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Abstract: In this paper we are interested to the estimation of the mean   of a multivariate normal distribution 

 pp INX 2,~   in 
p , by a shrinkage estimators deduced from the empirical average estimator. We 

study bounds and limits of risk ratios of some minimax shrinkage estimators in the both cases 
2  known and 

unknown. We show that the limit of risk ratios of polynomial estimator, estimator proposed by T.F. Li and W.H. 

Kuo [9] and the estimator proposed by D. Benmansour and T. Mourid, [3] to the maximum likelihood 

estimator X  tend to values less than one.  

Keywords: James-Stein estimator, multivariate normal distribution, non-central chi-square distribution, 

quadratic risk, shrinkage estimator. 

 

I. Introduction 
        Since paper of C. Stein [11], many studies were carried out in the direction of shrinkage estimators of the 

mean   of a multivariate Gaussian random variable  pp INX 2,~   in 
p . In these works, one has 

estimated the mean   of a multidimensional Gaussian distribution  pp IN 2,  in 
p by shrinkage 

estimators deduced from the empirical average which are better in quadratic loss than the empirical average. 

 

       More precisely, if X represents an observation or a sample of multidimensional Gaussian 

law  pp IN 2, , so the aim is to estimate   by an estimator   relatively at the quadratic loss function : 
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. is the usual norm in
p .  We associate his risk function : 
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      W. James and C. Stein [8] introduced a class of James-Stein estimators improving the maximum likelihood 

estimator X0 , when the dimension of the space of the observations p 3 , noted : 
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      A.J. Baranchik [1] proposed the positive-part of James-Stein estimator dominating the James-Stein estimator 

when 3p , noted : 

X
X

p
JS 


























 


2

2
1,0max  in the case where 

2  is known, 

 

 
X

Xn

Sp
JS 

































2

2

2

2
1,0max  in the case where 

2  is unknown. 

       G. Casella and J.T. Hwang [5] studied the case where 
2  is known  12   and showed that if the limit of 

the ratio 
p
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,  when p tends to infinity is a constant 0c , then 
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Thus they showed the stability of the dominating of James-Stein estimator and its positive-part, to the maximum 

likelihood estimator, when the dimension of space parameter p  tends to infinity. 

 

           Li. Sun [13] has considered the following model :    2

j

2 ,~,  Ny jij  ni ,...,1  , 

mj ,...,1 where   jijyE   for the group j  and var
2)( ijy is unknown. The James-Stein estimators 

are written in this case  
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       D. Benmansour and A. Hamdaoui [2] are interested the case where 
2  is unknown. We showed that if 
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, then the risk ratio of James-Stein estimator 

 JS to the maximum likelihood estimator 

X , tends to the value 
c

c
n
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 when p tends to infinity and n  is fixed. Under the same condition 

namely c
p
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, authors showed that the risk ratio of James-Stein estimator

 JS to the maximum 
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likelihood estimator X , tends to the value 
c

c

1
 when n  and p  tend simultaneously to infinity. They also 

found the same results for the positive-part of James-Stein estimator. 

 

         Moreover,  A.  Hamdaoui and D. Benmansour [7] studied the behaviour of risk ratios of general class of 

shrinkage estimator proposed by D. Benmansour and T. Mourid [3] given by 

 XXSlX JSll JSJS

22
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   , in the case where
2 is unknown. Then, they showed that 

if )0(lim
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, tend a value less then 

1, when n  and p  tend simultaneously to infinity, provided the function   satisfies certain conditions. 

When the dimension p is moderate, A.C. Brandwein and W.E. Strawderman [4] considered the following 

model    22
~, UXfUX  , where pX  dimdim  and kU dim . The classical example 

of this model is, of course, the normal model of density
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  dominate X , so that  is minimax, provided the function g  satisfies certain 

conditions. 

       Y. Maruyama [10] has also studied the minimaxity of shrinkage estimator when the dimension of 

parameter’s space is moderate. Then he considered the following model : ),(~ dd INz   and the so called  -

norm given by : 
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        In this paper, by taking the same model, namely  pp INX 2,~  , our aim is :  

Firstly, when 
2 is known, we show the same results linked of risk ratios of James-Stein estimator, obtained in 

G. Casella, and J.T. Hwang  [5], for two classes of shrinkage estimators dominating the James-Stein estimator, 

so the first class is polynomial estimators proposed by T.F. Li and W.H. Kuo [9] and the second is the class of 

estimators proposed by D. Benmansour and T. Mourid [3]. 

