Monetary Policy Instability in Nigeria: A Rational Expectation Approach

¹Onye, Kenneth Ugwu, ²Bassey, Godwin E., ³Daasi, Gibson L. K.

¹Department of Economics, Faculty of Social Sciences, University of Uyo, ² Ph. D, Department of Economics, Faculty of Social Sciences, University of Uyo ³Department of Banking and Finance, Rivers State Polytechnic, Bori

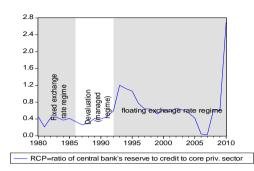
Abstract: This paper aims at evaluating the efficacy of monetary policy in controlling macroeconomic instability in Nigeria. The analysis performed is based on a rational expectation framework that incorporates the fiscal role of exchange rate. Using annual data spanning from 1980 to 2010, the study affirmsthat the effort of monetary policy in Nigeria aimed at influencing the finance of government fiscal deficit through the determination of the inflation-taxrate affects both the rate of inflation and the real exchange rate, thereby causing volatility in these rates. The policy import of the paper is that monetary policy should be set in such a way that the objective it seeks to achieve is well defined and articulated.

Keywords: Monetary policy; economic instability; Nigeria; rational expectation

I. Introduction

Generally,monetary policyseeksto achieve the basic macroeconomic goals through the attainment of economic stability. It, therefore, becomes obvious that instability in monetary policy in Nigeria cannot be appraised in isolation of macroeconomic instability. To suggest otherwise would imply a relegation or, worse still, ignorance of the essence of monetary policy. Macroeconomic instability can be regarded as a situation of economic malaise, where the economy does not seem to have settled in steady equilibrium position, thereby making it difficult to make predictions and good planning (Azam, 2001). As we see in Abiodun and Tokunbo(2006), this definition of macroeconomic instability suffers from lack of precision. The writers further note that monetary policy focuses precisely on theachievement of price stability, with respect to bothdomestic and external prices. While inflation rateis often used to track movement in domestic pricelevel, exchange rate is used as a policy tool forensuring external price stability and enhancing exportperformance (Caballero and Corbo, 1989).

This study examines the efficacy of monetarypolicy in controlling inflation rate and exchange ratevolatility or instability. As a means of achieving this, asimple monetary model with rational expectationthat emphasizes the fiscal role of the real exchangerate is used. The fiscal role of real exchange rate is particularly relevant to Nigeria since the bulk of government revenue is derived from foreign exchange earnings. The model is derived from the sunspot equilibria theory in which Woodford (1986), and Drugeon and Wignolle (1996) have demonstrated that macroeconomic instability is related to multiple (a continuum of) rational expectation equilibria. In the theoretical model, thelinks between high inflation and the joint volatility of the real exchange rate and inflation rate, as well as some aspects of government's fiscal and exchange rate policies are illustrated in a rational expectation equilibrium framework. In this model, inflation rate and the real exchange rates are jointly determined by the equilibrium of the model. This study, therefore, examines how inflation as a monetary policy target, impacts on relative prices and their instability/volatility, thereby impairing market signals.

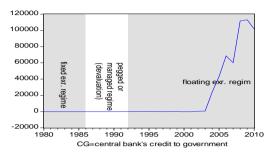
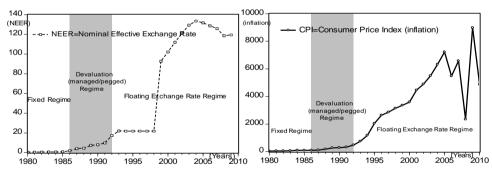

The rest of the study is divided into foursections. Section 2 provides an overview ofmonetary policy and macroeconomic instability in Nigeria. Section 3 presents the theoretical framework of the rational expectation model. Section 4 presents the empirical results and section 5 concludes the study.

II. Overview Of Monetary Policyand Macroeconomic Instability In Nigeria (1980 – 2010)

The role of the CBN has always been anchored on the use of monetarypolicy that is usually targeted towards theachievement of full-employment equilibrium, rapideconomic growth, price stability, and externalbalance. Over the years, the major goals ofmonetary policy have often been the two laterobjectives. Thus, exchangerate policy and inflation targeting have dominated CBN's monetary/rational expectationpolicy focus based on assumption that these areessential tools of achieving macroeconomicstability. Monetary policy in Nigeria has been carriedout through the portfolio behaviour of the CBNin terms of the control of its credit andmanagement of reserves (Abiodun and Tokunbo, 2006). Credit control measure such as the use of Open Market Operations (OMO) and selective credit are used to check movement in domestic price level, while the exchange rate policies such the fixed, managed and floating exchange rate regimes serve as measurefor

determining the competitiveness and currentaccount performance as well as foreign reserves. Figure 2.1 and figure 2.2 show the trends in some of the Central Bank of Nigeria's (CBN's) credit control measures in history.

