
IOSR Journal Of Environmental Science, Toxicology And Food Technology (IOSR-JESTFT)

e-ISSN: 2319-2402,p- ISSN: 2319-2399. Volume 4, Issue 4 (May. - Jun. 2013), PP 75-80
www.Iosrjournals.Org

www.iosrjournals.org 75 | Page

Analysis of Captured Data on a Typical Tcp Connection

A. S. M indaud u
1
 and I . G. Sa idu

2

1 S o k o t o E n e r g y R e s e a r c h C e n t r e , U s m a n u D a n f o d i y o U n i v e r s i t y , S o k o t o .
2 D e p t . o f P h y s i c s , U s m a n u D a n f o d i y o U n i v e r s i t y , S o k o t o

Abs t rac t : Various data capture tools are in existence today for either intrusive or non-intrusive capturing of
data packets. The raw packet trace obtained with such capture tools can be used to determine a lot of

information concerning a connection. Usually the data capture tools give insight into the behaviour of the traffic

patterns, congestion window evolution and control. Through the possible analysis of the captured data, possible

areas of network improvement could be established. One of such capturing tools, Wireshark, was used to

capture some packets on an established TCP connection between a client with an IP address 192.168.0.140 and

a distant server having IP address 128.227.74.66. In this paper an analysis of the captured data is presented.

Phenomenon such as congestion window evolution in the connectionwasobserved on the time sequence graph

which also gave an indication of the lost packets in the transmission.These lost packets were identified through

the repeated ACKs on the relevant frames.With the captured data, the round trip time of 177ms was calculated,

and the average bottleneck bandwidth obtained was 91.97𝑀𝑏𝑝𝑠 which compared favourably with the expected

network bandwidth of 100 Mbps.In the captured data, a TCP-out-of-order packet was identified with a time
stamp of 2.245038 indicating a lost packet.

Keywords : TCP,congestion window, bottleneck bandwidth, round trip time,

I . I nt ro d uc t io n
 Wireshark, Earthreal, TCP dump etc. are some of the few examples of data capture tools from which

detailed analysis of a connection can be carried out. Using Wireshark several data packets were captured on a

TCP connection between a client on IP address 192.168.0.140 in a network located at the University of

Plymouth in the UKand a server at the University of Florida in the USA on IP address 128.227.74.66.

TCP Connection Establishment and Closure
 In order to establish the TCP connection with the server and subsequently initiate data transfer, the

client sends a TCP segment referred to as the SYN segment to the server. At this point in time no application-

layer data is sent along with the packet number 1, but the TCP segment sent also has a sequence number 0

which is chosen by the client. This is seen in packet number 1 in Trace 1. So, by this time the server has the

SYN and the Seq. number from the client. After receiving the TCP SYN segment from the client, the server then

sends a packet to the client (i.e. packet number 2 in Trace 1). This time the server sends its initial sequence

number which is 0. The ACK flag is set to 1 implying that in the next packet coming from the client; it is

expecting a sequence number 1. At this point also, no application-layer data is sent.

 The client having received the SYN ACK sends another TCP segment to the server. This time the

server increments its sequence number to 1 and also sets ACK to 1, thus signifying that the TCP connection has

been established. Up to this time, however, there is still no application-layer data sent.
 With these first three packets, the TCP connection between the server (IP 128.227.74.66) and the client

(IP 192.168.0.140) is established. It is noted from the trace that both the client and the server set their receive

windows to 65535 bytes.

The first three packets of the capture in Trace 1 describe the TCP connection set up. With the transmission of

the first three packets, the client and server start exchanging data. The client first requests for data with the

HTTP GET seen in packet 4; and this comes about 171 milliseconds after the first packet was sent.

 Closing a TCP connection could be initiated by either the server or the client. For the captured traffic

being analysed, the TCP closing session is initiated by the client in packet number 802 (see Trace 1) In this

packet a FIN segment is sent by the client to the server. The ACK is set to 594424 and the sequence number is

102. After a round trip time of about 169.6milliseconds (i.e. 6.504665 − 6.335038), the server acknowledges

in packet number 803 with ACK number 103(i.e. acknowledging sequence number 102 by incrementing the
ACK to 103). With this acknowledgement, the connection is closed.

