
DOI: 10.9790/2402-1007010115 www.iosrjournals.org 1 | Page 

IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) 
e-ISSN: 2319-2402, p- ISSN: 2319-2399.Volume 10, Issue 7 Ver. I (July 2016), PP 01-15 
www.iosrjournals.org 

 
Comparative Study of Wavelet-SARIMA and Wavelet- NNAR 

Models for Groundwater Level in Rajshahi District 
 

Md. Abdul Khalek* and Md. Ayub Ali*
 

* Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh. 
 

Abstract: This study compared the application of time series methods for forecasting groundwater levels at 
nine upazila’s in Rajshahi district, Bangladesh. Accurate and reliable groundwater level forecasting models can 
help ensure the sustainable use of groundwater. A new method was proposed for forecasting groundwater 
level by combining the wavelet technique with seasonal autoregressive integrated moving average (SARIMA) 
and neural network autoregressive (NNAR) model applied to monthly groundwater level. The data were 
divided into a training dataset (January, 1991 to December, 2009) to construct the models and a testing 
dataset (January, 2010 to December, 2013) to estimate their performance. The relative performance of 
the proposed joined wavelet-seasonal autoregressive integrated moving average (W-SARIMA) and joined 
wavelet-neural network autoregressive (W-NNAR) models was compared to regular SARIMA and NNAR 
models for monthly groundwater level forecasting. The calibration and validation performance of the 
models is evaluated statistically, and the relative performance based on the predictive ability of out-sample 
forecasts is evaluated. The results indicate that the W-SARIMA model is more effective than the W-NNAR 
model, regular SARIMA and NNAR models. 
Keywords: Groundwater Level Forecasting; Rajshahi District; W-SARIMA; W-NNAR 

 

I. Introduction 
Water is the tonic of life and is crucial for sustainable development. Earlier, it was considered to be a 

limitless or at least fully renewable natural resource, but in the recent past, there has been a tremendous pressure 
on this valuable natural resource mainly due to rapid industrialization, population growth and using 
dimensionality of water. For an effective management of groundwater, it is important to predict groundwater 
level fluctuations. Groundwater systems possess features such as complexity, nonlinearity, being multi-scale and 
random, all governed by natural and/or anthropogenic factors, that complicates the dynamic predictions. 
Keeping in mind the scarcity of available water resources in the near future and it impending threats, it has 
become imperative on the part of water scientists as well as planners to quantify the available water resources 
for its judicial use. Thus, a ready reckoner to monitor the fluctuations in groundwater levels well in advance is 
the need of the hour to formulate and model the sustainable water management protocols. 

At the present, there are many groundwater modeling approaches have been applied to forecast 
groundwater level and its fluctuations, within which, conceptual and physically based models; are the main 
types, for depicting hydrological variables and characterizing the complex structures of aquifers. Nevertheless, 
these modeling approaches do have some limitations in practice; for instance, a large number of accurate data 
(Mohammadi, 2006) is necessary for modeling. Autoregressive moving average (ARIMA) model is one of 
empirical models with its particular properties allowing generalizations of the process being analyzed. It is a 
linear prediction method which assumes that the present data is a function of past data and errors (Faruk, 2010). 
However, the performance and accuracy of the ARIMA model are not always satisfactory, it is also not adequate 
to apply ARIMA model to forecast groundwater level as the climate and exploitation changes over time greatly. 
The variation of groundwater level is highly nonlinear because of interdependencies and uncertainties in the 
hydrogeological process (Suryanarayani et al., 2014). Artificial intelligence techniques have been proved to be 
the effective methods in virtually modeling for any nonlinear function. To sum up, artificial neural networks 
(ANNs) and seasonal autoregressive integrated moving average (SARIMA) techniques are all widely used for 
predicting groundwater level at present, and all these techniques have been proved to be effective methods 
(Daliakopoulos et al., 2005; Krishna et al., 2008; Adamowski and Chan, 2011).The NNAR model is a relatively 
innovative method which is computer intensive and generally yields satisfactory results in terms of in-sample 
and out-of-sample measures after some proper fine tuning of its parameters. It is important not to apply neural 
network models blindly in “black box” mode but rather to select the parameters of the neural network model 
wisely by means of traditional modeling skills (Faraway. and Chatfield, 1998). All these models should have 
been being compared and to be highlighted the better one. 