Figure 2.1: CBN's reserves/domestic credit. Figure 2.2:CBN's credit to Government

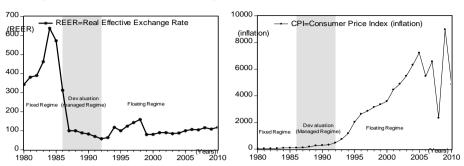

Figure 2.1 indicates that during the first half of the 1980s, CBN's reserves to domestic credit ratio witnessed continual decline. It, however, startedto increase from 1986 tillabout 1993. From late 1993, the ratio nose-dived but picked up by 2005. The trend in the ratio coincides with the three different exchange rate regimes, namely the fixed, managed/pegged and floating exchange rate regimes. The period 1980 to 1986 (which is the era of fixed exchange regime) was marked by overvaluation of domestic currency. Naira vis-à-vis other trading partners' currencies (especially US dollars). The first substantialincrease in reserves was during the devaluationyears (1986-1992). However, the devaluation was characterized by managed-float exchange rate regime. InMarch 1992-when the floating exchange rate was adopted by the merging of official exchange rate with the parallel market rate-there was an initialshock in the system and this affected the reservespositively. But this positive shock was not sustained as evidenced by the subsequent decrease in theratio. The decrease may be attributed to great hike in CBN's creditto the Federal Government. From figure 2.2, therewas a huge increase in the allocation of credit togovernment starting from about 2000. Fromfigure 2.3 below, there was an appreciation in nominaleffective exchange rate (NEER) between the Period 1980 and 1993. The NEER however remained relatively stable between the periods 1993 to 1996. Thereafter, it took a bullish trend, reaching a zenith in mid 1990s and declined thereafter. On theother hand, the general price level-proxied by the consumer price index (CPI)-is highly variegated. This has led to wide gyration and volatility (instability) in domestic prices. The trend of volatility in inflation is also buttressed in figure 2.3 as under:

Figure 2.3: Nominal Effective Exchange Rate(NEER) and Inflation (CPI), (1980-2010).

The floating exchangerate regime, starting from about 1992, brought about increase in therate of inflation with inflation reaching a peak of 72 percent in 1995 before declining to the pre-devaluation level. Similarly, there was a continuous real depreciation in the value of Naira against the value of major trading partners' currencies. This situation is depicted in figure 2.4 by the downward trend in the real effective exchange rate (REER).

Figure 2.4: Real Effective Exchange Rate (REER) and Inflation Rate (CPI).

The wide swings in the trend of REER above suggest that inflation-targeting of monetary policy will only createvolatility of both inflation rate and the REER.

III. Rational Expectation Model ofinflation And Exchange

Rate Instability

The theoretical framework linking therelationship between instability of REER and inflation rate adopted for this study drawsheavily from Azam (1999, 2001). In the model, international price of tradable goods in terms offoreign currency is equal to one, so that theirnominal price in domestic currency is e. Further, let us assume that quantity of money in the economy is M while the price level is P, and that the price level is an increasing (and linearly homogenous) function of P as the real exchange rate, which is an increasing (and linearly homogenous) function of P and of the price of tradable goods to the price of non-tradable goods. In order to effectively incorporate the fiscal role of exchange rate, government expenditures and revenues are split into two different categories, subject to how they are affected by the exchange rate. It is assumed that government expenditures are indexed on price level P, while its revenues (including foreign aid) are indexed on exchange rate. Therefore, let P represent the excess of expenditures over revenues indexed on P and P the excess of revenues over expenditures indexed on P and P the excess of revenues over expenditures indexed on P and P the excess of revenues over expenditures indexed on P and P the monetary financing of the overall deficit is given by:

$$dM/dt = pD-eF-----(3.1)$$

Equation 3.1 implies that the change in moneystock is used to finance fiscal deficits. If we denote the rate of inflation by $\mathbb{F} = \Delta \log p/dt$ and the rate of change in the local currency chosen by government as $d = \Delta \log e/dt$. d is known as the rate of crawl. In Nigeria the exchange rate regime chosen by government determines the rate of crawl; therefore it is assumed that d is controlled by government. Since the rational expectation hypothesis assumes private agents to have perfect knowledge about the market, this then indicates that they know d. The real rate of depreciation of the domestic currency is determined by the difference between the rates of change chosen by the government and the inflation rate, that is;

$$dq/dt = (d - T)q$$
 -----(3.2)