Analysis of Captured Data on a Typical Tcp Connection

www.iosrjournals.org 76 | Page

Trace1 - Relevant packets for the establishment and closing of the TCP connection

No. Time Source Destination Protocol Pktlen Info

 (bytes)

1 0.000000 192.168.0.140 128.227.74.66 TCP 62 hacl-qs> http [SYN] Seq=0 Win=65535 Len=0
MSS=1460

2 0.170360 128.227.74.66 192.168.0.140 TCP 60 http >hacl-qs [SYN, ACK] Seq=0 Ack=1

Win=65535 Len=0 MSS=1380

3 0.170402 192.168.0.140 128.227.74.66 TCP 54 hacl-qs> http [ACK] Seq=1 Ack=1 Win=65535 [TCP

CHECKSUM INCORRECT] Len=0

4 0.171422 192.168.0.140 128.227.74.66 HTTP 155 GET /abehnam/DSC01361.JPG HTTP/1.0

5 0.348079 128.227.74.66 192.168.0.140 TCP 1434 [TCP segment of a reassembled PDU]

.

.

.

.

 799 6.333002 192.168.0.140 128.227.74.66 TCP 54 hacl-qs> http [ACK] Seq=102 Ack=592942

Win=65535 [TCP CHECKSUM INCORRECT] Len=0

 800 6.333065 128.227.74.66 192.168.0.140 HTTP 1434 [TCP Out-Of-Order] HTTP/1.1 200 OK

(JPEG JFIF image)

 801 6.333086 192.168.0.140 128.227.74.66 TCP 54 hacl-qs> http [ACK] Seq=102 Ack=594424

Win=65535 [TCP CHECKSUM INCORRECT] Len=0

802 6.335038 192.168.0.140 128.227.74.66 TCP 54 hacl-qs> http [FIN, ACK] Seq=102 Ack=594424

Win=65535 [TCP CHECKSUM INCORRECT] Len=0

 803 6.504665 128.227.74.66 192.168.0.140 TCP 60 http >hacl-qs [ACK] Seq=594424 Ack=103

Win=65535 Len=0

Congestion Window Evolution

 The evolution of congestion windowstarts mainly with establishment of the TCP connection between

the sender and receiver. With this connection set up, the TCP sends the first segment into the network and waits

for an acknowledgement for it from the other end. Meanwhile, the initial congestion window is set to1 MSS

(Maximum Segment Size). If the acknowledgement of the first segment is received before its set time runs out,

then the congestion is increased by 1 MSS. Two segments are then sent and their acknowledgement is also

awaited. Similarly if the acknowledgement for these two segments is received before their timeouts, the

congestion window is increased by two MSS; one for each of the acknowledged segments, thus giving a total

size of 4 MSS for the congestion window. This process continues so long as the acknowledgements for sent

segments arrive before their timeout and a set congestion window threshold is not reached. So in theory, the

segments in the congestion window grow from 2 to 3,5,8,12,17, etc

It is pertinent to mention here that the congestion window is not something that could be read off in the captured

data. However, with the use of time-sequence graph, some deductions could be made for the congestion

window. The procedure described above is the theoretical expectation which does not necessarily happen all the

time in practice. For the captured traffic under analysis, the time sequence graph obtained is as shown in fig.1.

Fig. 1 - Time Sequence Graph (Stevens) for the captured data.Fig2 - Congestion window.

B

A
Cwnd 1

4 pkts

Cwnd2

5pkts

Cwnd3

8pkts

Cwnd4

10pkts

Cwnd 5

15pkts

Analysis of Captured Data on a Typical Tcp Connection

www.iosrjournals.org 77 | Page

It is seen that the graph initially rises somewhat exponentially before it later becomes linear. This is in

agreement with the description in Kurose and Ross (2001) that the congestion window grows exponentially

before the threshold is reached and thereafter grows linearly. This linear increase comes about as a result of the

TCP congestion avoidance phenomenon. As a result of the exponential growth of the congestion window, the

receive buffer gets filled up and packets sent are lost. At this point the congestion avoidance of the TCP comes

in to play and reduces the number of packets sent to linear.
 For the purpose of identifying the relevant segments in the congestion window the encircled part of the

graph marked A in fig.1 is enlarged as shown in fig. 2.

RTT and Bottleneck bandwidth

 Round trip time (RTT) is typically the time it takes a packet to be sent from a host to another, and for a

response to be received back at the originating host. Consider a simple network of two hosts A and B where a

packet from host A takes t1 seconds to reach host B and the acknowledgement from B takes t2 seconds to reach

A. The round trip time, in this case, is then t1+t2 seconds. Strictly speaking, the RTT is made up of various times

in the packet transmission scenario such as packet propagation delay, packet queuing delay and packet

processing delay (Kurose and Ross, 2001).

 The RTT could be determined in one of two ways; either taking the time from either client-server-client
transition or server-client-server. It is necessary, however, to ensure that the time stamps of matched SYN and

SYN ACK packets are used.