Thus, the purpose of this study is to build up several models SARIMA, NNAR and wavelet 
groundwater level time series data to forecast monthly groundwater level, and to compare their performances 
among the existing models. 
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II. Study Area And Data Collection 
We used secondary data as per requirements of modeling and forecasting of groundwater levels for 

northwest region of Bangladesh. Monthly time series data of groundwater level (GWL) from 1991 to 2013 were 
collected from Bangladesh Water Development Board (BWDB). Rajshahi, the northwestern administrative 
district of Bangladesh, is located at 24.1630N latitude and 88.400E longitude. The northwestern part of 
Bangladesh is an interesting study area for its natural beauties of Barind track. Monthly groundwater level varies 
seasons to season, including the Rajshahi district and the neighboring district (Fig. 1), were collected from the 
Bangladesh Meteorological Department (BMD), which is the authorized government organization for 
meteorological activities in Bangladesh. 

 

 
Fig. 1: Study area with locations of groundwater observation wells 

 
III. Methodology 

3.1 Groundwater Level: Statistical Features 
Besides wavelet features, we employed some additional features to represent the characteristics of time 

series. Five of them, i.e. Minimum, maximum, Mean, standard deviation (SD) and coefficient of variation (CV), 
are basic descriptive statistical measures that are commonly used in hydrology. In the proposed model, we use 
them to describe the data inside the time-window. 

 

 
Fig. 2: Month-wise fluctuation of groundwater level in Rajshahi district 

 
The table 1presents groundwater level variation in my study area, from the following table GwL varies 

1.07 meter to 18.55 meter. From Fig. 2, it is clearly state that the maximum groundwater level fluctuate in 
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March to May and minimum in September to November. This scenario carries almost nine upazilas except 
Tanore. 
 

Table 1. Statistical parameters of input variables by Upazila/District 
Upazila/District Training Test 

Minimum Maximum Mean SD CV Minimum Maximum Mean SD CV 
Baghmara 1.65 11.49 5.54 2.20 39.68 3.96 11.99 7.74 2.14 27.65 
Boalia 1.52 10.50 6.07 2.27 37.33 6.38 11.51 9.03 1.51 16.74 
Charghat 1.33 8.26 5.42 1.86 34.41 3.30 8.82 6.54 1.59 24.27 
Durgapur 1.19 14.30 5.26 2.88 54.77 2.49 15.15 8.10 4.12 50.83 
Godagari 2.66 12.91 8.14 2.52 30.99 8.04 14.24 11.72 1.67 14.22 
Mohanpur 2.27 15.88 7.27 3.23 44.46 6.89 17.93 11.95 3.36 28.09 
Paba 2.08 10.98 6.16 2.34 38.04 4.81 11.93 8.60 2.21 25.66 
Puthia 1.07 8.86 4.06 1.88 46.17 4.26 10.24 7.25 1.76 24.31 
Tanore 6.32 15.91 11.27 2.35 20.83 15.21 18.55 17.18 0.94 5.50 
Rajshahi 3.11 11.83 7.08 2.13 30.11 6.99 13.07 10.26 1.69 16.44 

 

3.2 Seasonal Autoregressive Integrated Moving Average (SARIMA) 
The seasonal autoregressive integrated moving average (SARIMA) method can be used to identify 

complex patterns in data and to generate forecasts (Box and Jenkins, 1976). An SARIMA model predicts a value in a 
response time series as a linear combination of its own past values (Parnell, 2013). SARIMA models involve a 
combination of three types of processes: (1) an autoregressive (AR) process, (2) differencing to strip the integration 
(I), and (3) a moving average (MA) process. The general form of the SARIMA (p, d, q) model is 