 Secondly, we give another proof different to that given in A. Hamdaoui and D. Benmansour [7], which shows 

the stability of the minimaxity of two classes of estimators dominating the James-Stein estimator, when the 

dimension p of the parameter space and the size n  of the sample, tends simultaneously to infinity. 

 

       In Section 2, we recall two essential results obtained in the paper of D. Benmansour and A. Hamdaoui [2]. 

First, we shown that under the condition )0(lim
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c

c
n





1

2

2

 when p  tends to infinity and n  fixed. 

The second result indicates that under the same condition )0(lim
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estimator 
 JS , to the maximum likelihood estimator X , tends to the value 

c

c

1
, when n  and p  tend 

simultaneously to infinity. 

 

In Section 3, we give main results. In the first part of this Section, we show the same results obtained 

by G. Casella, and J.T. Hwang  [5], (respectively by  D. Benmansour and A. Hamdaoui [2]), according to the 

case  where 
2 known (respectively

2  unknown), for the class of polynomial estimators proposed by T.F. Li 

and W.H. Kuo [9]. The same results are proved in the second part of this section, for the class of estimators 

proposed by D. Benmansour and T. Mourid [3]. Thus, we give another proof different to that given in A. 

Hamdaoui and D. Benmansour [7], which shown the stability of the minimaxity of both classes of estimators, 

cited as above, when the dimension p  of the parameter space and sample size n , tends simultaneously to 

infinity. 

 

       In section 4, we give a graphic illustration of different risk ratios for various values of n  and p . An 

appendix is given at the end of this paper. 

 

II. Preliminary 

Let us recall that if  pp INX 2,~  , where the parameter 
2  is unknown, the risk of the 

maximum likelihood estimator X is 
2p , and the form of James-Stein estimator is                                          
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P  being the Poisson distribution of parameter 
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III. Main results 
In the next we prove the main results of this paper. At first we show that the limit of risk ratio of 

estimator proposed by T.F. Li and W.H. Kuo [9], tend to )1(
1


c

c
, when p  tends to infinity in the case 

2  

known and when n  and p  tend simultaneously to infinity in the case 
2  unknown. Secondly, we show the 

same results for the class of estimator proposed by D. Benmansour and T. Mourid [3]. 
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3.1. Family of Tze Fen Li and Wen Hou Kuo 

  known : Let  pp INX ,~  , and for all r  
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the inequality (3.7) comes from the Lemma 3 and the formula (3.3). Hence 
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Proposition 7 The risk function of the estimator 
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On the other hand, from to the proposition 7, we have 
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According to the formula (5.1) of lemma 9 in the appendix and the fact that 
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Using the Lemma 9 in the appendix, the independence of two random variables X and 
2S , and the fact 
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From G. Casella and J.T. Hwang  [5], we have 
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IV. Simulation results 

We illustrate graphically in what follows the risk ratios: 
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Fig.1 Graph of risk ratios 
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Fig.2 Graph of risk ratios 
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V. Appendix 

Lemma 9 (G.  Casella and J.T.  Hwang [5]). For any real function h  such as       22

qqhE  exist, we 

have 
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VI. Conclusion 

In context of study of asymptotic behaviour of the risk ratios of shrinkage estimator of the mean   of a 

multivariate Gaussian random  pp IN 2, in
p . G. Casella and J.T. Hwang [5], studied the case where 
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when p  tends to infinity and n  fixed in the one hand, and in the other hand, they showed that in the same 

condition, namely )0(lim
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, the risk ratios 
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 tend to 
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c
 when 

p  and n tend simultaneously to infinity, without assuming any order relation or functional relation between p  

and n . 

          In our work by taking the same model  pp INX 2,~  , we study the asymptotic behaviour of the risk 

ratios of some minimaxs shrinkage estimators, then we show that the limit of risk ratios of polynomial 

estimator, estimator proposed by T.F. Li and W.H. Kuo [9] and the estimator proposed by D. Benmansour and 

T. Mourid [3], to the maximum likelihood estimator, tend to values less than one. 

 

An idea would be to see whether one can obtain similar results of the asymptotic behaviour of risk 

ratios in the general case of the symmetrical spherical model, for general classes of shrinkage estimators. 
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