 For our captured traffic analysis, client-server-client is used to determine the RTT. A sent packet from

the client (IP 192.168.0.140) with “Next Sequence Number” 102 (i.e. packet no.4) is matched with a received

packet (no.5) from the server (IP 128.227.74.66) having “Acknowledgement Number” 102, so that the RTT is

the difference between the time stamps of the two packets. From the trace shown in Appendix A,

Time stamp of packet 4, t4 = 0.171422s and

Time stamp of packet 5, t5 = 0.348079s

Then, 𝑅𝑇𝑇 = 𝑡5 − 𝑡4 = 0.348079 − 0.171422 ≅ 𝟏𝟕𝟕𝐦𝐬

 To determine the bottleneck bandwidth, two data back-to-back packets have to be identified and used.
Loosely, the bottleneck bandwidth is the ratio of the packet length of the second packets to the difference of the

time stamps of the two packets. Several packets are used in computing the bottleneck bandwidth and then

averaged to obtain a more realistic value. Consequently, for the captured traffic the following back-to-back

packets are chosen for the computation of the bottleneck bandwidth.

 Pair 1; Packets 5&6 with corresponding time stamps,

t5=0.348079s & t6=0.348197s

 Pair 1; Packets 17&18 with corresponding time stamps,

t17=0.519554s & t18=0.519688s

 Pair 1; Packets 70&71 with corresponding time stamps,

t70=1.033679s & t71=1.033804s

 Pair 1; Packets 82&83 with corresponding time stamps,

t82=1.203592s & t83=1.203715s

The time stamps of the identified packets are read off from the part of the trace shown in Appendix A.

Using two back-to-back packets, the bottleneck bandwidth is given by

𝐵𝑊 =
 𝐿𝑒𝑛𝑔𝑡𝑕𝑜𝑓𝑡𝑕𝑒𝑠𝑒𝑐𝑜𝑛𝑑𝑝𝑎𝑐𝑘𝑒𝑡𝑖𝑛𝑏𝑦𝑡𝑒𝑠 𝑋 8

𝑇𝑕𝑒𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑖𝑛𝑡𝑕𝑒𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠𝑜𝑓𝑡𝑕𝑒𝑝𝑎𝑐𝑘𝑒𝑡𝑠
 𝑏𝑖𝑡𝑠 𝑠𝑒𝑐

So, for

 Pair 1, Packets 5 & 6, 𝐵𝑊1 =
1434𝑋8

0.348197 −0.348079
= 97.22𝑀𝑏𝑝𝑠

 Pair 2, Packets 17 & 18, 𝐵𝑊2 =
1434𝑋8

0.519688 −0.519554
= 85.61𝑀𝑏𝑝𝑠

Analysis of Captured Data on a Typical Tcp Connection

www.iosrjournals.org 78 | Page

 Pair 3, Packets 70 & 71, 𝐵𝑊3 =
1434𝑋8

1.033804 −1.033679
= 91.78𝑀𝑏𝑝𝑠

 Pair 4, Packets 82 & 83, 𝐵𝑊4 =
1434𝑋8

1.203715 −1.203592
= 93.27𝑀𝑏𝑝𝑠

Taking the average, the bottleneck bandwidth is obtained as

𝐵𝑊 =
𝐵𝑊1 + 𝐵𝑊2 + 𝐵𝑊3 + 𝐵𝑊4

4

𝐵𝑊 =
97.22 + 85.61 + 91.78 + 93.27

4

𝐵𝑊 = 𝟗𝟏. 𝟗𝟕𝑴𝒃𝒑𝒔

Packet Loss

 Going through the captured trace, one could see that there appears to be lost packets in the connection.

Indication of loss packets, in the captured traffic, is seen in the form of repetitive packets with the same

acknowledgement number. An example is shown in Trace 2 where we see that frame 476 is seen out-of-order
and the receiver starts sending duplicate acknowledgements as marked in red.

Trace 2 A part of the traffic captured showing packet loss.

Looking at the excerpt of the captured traffic in Trace 2, we see the behaviour of the sender which keeps re-

transmitting the lost packet in response to the duplicate ACKs from the receiver. For instance, the client sends

the first duplicate ACK (no. 351442) in frame 479 and the server responds in frame 480 by re-transmitting the

lost segment. Again, the receiver sends another duplicate ACK in frame 481 and again the sender re-transmits

the lost packet in frame 482. This continues until frame in frame 488 when the receiver acknowledges the

segment in 487.

 Sometime it is possible to pick out a lost packet in the time-sequence graph as can be seen in the

example shown in fig. 3. This is the enlarged area of fig. 1 marked B.

Lost

packet

Duplicate

ACKs

Analysis of Captured Data on a Typical Tcp Connection

www.iosrjournals.org 79 | Page

Fig. 3 - Example of lost packets in the capture.