 φ𝑝(𝐿)(1 − 𝐿)𝑑𝑌𝑡 = 𝜃0 + 𝜃𝑞(𝐿)𝑈𝑡 … … … (1) 
 
whereθ0 represents the intercept term, φp(L) represents the AR part (1-φ1L - ... - ; φpLp), θq(L) represents the MA 
part (1-θ1L - ... - ; θpLp), and Ut represent a zero mean white process with constant variance. Seasonal 
autoregressive integrated moving average (SARIMA) is a popular linear model for predicting seasonal time 
series. A time series (Zt | 1,  2,…,k} is created by the SARIMA process of Box and Jenkins time series modeling 
[Box and Jenkins, 1976] if: 
 

 φ𝑝(𝐵)𝜑𝑃𝐵𝑠(1 − 𝐵)𝑑(1 − 𝐵𝑠)𝐷𝑍𝑡 = 𝜃𝑞(𝐵)Θ𝑄(𝐵𝑠) … … … (2) 
 
Where p, d, q, P, D, Q are integers, s is the season length: 

 φ𝑝(𝐵) = 1 − φ1(𝐵) − φ2𝐵
2 − ⋯− φ𝑝𝐵

𝑝 … … … (3) 

 𝜑𝑃(𝐵𝑠) = 1 −  𝜑𝑠𝐵𝑠− 𝜑2𝑠𝐵2𝑠 − ⋯− 𝜑𝑃𝑠𝐵𝑃𝑠  

 𝜃𝑞(𝐵) = 1 − 𝜃1𝐵 − 𝜃2𝐵2 −⋯− 𝜃𝑞𝐵𝑞   

 Θ𝑄(𝐵𝑠) = 1 −Θ𝑠𝐵𝑠 − Θ2𝑠𝐵2𝑠 − ⋯− Θ𝑄𝑠𝐵𝑄𝑠  

As polynomials in B, where B is the backwards transfer factor, εt is the estimated residual at time t, d is 
the number of normal difference, D is the number of seasonal differences, Zt indicates the observed value at 
time t, t = 1, 2, …, k. εt is independently and definitely distributed as a normal random variable with mean 0 and 
constant variance σ2. The roots of φp(Z) = 0 and θq(Z) = 0 are all situated outside the unit circle. Fitting a 
SARIMA model to data entails a four-step iterative process: (i) discerning the SARIMA (p, d, q) (P, D, Q) 
structure; (ii) estimating unknown parameters; (iii) carrying out goodness of-fit tests on the estimated residuals; 
and (iv) predicting future values based on the known data. The fitting of SARIMA models requires the use of 
autocorrelation function (ACF) charts. 

 
3.3 The Neural Network Autoregression Model 

Artificial neural networks allow the modeling of complex nonlinear relationships among input variables 
and output variables. In the case of a neural network autoregression model (NNAR), lagged values of a time series 
are used as input to the model and the output are the predicted values of the time series. One of the main 
differences between the NNAR and the SARIMA method is that the NNAR does not impose any 
restriction on its parameters to ensure stationarity. In this paper we shall use the notation NNAR(p,P,k)m 
proposed by Hyndman, and Athanasopoulos (2014) due to the seasonal component present in the monthly 
groundwater level. The structure of the NNAR(p,P,k)m is represented in Fig. 3. 
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Fig.3: A diagrammatic representation of the NNAR(p, P, k)m model 

 
In the absence of a hidden layer, the NNAR(p, P, 0)m is analogous to the SARIMA model denoted as 

an ARIMA(p,0,0)(P,0,0)m. Faraway and Chatfield (1998) suggest that to apply a good neural network model, a 
combination of traditional modeling skills with knowledge of time series is essential. 

