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Abstract: Som [11 ] establishes a common fixed point theorem for R-weakly Commuting mappings in a Fuzzy 

metric space.The object of this Paper is to prove some fixed point theorems for occasionally Weakly compatible 

mappings by improving the condition of  Som[11 ]. 
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I. Introduction 
 Zadeh’s [ 13] introduction  of the notion of Fuzzy set in 1965 laid the  foundation of  Fuzzy 

mathematics . George and Veeramani [4 ] modified the  concept of Fuzzy metric space introduced by Kramosil   

and Michalek[8 ]in 1975.Vasuki [12 ] and Singh and Chauhan[9 ] introduced  the concept of  R-weakly 

commuting and compatible maps respectively 

    In Fuzzy metric space.Cho[2,3 ] introduced the concept of compatible maps    Of  type (α) and 

compatible  maps of  type (β) in Fuzzy metric space.   Singh et. Al.[ 10 ] proved Fixed point theorems in a 

Fuzzy metric space.   Recently in 2012 Jain et. al. [6 ]proved various Fixed point theorems usingThe  concept of  

Semi compatible mapping. In  this paper we have used theConcept of  Occasionally weakly compatible  

mappings to prove further Results. 

 

II. Preliminaries and Definations 
Definition 2.1 [12 ]  Let X be any set .A Fuzzy set A in X is a  function  with  

domain X and values in [0,1]. 

Definition2.2[4 ]  A binary operation *: [0,1]× [0,1]-→[0,1] is called a continuous  t- norm if an abelian 

topological  monoid with unit  1 such  that a*b≤c*d whenever a≤c  and  b≤d ,for all a,b.c,d in [0,1]. 

Definition2.3[4 ] The triplet (X,M,*) is said to be a Fuzzy metric space if, X is an arbitrary set,* is a continuous 

t- norm and M is a Fuzzy set on X×X×[0,1) 

Satisfying  the following conditions ; for all x,y,z in X and s,t>0, 

(i) M(x,y,0)=0 ,M(x,y,t)>0; 

(ii) M(x,y,t)=1 for all t>0 if and only if x=y, 

(iii) M(x,y,t)=M(y,x,t), 

(iv) M(x,yt)*M(y,z,t)≤M(x,z,t+s) 

(v) M(x,y,. ): [0,∞)    [0,1] is left continuous. 

(vi) M(x,y,t)=1. 

        It is important to note that every metric space (X,d) induces a Fuzzy metric space (X,M,*) where  a *b 

= min{a,b} and  for all a,b єX 

    We have M(x,y,t)=t/t+d(x,y), for all t>0, and M(x,y,0)=0, so called the 

           Fuzzy metric space induced by the metric d. 

  Definition2.4 [4 ] A sequence {xn} in a Fuzzy metric space (X,M,*) is  called  

   a Cauchy sequence if , limn→∞M(xn+p, xn,t)=1 for every  t>0  and for each p>0. 

   A Fuzzy metric space (X,M,*) is Complete if , every Cauchy sequence in X  

          Converges in X. 

 Definition2.5[4 ] A sequence {xn} in a  fuzzy metric space (X,M,*) is said to  be  Convergent to x in X if , lim 

n→∞M(xn,x.t)=1, for each t>0. 

 

Definition2.6 [1] Self mappings  A and S of a Fuzzy metric space (X,M,*) are said to be Compatible if and only 

if M(ASxn,SAxn,t)→1 for all t>0, whenever  

{xn} is a sequence in X such that  Sxn, Axn→p for some p in X as n→∞., 
Definition2.7[ 7]   Two self maps A and S of a Fuzzy metric space (X,M,*) are  

Said to be Weakly Commuting if  M(ASx,SAx,t) ≥  M(Ax,Sx,t) for every xєX. 
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Definition2.8 [7   ]  Two self maps A and S of a Fuzzy metric space  are  R-Weakly Commuting provided there  

exist some  positive real number R such 

That M(ASx,SAx,t)≥ M(Ax,Sx,t /R) for all xєX. 

Definition 2.9 [7 ]  Self maps A and  S of  a Fuzzy metric space (X,M,*) are said to be Weakly Compatible if  

they commute at their coincidence points, 

if, AP=SP for some pєX then ASp=SAp. 

Definition 2.10[ 7  ]   Self maps A and S of a Fuzzy metric space (X,M,*) is  

said to be Occasionally weakly compatible if  and only if there  is a point  x in X which is coincidence point of 

A and S at which A and S commute. 