II. Conclusion
 The use of data capture tools has been demonstrated in this exercise using Wireshark. The packets

captured were analysed successfully to establish features of the TCP connection such as congestion window

evolution, packet loss and round trip bandwidth. It has been shown that for the data analysed, an average

bottleneck bandwidth of 91.97Mbps was obtained, and that was reasonable for an expected network bandwidth

of 100Mbps used for the capture. The congestion window phenomenon was clearly observed on the time

sequence graph which also gave an indication of the lost packets in the transmission. The lost packets were also

identified on the captured trace through the repeated ACKs on the relevant frames.

References
[1]. Derfler F. J. Jr., (2000) Practical Networking QUE A Division of Macmillan, Indiana, USA.

[2]. Hunter P. (1994) Local Area Networks Making the Right Choices Addison-Wiley Publishing Company, England, UK

[3]. Kurose, J. F. and Ross, K. W. (2001) Computer Networking A Top-Down Approach Featuring the Internet, Addison Wiley Longman,

Inc., USA.

[4]. Sanders, C. (2007) Practical Packet Analysis – Using Wireshark to solve real-world Network Problems,No Starch Press Inc., San

Francisco, CA 94107.

APPENDIX A – PACKETS USED FOR THE DETERMINATION OF ROUND TRIP TIME

AND BOTTLENECK BANDWIDTH

Appendix A1 - Packets used for the determination of the round trip time (RTT)

 No. Time Source Destination Protocol Pktlen (bytes)

 1 0.000000 192.168.0.140 128.227.74.66 TCP 62

 2 0.170360 128.227.74.66 192.168.0.140 TCP 60

 3 0.170402 192.168.0.140 128.227.74.66 TCP 54

4 0.171422 192.168.0.140 128.227.74.66 HTTP 155

5 0.348079 128.227.74.66 192.168.0.140 TCP 1434

6 0.348197 128.227.74.66 192.168.0.140 TCP 1434
 7 0.348218 192.168.0.140 128.227.74.66 TCP 54

 8 0.348343 128.227.74.66 192.168.0.140 TCP 1434

Appendix A2 - Packets used for the determination of the bottleneck bandwidth

 No. Time Source Destination Protocol Pktlen (bytes)

 1 0.000000 192.168.0.140 128.227.74.66 TCP 62

 2 0.170360 128.227.74.66 192.168.0.140 TCP 60

 3 0.170402 192.168.0.140 128.227.74.66 TCP 54

 4 0.171422 192.168.0.140 128.227.74.66 HTTP 155

5 0.348079 128.227.74.66 192.168.0.140 TCP 1434

 6 0.348197 128.227.74.66 192.168.0.140 TCP 1434
 7 0.348218 192.168.0.140 128.227.74.66 TCP 54

 8 0.348343 128.227.74.66 192.168.0.140 TCP 1434

 16 0.519450 192.168.0.140 128.227.74.66 TCP 54

17 0.519554 128.227.74.66 192.168.0.140 TCP 1434

 18 0.519688 128.227.74.66 192.168.0.140 TCP 1434
 19 0.519705 192.168.0.140 128.227.74.66 TCP 54

 20 0.690266 128.227.74.66 192.168.0.140 TCP 1434

 65 1.033291 128.227.74.66 192.168.0.140 TCP 1434
 66 1.033310 192.168.0.140 128.227.74.66 TCP 54

 Pair 1

Pair 2

 Matched pkts.

Analysis of Captured Data on a Typical Tcp Connection

www.iosrjournals.org 80 | Page

 67 1.033438 128.227.74.66 192.168.0.140 TCP 1434

 68 1.033560 128.227.74.66 192.168.0.140 TCP 1434

 69 1.033577 192.168.0.140 128.227.74.66 TCP 54

70 1.033679 128.227.74.66 192.168.0.140 TCP 1434

 71 1.033804 128.227.74.66 192.168.0.140 TCP 1434

 72 1.033816 192.168.0.140 128.227.74.66 TCP 54
 73 1.202847 128.227.74.66 192.168.0.140 TCP 1434

 79 1.203345 128.227.74.66 192.168.0.140 TCP 1434

 80 1.203469 128.227.74.66 192.168.0.140 TCP 1434

 81 1.203489 192.168.0.140 128.227.74.66 TCP 54

82 1.203592 128.227.74.66 192.168.0.140 TCP 1434

 83 1.203715 128.227.74.66 192.168.0.140 TCP 1434
 84 1.203736 192.168.0.140 128.227.74.66 TCP 54

 85 1.203831 128.227.74.66 192.168.0.140 TCP 1434

 86 1.203953 128.227.74.66 192.168.0.140 TCP 1434
 87 1.203974 192.168.0.140 128.227.74.66 TCP 54

 88 1.204069 128.227.74.66 192.168.0.140 TCP 1434

Pair 3

Pair 4