To ensure that a good artificial neural network model be fit, it is crucial to understand the 
idiosyncrasies of the monthly groundwater levels data. It is clear that there is a periodic component of m=12 for 
the monthly groundwater level (GwL) data which relates to a seasonal effect. The NNAR model is a 
feedforward neural network which involves a linear combination function and an activation function. The linear 
combination function is generally formulated as 

 𝑛𝑒𝑡𝑗 = �𝑤𝑖𝑗𝑦𝑖𝑗
𝑖

 . . . (4) 

 

although in some cases an intercept term is generally included. The activation function is a sigmoid function 
defined as 

 ƒ (𝑦) =
1

1 + 𝑒−𝑦
 . . . (5) 

The inputs are combined through the linear function and the result of the combination is then passed through 
the non-linear sigmoid activation function. In R Core Team (2014), the weights of the neural network are 
updated using the back propagation algorithm. Since the weights are obtained through computational procedure, 
it is not possible to interpret the weights like in the case of traditional regression models which involve a closed 
form for the minimization of sum of squared errors. Indeed, Faraway and Chatfield (1998) state that it is not 
advisable to interpret the fitted weights. 

 
3.4 Wavelet analysis 

Mathematical functions which serve in the analysis of non-stationary time series, wavelet transforms 
allow one to decompose time series into low frequency and high frequency information, thereby exposing 
trends, breakdown points, and discontinuities in the data that other signal analysis methods might miss 
[Adamowski et al. 2009; Nalley et al. 2013]. Another advantage of wavelet transforms is the flexibility of 
choice in selecting a mother wavelet according to the properties of the time series [Conraria, &Soares (2011); 
Pingale et al. 2014]. Wavelet analysis has developed a popular tool due to its capability to reveal evidence 
within the indication in both the time and scale domains (Nourani et al., 2009). This property overcomes the 
basic drawback of Fourier analysis, which is that the Fourier spectrum provides a comprehensive clarification of 
the properties of the non-stationary procedures by yielding a mapping that is localized in frequency but global in 
time (Pal and Devara, 2012). Wavelet analysis is a mathematical procedure that transforms the original motion 
into a different domain for analysis and processing (Dong et al., 2001). This model is appropriate for non- 
stationary data, i.e., where the mean and autocorrelation of the signal are not constant over time. Most climatic 
time series data are non-stationary; therefore, wavelet transforms are used for these kinds of data. 
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Fig. 4: Time series properties of monthly groundwater level in Rajshahi district. 

 
 

Morlet first considered wavelets as a family of functions constructed from the translations and dilations 
of a single function, which is called the “mother wavelet”. Continuous wavelet analysis (CWT) represents the 
sum over all time of the signal, multiplied by scale and shifted versions of the mother wavelet analysis ψ [Kim 
and Valdes, 2003]: 

 

 ψ(𝜏, 𝑠) =
1

�|𝑠|
� 𝑥(𝑡)
+∞

−∞

ψ∗ �
𝑡 − 𝜏
𝑠

� 𝑑𝑡 … … … (6) 

 

where, s is the scale parameter, t is time, and τ is the shift parameter. Each scale corresponds to the width of the 
wavelet. While a CWT is useful in processing various images and signals, it is seldom used for prediction as its 
calculations are intricate and lengthy in terms of time. As an alternative, in prediction applications, the discrete 
wavelet transform (DWT) is applied, due to its simplicity and shorter calculation time. The scales and shifts of 
the DWT are usually based on powers of two (dyadic scales and shifts). This is obtained by altering the wavelet 
transform: 
 

 ψ(𝑚)𝑗,𝑚 =
1

��𝑠0
𝑗�
�ψ�

𝑘 − 𝑚𝜏0𝑠0
𝑗

𝑠0
𝑗 � 𝑥(𝑘)

𝑘

 … … … (7) 

 
where, j and m are integers which control the scale and shift, respectively, s0> 1 is a fixed expansion step, and τ0 

is a shift parameter based on the aforementioned expansion step. The impact of discretizing the wavelet 
transform is that the time-space scale is sampled at discrete levels. The DWT functions like a pair of high pass 
and low pass filters. The time series is decomposed into one comprising its trend (the approximation) and one 
comprising the high frequencies and the fast events (the details) [Adamowski, Sun 2010]. In the present study, 
the detail coefficients and approximation sub-time series were obtained using eq. (7). 