If we denote real money balances by m, then equation 3.1 can be re-written as:

$$dm/dt = D - aF - Tm$$
 -----(3.3)

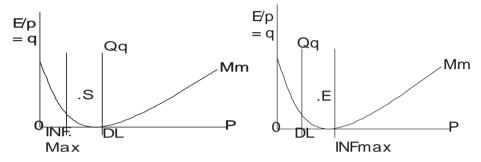
Assume that the demand for real moneybalances is determined as afunction of the expected rate of inflation $\mathbb{T}^{e}(\hat{a} \text{ La Cagan (1996)})$ by the function:

$$m = f(\mathcal{F}^e)$$
, where f'<0 -----(3.4)

Equation 3.4 holds under the assumption of rational expectation equilibria in which case $\mathcal{F}^e = \mathcal{F}$ Substituting equation 3.4 into 3.3 yields:

$$dF/dt = (1/f)dm/dt = [1/f][D-dF-Ff(F)]$$
 -----(3.5)

$$D-aF = \mathcal{F}f(\mathcal{F})$$
 -----(3.6)


This implies that inflation is stabilized as $(d\mathbb{F}/dt=0)$ for all pairs $\{q, p\}$ such that: from equation 3.6, it can be seen that theinflation financed real seigniorage represented by the left hand side of the equation, is a linear decreasing function of q. The negative slope of the function is reinforced by assuming that D and F to be a function of q, in which case it would be assumed that D' < 0 and F' > 0. The proceeds of the

inflation tax, represented by the right hand side of equation 3.6 is a non-monotonic concave function of p, according to the inflation-taxLaffer-curve mechanism (see Bruno and Fischer, 1990; Dornbusch and Fischer, 1993). The inflation-tax is maximized as the aggregate maximum of the product of expected and actual inflation rate. This gives the inflation-tax maximizing rate as:

$$\mathbb{F}^{\max} = \operatorname{agg.max}[\mathbb{F}.f(\mathbb{F})] \quad -----(3.7)$$

Figures 3.1a and 3.1b analyze the combined effectof the exchange rate dynamics contained inequation 3.2 using phase diagrams. In the phasediagrams, the locus of point such that $\Delta q/\Delta t=0$ is denoted Qq. Figure 3.1b represents the casewhere the chosen rate of crawl lies below theinflation-tax maximizing inflation rate, which connotes a saddle point with a zero-dimensional convergent sub-space. Then as there is no predetermined variable in the system, the economyjumps instantly at point E and stays there as long as the chosen rate of crawldL (=DL) is credible.

Figure 3.1a: dL lieabove ₹^{max}(= INF max). Figure 3.1b: INFmax lie abovedL

Thus, the real exchange rate and the inflation rateare uniquely determined by the chosen rate of crawl. From figure 3.1b, when the chosen rate of crawlis below the inflation-tax maximizing rate of inflation, there will exist a unique rational expectation equilibrium (E) that determines jointly therate of inflation and the real exchange rate. However, in figure 3.1a, there exists a distinct with the chosen rate of crawl dL which is **greater** than the inflation-tax maximizing rate \mathbb{T}^{max} (INF max). In this case, the steady-state is stable at point (S). See Woodford (1986), and Drugeon and Wignolle (1996) for an exposition. In the practical sense, the continuum of the rational expectations equilibria predicts a high-volatility for the variables in the system. Since the system has no anchor, the variables of the system become extremely unstable and jump from one trajectory to the other based on the response of private agents to information relevant to their expectations. Blanchard and Fischer (1989) also provide an elaborate theoretical exposition in the sunspot model that tries to capture this behaviour.

IV. Empirical Investigation

In the application of the theoretical framework (the sunspot theory), a search procedure method (a la Hendry) which allows us to move from general to specific, is employed (Banerjee et al., 1993). This enables us to arrive at a dynamic relationship between variables of the theoretical system as applied by Azam (2001). In the empirical analysis, the data used span over 1980 and 2010. First, an investigation of the time series properties of the variables is carried out, using the Augmented Dickey-Fuller (ADF) test. The ADF-test result in table 4.1 indicates that two of the variables (CG and RCP) in the empirical model are integrated of order zero, I (0). This means that CG and RCP are stationary at their actual levels.