Lemma 2.1 [5  ]  Let (X,M,*) be a Fuzzy metric space . Then for all x,y є X  

M(x,y,.) is  a non – decreasing  function. 

Lemma 2.2 [ 2 ]  Let (X,M,t)  be a Fuzzy metric space . If there exists kє(0,1)  such that for  all x,y∈ X 

,M(x,y,kt) ≥ M(x,y,t)  , for all t>0 ,then x=y. 

Lemma 2.3 [ 10 ]  Let {xn} be a sequence in a Fuzzy metric space (X,M,*) . If  there  exists a number k є(0,1) 

such that M(xn+2 ,xn+1,kt)≥ M(xn+1,xn,t) , for all 

t>0 , and nєN. Then {xn} is a Cauchy sequence in X. 

Using  R-weak  Commutativily , Som [  ]  proved  the following results: 

Theorem  -     Let S  and T be two continuous self  mappings of a complete 

Fuzzy  metric space (X,M,*) . Let A be a self mapping  of  X satisfying  the  

Following  condition :   

(i) A(X) ⊂S(X) ∩T(X) 

(ii) (A,S)  and  (A,T)  are R- weakly commuting , 

(iii) M(Ax,Ay,t) ≥ r (Min{M(Sx,Ty,T),M(Sx,Ax,t),M(Sx,Ay,t),M(Ty,Ay,t) } 

For  all  x,y ∈X , where  r: [0,1]→[0,1] is a continuous  function  such that 

    ( iv)   r(t)>t,  for each t<1 and r(t)=1 for t =1. 

              Let the sequence {xn} and {yn} in X be such that {xn}→X and {yn}→y, 

              t>0 implices M (xn, yn,t )→M(x,y,t) . Then A,S,T have  a common  fixed  

               point  in X. 

 

III. Main  Results 
              Now we state and prove main theorem for occasionally weakly    compatible  mappings. 

Theorem 3.1 :  Let A,S,T be  self map on a complete  Fuzzy metric  space    (X,M,*) , where * is a continuous 

t- norm satisfying- 

(i) A(X) ⊆ S(X) ∩ T(X) 

(ii) The pair (A,S) and (A,T) are  occasionally weakly compatible, 

                (iii)     There  exists k ∈(0,1) such that , for all x,y∈ X and t>0, 

                          M(Ax,Ay,kt) ≥  Φ  ( Min { M(Sx,Ty,t), M(Sx,Ax,t),M(Sx,Ay,t), 

M(Ty,Ay,t)}), for all x,y ∈ X  and t>0 , where Φ: [0,1] →[0,1] 

Is a continuous function  such  that                                                

(iv)   Φ(t)≥t for each 0<t<1. 

          Then  A,S,T have a common fixed point in X. 

          Proof:   Let x0∈ X be any arbitrary point .   Since A(X)⊑ S X  and   
                         A(X) ⊆ T(X) , then there exists a point x1 ,x2 ∈ X  such that  

 

                  Thus we can construct sequence {xn} and {yn} in X such that 

                   Y2n+1=Ax2n=Tx2n+1   ,    y2n+2=Ax2n+1=Sx2n+2 ,  for  n=0,1,… 

                 Thus ,by inequality (iii) ,   

                M(y2n+1, y2n+2, kt ) ≥Φ(Min{M(Sx2n,Tx2n+1,t) , M(Sx2n,Ax2n,t), 

                                                M (Sx2n,Ax2n+1,t), M(Tx2n+1,Ax2n+1,t)}) 

                                              ≥Φ(Min{ M(y2n,y2n+1,t) , M(y2n,y2n+1,t), M(y2n,y2n+2,t),  

                                               M(y2n+1,y2n+1,t) }) 

              M(y2n+1,y2n+2 , kt)≥ Φ M( y2n, y2n+1,t) 

              Similarly ,  M(y2n+2, y2n+3, kt) ≥ Φ M(y2n+1,y2n+1,,t) 

              Now, generally 

             M(yn+1,yn,kt)≥ ΦM (yn,yn+!,t) 

              Therefore ,  M(yn+!,yn ,kt )   is an increasing sequence of  positive real   numbers  in    [0,1 ] and tends to 

limit  L≤ 1.  

     We claim that L=1 . if  L<1 , then  

    M(yn+!,yn, kt )> Φ ( M(yn , yn-1 , t ). On letting  n→∞ we get  
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   limn→∞ M (yn+! , yn ,kt ) ≥ Φ ( limn→∞ M( yn, yn-1 ,t ) ) 

   That is    L≥ Φ(L) >L 

   a contradiction . Now for any positive integer m , 

   M (Axn ,Axn+m ,kt ) ≥ M (Axn ,Axn+1 ,t / m )* M (Axn+1 ,Axn+2 ,t / m ) * … 

*M (Axn+m+1, Axn+p   t /m )                                    

>  (1-ε ) * (1-ε ) * … m – times =  1-ε 

  Thus ,   M (Axn ,Axn+m ,kt ) > 1-ε  , for all t >0. 