 
3.5 Joined wavelet and SARIMA (W-SARIMA) model 

Noise in the time series data will significantly affect the accuracy of the forecast because SARIMA 
methods cannot handle non-stationary data without preprocessing the input data. To solve this problem, a 
wavelet denoising-based model is proposed. 
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Fig. 5: Working structure of W-SARIMA model 

 
When conducting wavelet analysis, the selection of the optimal number of decomposition levels is one 

of the keys to determine the performance of model in the wavelet domain. To select the number of 
decomposition levels, the following formula is used (Wang and Ding, 2003); 

 

 𝐿 = 𝑖𝑛𝑡[𝑙𝑜𝑔(𝑁)] … … … (8) 
 

where, L and N are number of decomposition levels and time series length, respectively. For this study, N = 276; 
therefore, L ≈ 3. Kisi and Cimen (2011) used three decomposition levels in their monthly stream flow forecasting 
study. Several studies have obtained the best result using three decomposition levels. 
 

The choice of mother wavelet depends on the data to be analyzed. Daubechies wavelets show a good trade-off 
between parsimony and information richness and identical events across the observed time series are produced 
by it in so many fashions that most prediction models cannot recognize them well (Reis and Silva, 2005). The 
procedure of W-SARIMA model is described as follows: 
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Fig. 6: Wavelet de-noised signal of groundwater level in Rajshahi district. 
 

Step 1:The wavelet transformation, which is a Daubechies-5 type and a decomposition level 3, is applied. 
Application to the series Yt (t = 1, 2,..., T) results in 10 series, which are denoted by S3t, D3t, D2t and D1t; t 
= 1, 2,..., T. WT(Yt; t=1,2,..., T) = {S3t, D3t, D2t, D1t: t = 1, 2,..., T}. 

Step 2: The series is reconstructed by removing the high-frequency component, using the wavelet denoising 
method. 
WT-1{S3t, D3t, D2t; t = 1, 2,..., T} = 𝑌𝑡∗; t = 1, 2,..., T 

 
Fig. 7: Wavelet decomposition of groundwater level in Rajshahi district. 

Step 3: The appropriate SARIMA model is applied to the reconstructed series to forecast the test series. 
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�𝑌𝑡∗;  𝑡 = 1, 2, … ,𝑇 
𝑆𝐴𝑅𝐼𝑀𝐴 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�𝑌𝑡

𝑓;  𝑡 = 𝑇 + 1, … ,𝑇 + 𝑛� 
 

Table 2: Augmented Dickey-Fuller (ADF) unit root test of original and wavelet denoised series. 
Upazila/District Include in test equation Original series Wavelet denoised series 

ADF statistic p-value ADF statistic p-value 
Baghmara Drift -0.930 0.7776 -1.780 0.3900 

Drift and linear trend -2.174 0.5019 -3.099 0.1087 
None 1.304 0.9515 0.677 0.8615 

Boalia Drift -0.825 0.8100 -0.775 0.8239 
Drift and linear trend -1.619 0.7830 -1.974 0.6123 
None 1.727 0.9798 0.743 0.8742 

Charghat Drift -2.512 0.1137 -2.868 0.0505 
Drift and linear trend -2.679 0.2462 -2.898 0.1650 
None 0.422 0.8038 -0.005 0.6803 

Durgapur Drift -1.215 0.6685 -2.025 0.2761 
Drift and linear trend -2.523 0.3167 -3.397 0.0540 
None 1.370 0.9573 0.834 0.8905 