1st difference **ADF**variables level Orderof integration CG -41451 Na I(0)-1.2445 -3.342 **CPI** I(1) $RC\overline{P}$ -3.098 I(0)na REER -1.3593 -3.9147 I(1)**NEER** -2.1354 -4.3065 I(1)

Table 4.1: unit root test result.

Note: 5% critical value= -2.8972, na means not applicable.

On the other hand, consumer price index (CPI) and both nominal effective exchange rate (NEER) and real effective exchange rate (NEER) are integrated of order one, I(I). This means that they are only stationary at their first difference. The variable RCP is used to capture the factors that determine the type of exchange rate policy measure adopted by government.

1.1 THE MODEL

Following Banerjee et al (1993), the model for the empirical analysis of the volatility of real effective exchange rate (REER) is specified as follows:

REER = f[NEER, RCP, RCP(-1), CPI(-1)] -----(4.1)

In econometric form, equation 4.1 can be restated as follows:

 $\triangle logREER = \beta 0 + \beta 1 \triangle logNEER + \beta 2 logRCP + \beta 3 RCP(-1) + \beta 4 CPI(-1) + Ui$ -----(4.1a)

Where: RCP=ratio of CBN's Reserve to CBN's credit to private sector; REER=Real Effective Exchange Rate; NEER= Nominal Effective Exchange Rate; CPI= Consumer Price Index; (-1) means a first lag operator;

 Δ mean a first difference operator. **Note**: The first difference is used to ensure stationarity while the natural log is used to correct possible non-linearity.

In line with the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model suggested by Ender (1995), the source of instability of REER can be investigated by testing whether inflation (CPI) is the major cause of volatility in the stochastic process of the relationship in equation 4.1. Thus, the source of volatility in REER can be tracked using equation 4.2 as follows:

 $RES^2 = f[CPI, RES^2(-1)]$ -----(4.2)

In econometric form, equation 4.2 can be restated as follows:

 $RES^2 = \alpha 0 + \alpha 1 \Delta log CPI + \alpha 2RES^2(-1) + Ui ----(4.2a)$

Where: RES^2 = squared residual from equation **4.1a** and CPI= Consumer Price Index

In addition, in line with the model specified by Abiodun and Tokunbo (2006), the impact of inflation on the volatility of its own rate can be investigated using equation 4.3 as follows:

CPI = f[NEER, REER, RCP, CPI(-1), CG] -----(4.3)

By restating equation 4.3 in econometric form, we have equation 4.3a as follows:

 $\Delta logCPI = \phi 0 + \phi 1 \Delta logNEER + \phi 2 \Delta logREER + \phi 3 logRCP + \phi 4 CPI (-1) + \phi 5 logCG + Ui --- (4.3a)$

Where CG=Credit to Government and NEER, REER, RCP and CPI are as earlier defined.

Finally, in order to isolate the *actual impact* of inflation on the volatility of its own rate, we perform the GARCH test similar to that of equation 4.2 by using equation 4.4 as follows:

 $RES^2 = f[CPI, RES^2(-1)]$ -----(4.4)

Restating equation 4.4 in econometric form, we have equation 4.4a as follows:

 $RES^2 = \pi 0 + \pi 1 \Delta log CPI + \pi 2 RES^2 (-1) + Ui - (4.4a)$

Where: RES^2 = squared residual from equation **4.3a** and CPI= Consumer Price Index

4.2 EMPIRICAL RESULTS

In the empirical analysis, the volatility of REERis examined through equation 4.1a. The result showsthat an appreciation in NEER leads to appreciation in REER and vice versa. It also shows that increase in the reserve will lead to decrease (appreciation) in REER. This is reflected by the negative sign of RCP in table 4.2.

Table 4.2: summary of result from equation 4.1a

	Δlog	log	ΔlogCPI	RCP(-		
variable	NEER	RCP)	1)	CPI(-1)	
Coefficient	0.213	-0.212	-0.03	0.214	-0.03	
S.E	29.84	10.7	7.10	3.15	5.02	
t-value	5.52	3.72	-4.71	4.21	-4.71	
R ² =0.47; ARCH(2)=14.5; F=12.98; D.W=1.87						

However, one year-lagged value of RCP is positively related to REER. This means that it is actually the increase in past values of RCP that indicates the willingness of government to depreciate the naira. Further, table 4.2 shows that inflationrate is a very significant causal factor of volatility and instability in REER. Increase in current periodinflation rate corresponds to a decrease (appreciation) in REER, while increase in oneperiodlagged value of inflation leads to increase (or depreciation of REER).

