝑥𝑖                                                                                                 (31) 

 

Arranging the coefficients of the same indices gives 

(exp  
−ℎ

𝜖
 −  1))𝑢𝑖+1 +  (−1 − exp(

−ℎ

𝜖
))𝑢𝑖 +  𝑢𝑖−1 = 2. 𝑖. ℎ. ℎ[exp  

−ℎ

𝜖
 − 1]                      (32) 
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The comparison of numerical solution of the discretized equation (32) obtained by non-standard finite 

difference method for several values of ϵ with exact solution has been shown graphically. 
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4.2 NumericalSolution of Convection Diffusion Problem with Standard Finite Difference Method 

In this section we found the numerical solution of convection diffusion problem using central and 

backward difference schemes. We have chosen the same problem for the sake of comparison. 

i.e,−𝜖𝑢′′ +  𝑎𝑢′ =  1   
 

4.2.1 The Solution with Central Difference Scheme 

−𝜖
𝑢𝑖+1 − 2𝑢𝑖 +  𝑢𝑖

ℎ2
+  𝑎

𝑢𝑖+1 −𝑢𝑖

2ℎ
= 1 

 

 
−𝜖+𝑎ℎ

ℎ2  𝑢𝑖+1 +   
2𝜖

ℎ2 𝑢𝑖 +   
−𝜖−𝑎ℎ

ℎ2  𝑢𝑖−1 =  1 (33) 

 

Now let us consider the numerical solution of equation (33) for different values of ϵandcompare with 

the exact solution as follows. 
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4.2.2 .Solution With Back Ward Difference Scheme 

 

−𝜖
𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖

ℎ2
+  𝑎

𝑢𝑖−𝑢𝑖

ℎ
= 1 

 

 
−𝜖

ℎ2
 𝑢𝑖+1 +  

2𝜖

ℎ2
+  

𝑎

ℎ
 𝑢𝑖 +  

−𝜖

ℎ2
−

𝑎

ℎ
 𝑢𝑖−1 =  1 
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From the figures (8 - 15), we observed that the back ward discretization of the convective term of the 

one dimensional convection diffusion problem is more stable than the central difference approximation of the 

convective term of the one dimensional convection diffusion problem. 

 

V. Comparative Study of Non-Standard and Standard Finite Difference Methods. 
In this section the performance of standard and non-standard finite difference schemes are compared. 

The performance of the scheme was evaluated by comparing the result with exact solution. As discussed earlier 

the back ward discretization of the convective term of the one dimensional convection diffusion problem is 

more stable than the central difference approximation of the convective term of the one dimensional convection 

diffusion problem. So the performance of the non-standard finite difference scheme is compared with back ward 

difference approximation. 

The comparison of numerical solution obtained by non-standard finite difference method for several 

values of ϵ and the solution obtained by back ward difference approximation, with exact solutions is given in 

tabular form and has been shown graphically. We also plotted the graph of exact solution for different values of 

ϵ. 
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Numerical Solution Of Convection Diffusion Problem Using Non-Standard Finite Difference Method  

DOI: 10.9790/5728-12030494109                                       www.iosrjournals.org                                   106 | Page 

 
 

 
 

 
 

We have also shownthat the comparison of the errors of standard and non-standard finite difference 

schemes of the numerical solution of example 1 for several values of ϵ and different step lengths graphically. 
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The comparison of numerical solution obtained by non-standard finite difference method for several 

values of ϵ and the solution obtained by back ward difference approximation, of example 2 with exact solutions 

has been shown graphically.  

 

 
 

The following figures shows the comparison of absolute errors of example 2 for different step lengths and ϵ. 
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VI. Conclusion 
Non-standard and standard finite difference schemes are applied to find the numerical solution of 

example 1 and 2at differentstep lengths for different values of small parameter ϵ. Numerical solutions are 

summarized in the tables and the comparison has been shown in figures.From the figures 12, 13, 14 and 15, we 

observed that the back ward discretization of the convectiveterm of the one dimensional convection diffusion 

problem is more stable than thecentralapproximation of the convective termof the one dimensional convection 

diffusionproblem. Therefore we compared the backward scheme with NSFD. 

From the figures 1-7, we observed that even if the small parameter ϵgets smallerand smaller, the 

nonstandard finite difference scheme performed well and there is no oscillations observed so that itis stable on 

the given domain.It is also observed fromthe tables,eventhough the standard finite difference methodyield good 

result when the small parameter ϵ large enough, the non-standard finitedifference scheme perform better than 

the standard finite difference method. The graphs(figure 23 and 27) of the errors shows that the error of the 

standard finite differencescheme increases as the value of the small parameter ϵdecreases and the error plots 

shows that instability of the numerical scheme for different values of n. The error plots (figures 20-27) ofnon-

standard finite scheme shows that the error decreases as the value of n increasesthis shows that the scheme is 

dynamically consistent and it is stable for all values of ϵ. From all the tables and graphs we conclude that the 

non-standard finite difference scheme is more powerfulthan the standard finite difference method. 
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