 Hence {Axn } is a Cauchy sequence in X. 

        Since X is complete  {Axn }→z1 ∈X. Hence the subsequences {Sxn} and {Txn} of  {Axn} also  converges 

to  z1 in X .  

We have also the following  subsequence , 

{Ax2n+1 }→ z1   ,  and    {Tx2n+1 }→ z1 .          

Since , A(X) ⊆ S(X) then exists a point  p∈ X such thatSp=z1  

Then by (iii) , we have  

M(Ap ,Axn ,kt ) ≥ Φ( Min { M (Sp,Txn,t ), M (Sp,Ap ,t ),M(Sp,Axn,t), M(Txn,Axn ,t)} 

On letting  n→∞ , we have 

M(Ap ,z1 ,kt ) ≥ Φ ( Min {( z1 ,z1 ,t ), M (z1 ,Ap, t) , M (z1 ,z1 ,t ), M ( z1,z1,t )}) 

                    ≥ Φ ( Min { 1, M (z1,Ap, t) ,1,1}) 

                     >M (z1 ,Ap ,t ) 

Which  gives , Ap=z1 

Therefore , Ap= z1= Sp 

Similarly , since A(X) ⊆ T(X) , there must exists a point  q ∈ X , such that 

         z1=Tq 

 Then by (iii), we have  

Aq= z1= Tq 

Hence ,  Ap=z1 =Sp= Aq = Tq. 

Since , (A,S) is Occasionally weakly compatible , therefore we have  

ASp = SAp  ⇒ Az1 =Sz1 

Similarly , (A,T) is Occasionally weakly compatible , then we have 

ATq = TAq ⇒ Az1 = Tz1 

Now ,by  (iii ) , we have  (  at  x=z1, y=x2n+1 ) 

M (Az1 ,Ax2n+1 , kt ) ≥ Φ(Min{M (Sz1 ,Tx2n+1 , t) , M (Sz1 ,Az1,t) , M (Sz1, Ax2n+1 ,t),   

                                          M( Tx2n+1 ,Ax2n+1 , t )}) 

M(Az1,Ax2n+1, kt) ≥ Φ(Min{M(Az1,Tx2n+1,t),M(Az1,Az1,t),M(Az1,Ax2n+1,t), 

                                    M(Tx2n+1,Ax2n+1,t )}) 

Taking the limit n→∞ , we have  

M (Az1,z1, kt) ≥ Φ( Min { M(Az1,z1,t),1,(Az1,z1,t),M(z1,z1,t)}) 

M(Az1, z1,kt) ≥ M(Az1,z1,t). 

Therefore by lemma  2.2  ,  we have  

Az1= z1 .Since  Az1=Sz1   and  Az1=Tz1 , 

Thus we have ,  z1=Az1=Sz1.=Tz1. 

Hence z1 is common fixed point of  A, S , and T. 

Uniqueness – Let z1 and z2 be two common fixed points of the maps A ,S , and T . 

Then , 

           z1=Az1=Sz1=Tz1    and    z2=Az2=Sz2=Tz2 

Now ,by  (iii), we have  ( at x=z1 , y=z2 ) 

M(Az1,Az2, kt) ≥ Φ ( Min { M(Sz1,Tz2,t),M(Sz1,Az1,t),M(Sz1,Az2,t),M(Tz2,Az2,t)}) 

M(z1,z2,kt) ≥ Φ ( Min { M (z1,z2,t),M(z1, z1,t), M(z1,z2,t),M(z2,z2,t)}) 

M(z1,z2,kt) ≥ Φ ( Min {  M(z1,z2,t),  1, M(z1,z2,t), 1}) 

M(z1,z2,kt) ≥Φ ( Min {M(z1,z2,t) }) 

Therefore , by lemma  2.2 ,   we  have ,  z1=z2 . 

Hence z is the unique common fixed point of  the three self maps A ,S and T. 

This completes the proof. 

 

IV.    Conclusion 
 Theorem   is a generalization of the result of Som [11]   in the sence that condition of  R-weakly 

commuting of the pairs of  self  maps has  been Restricted  to Occasionally weakly compatible self maps and the 

requirement Of  continuity is completely removed. 
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