In equation (4.2a) we analyze the actual source of instability of REER by testing whether inflation is the major cause of volatility in the stochastic process of the relationship in equation (4.1a). To fix this, we apply the GARCH process suggested by Enders (1995). The result in table 4.3 shows that inflation is actually the major source of volatility of REER in equation (4.1a).

Table 4.3: summary of result from equation 4.2a

variable	ΔlogCPI	RES ² (-1)		
Coefficient	0.002	0.35		
S.E	0.23	0.08		
t-value	1.99	2.6		
N=84; R2=0.19; F=8.6; LM- F=2.73				

 RES^2 = the square of residual from equation 4.1a

Therefore, the result is indicative of the fact that the higher the level of inflation the more will the real exchange ratedepreciate. Lastly, we investigate how inflation impacton the volatility of its own rate through changes in periodic values of the CPI. Table 4.4 shows that depreciations (i.e increase) in both NEER and REER raise the level of CPI. An important finding from equation (4.3a) is the significant impact of the past value of CPI on its variation.

Table 4.4: summary of result from equation 4.3a

variable	ΔlogNEER	ΔlogREER	logRCP	logCG	CPI(-1)
Coefficient	0.315	0.212	-0.174	0.119	0.341
S.E	11.76	0.77	0.23	0.93	0.87
t-value	0.432	2.79	-2.33	2.14	5.65
R2=0.53: ARCH(2)=15.75: F=13.08: D.W=2.13					

In order to isolate the actual impact of CPI on theinstability of inflation, we perform a GARCH testsimilar to that of equation (4.2a). The result of thevolatility test shown in table 4.5 indicates that changes in CPI are positively related to the volatility of the CPI in equation 4.3a.

Table 4.5: summary of result from equation 4.4a

variable	ΔlogCPI	RES ² (-1)		
Coefficient	0.453	0.07		
S.E	0.94	0.732		
t-value	5.33	1.94		
N=82; R2=0.35; F=4.47; LM- F=2.43				

Where RES2 = the square of residual from equation 4.3a

Overall, the results of the different analyseshave shown that inflation rate affect changes inreal exchange rate as well as its ownvolatility. Also, the effort of monetary authority in Nigeria at using its credit and reserve astools in checking inflation and exchange rate instability has affected the volatility of the two variables over the years. Thus, monetary policy, if not well targeted could yield negative results. This is because the speculative activities of private agents frustrate monetary policy efforts. Just as improper inflation targeting could affect real exchange rate volatility, exchange rate intervention may induce inflation (Galati, 2000). Thus, monetary policy should be set in such a way that the objective it seeks to achieve is well defined and in such a way that efforts at stabilizing exchange rate willnot generate inflation and vice versa.

V. Conclusion

This paper has investigated how monetarypolicy objective of controlling inflation rate andintervention in the financing of fiscal deficits affect the variability of inflation and real exchangerate. The analysis is done using a rational expectation framework that incorporates the fiscal role of exchange rate. The paper has shown that the effort of monetary policy at influencing the finance of government fiscal deficit through the determination of the inflation-tax rate affects both the rate of inflation and the real exchange rate, thereby causing volatility in their rates. The paperrevealed that inflation affects volatility of its ownrate as well as the rate of real exchange. The policy import of the paper is that monetary policy should be set in such a way that the objective it is toachieve is well defined.

References

- [1] Abiodun, O. F., & Tokunbo, S. O. (2006). Monetary Policy and Macroeconomic Instability in Nigeria: A Rational Expectation Approach. *Journal of Social Sciences*, 12, 93-100.
- [2] Azam, J. -P. (1999). Institutions for Macroeconomic Stability in Africa. Journal of African Economies, 8 (2), 8-31.
- [3] Azam, J. –P. 2001. Inflation and Macroeconomic Instability in Madagascar. African Development Review, 132. December: 175-201.
- [4] Blanchard, O. J.,&Fischer, S. (1989). Lectures on Macroeconomics. Cambridge, MIT Press.
- [5] Caballero, R. J.,&Corbo, V.(1989). The Effect of RealExchange Rate Uncertainty on Exports: EmpiricalEvidence. World Bank Economic Review, 3, 263-278.
- [6] Dornbusch, R.,&Fischer, S. (1993). Moderate Inflation. World Bank Economic Review, 7, 1-44.
- [7] Drugeon, J. -P.,&Wignolle, B. (1996). Continuous-Time Sunspot Equilibria and Dynamics in a Model of Growth. Journal of Economic Theory, 69: 24-54.
- [8] Enders, W. (1995). Applied Econometrics Time Series. New York, John Wiley and Sons.
- [9] Galati, G. (2000). Forex Trading Volume, Volatility and Spreads in Emerging Market Countries. BISQuarterly Review, November. 46: 107-138
- [10] Woodford, M. (1986).Stationary Sunspot Equilibrium in a Finance Constrained Economy. Journal of Economic Theory, 40, 128-137.

APPENDIX 1
DATA FOR REGRESSION ANALYSIS

year	CP	CG	CPI	NEER	R	LNEER	LCPI	RCP	REER
1980	7190.9	3.59	42.3	0.5464	3268	-0.6044	3.744787	0.454463	343
1981	9654.2	6.61	51.2	0.61	2057	-0.4943	3.93574	0.213068	381
1982	11371.5	10.53	55.1	0.6729	4879.2	-0.39616	4.00915	0.429073	390
1983	12353.9	15.82	67.9	0.7241	5406	-0.32283	4.218036	0.437595	462
1984	12942	18.19	94.8	0.7649	4818.2	-0.26801	4.551769	0.372292	638
1984	13700.2	18.98	100	0.8938	5661.4	-0.11227	4.60517	0.413235	572
1986	17365	19.46	105.4	2.0206	5824.6	0.703394	4.657763	0.335422	313
1987	25476.1	22.27	116.1	4.0179	6659.6	1.390759	4.754452	0.261406	100
1988	29773.6	27.55	181.2	4.5367	9080	1.5122	5.199601	0.304968	100
1989	30942.8	18.32	272.7	7.3916	12712	2.000344	5.608372	0.410823	89
1090	36630.9	21.04	293.2	8.0378	14666	2.084155	5.680855	0.400372	83
1991	45325.2	38.49	330.9	9.9095	20722	2.293494	5.801816	0.457185	70
1992	61020.3	80.72	478.4	17.2984	35903	2.850614	6.170447	0.588378	58
1993	95285	189.75	751.9	22.0511	114542	3.093362	6.622603	1.202099	64
1994	122273.3	292.16	1180.7	21.8861	137113	3.085852	7.073863	1.121365	118
1995	175790	264.52	2040.4	21.8861	186994	3.085852	7.620901	1.063735	100
1996	233240	117.56	2638.1	21.8861	180280	3.085852	7.877814	0.772938	124
1997	276490	59.68	2863.2	21.8861	176928.8	3.085852	7.959695	0.63991	143
1998	352360	133.93	3149.2	21.8861	224202	3.085852	8.054904	0.636287	159
1999	455210	176.8	3357.6	92.6934	235250	4.529297	8.118982	0.516794	80
2000	596000	-110.2	3590.5	102.1052	366300	4.626004	8.186047	0.614597	81
2001	854990	-6.01	4458	111.9433	490207	4.717992	8.358901	0.573348	90
2002	955760	373.64	4894	120.9702	628718	4.795544	8.496378	0.65782	90
2003	1035380	552.6	5493.3	129.3565	642126	4.862572	8.611284	0.620184	85
2004	1186958	23759.5	6320.6	133.5004	650470	4.894104	8.751569	0.548014	88
2005	1906838	43301.8	7220.9	131.6619	808538	4.880237	8.884735	0.42402	100
2006	1877414	68595.8	5474	128.6516	80573	4.857108	8.607765	0.042917	107
2007	3889700	60126.4	6574	125.8331	100025	4.834956	8.790878	0.025715	105
2008	7201479	111601	2345.7	118.5559	4521790	4.775385	7.760339	0.627897	116
2009	5214703	113012	8976.8	119.453	3137240	4.782923	9.102399	0.601614	109
2010	2113107	101703	4865	na	5713150	na	8.489822	2.703673	118

Source: Nigerian Bureau of Statistics (NBS), Central Bank of Nigeria (CBN) Statistical Bulletin and Annual Reports (Various Issues), World Development Indicators (WDI-statistics) from World Bank.

Where: CP=credit to core private sector, CG=credit to government, CPI=consumer price index, NEER=nominal effective exchange rate, R=reserve of CBN, LNEER=log of NEER, LCPI=log of CPI, RCP=ratio of CBN's reserve to CBN's credit to core private sector, REER=Real effective exchange rate index (2005 = 100) from WDI.