Godagari Drift -0.176 0.9383 -0.848 0.8033 
Drift and linear trend -1.908 0.6478 -2.276 0.4452 
None 1.390 0.9589 0.510 0.8251 

Mohanpur Drift -0.112 0.9457 -0.776 0.8236 
Drift and linear trend -1.996 0.6003 -2.787 0.2034 
None 1.886 0.9860 1.084 0.9275 

Paba Drift -1.336 0.6132 -2.198 0.2075 
Drift and linear trend -2.789 0.2027 -2.815 0.1931 
None 1.468 0.9649 0.456 0.8123 

Puthia Drift -0.253 0.9283 -1.595 0.4838 
Drift and linear trend -1.408 0.8567 -2.542 0.3075 
None 1.178 0.9387 0.085 0.7090 

Tanore Drift 0.316 0.9788 0.962 0.9962 
Drift and linear trend -2.109 0.5378 -2.370 0.3943 
None 2.459 0.9968 2.617 0.9980 

Rajshahi Drift -0.051 0.9520 -1.193 0.6781 
Drift and linear trend -1.872 0.6661 -2.313 0.4250 
None 1.757 0.9811 0.517 0.8268 

 

3.6 Joined wavelet and NNAR (W-NNAR) model 
A W-NNAR model was constructed in which the subseries {D1, D2, D3, S3} at time t are used as the 

inputs of the NNAR and the denoised time series at time t is the output of the NNAR network. 
 

Table 3: Parameter estimation of de-noised SARIMA model for groundwater level 
 

 Coeff±SE AR1 AR2 AR3 MA1 MA2 SAR1 SAR2 SMA1 SMA2 SMA3 
Baghmara Coefficient 

Std Error 
-0.080 
0.078 

0.611 
0.066 

-0.151 
0.072 

0.043 
0.039 

-0.957 
0.039 

-0.721 
0.101 

0.272 
0.081 

-0.033 
0.159 

-0.967 
0.156 

 

Boalia Coefficient 
Std Error 

1.432 
0.111 

-0.654 
0.102 

 -1.691 
0.099 

0.749 
0.106 

0.758 
0.144 

0.206 
0.129 

-0.583 
0.136 

  

Charghat Coefficient 
Std Error 

0.586 
0.086 

  -0.440 
0.088 

-0.464 
0.066 

0.192 
0.079 

0.134 
0.086 

-1.000 
0.109 

  

Durgapur Coefficient 
Std Error 

0.934 
0.567 

-0.169 
0.431 

 -0.110 
0.570 

 -0.256 
0.162 

-0.119 
0.112 

-0.436 
0.157 

  

Godagari Coefficient 
Std Error 

0.254 
0.002 

0.492 
0.001 

-0.155 
0.067 

-0.205 
0.001 

-0.696 
0.003 

1.690 
0.145 

-0.809 
0.128 

-2.529 
0.151 

2.257 
0.248 

-0.727 
0.112 

Mohanpur Coefficient 
Std Error 

-0.134 
0.157 

0.543 
0.143 

 -0.071 
0.130 

-0.864 
0.133 

-0.990 
0.197 

-0.012 
0.127 

0.321 
0.202 

-0.610 
0.140 

 

Paba Coefficient 
Std Error 

0.450 
0.242 

0.117 
0.215 

 -0.392 
0.220 

-0.479 
0.215 

0.049 
0.469 

 -0.885 
0.460 

0.127 
0.365 

 

Puthia Coefficient 
Std Error 

0.023 
0.070 

-0.207 
0.067 

   -0.115 
0.094 

 -0.714 
0.076 

  

Tanore Coefficient 
Std Error 

1.502 
0.131 

-0.614 
0.123 

 -1.305 
0.154 

0.341 
0.149 

0.928 
0.104 

0.032 
0.093 

-0.688 
0.088 

  

Rajshahi Coefficient 
Std Error 

0.376 
0.209 

0.279 
0.190 

 -0.279 
0.177 

-0.638 
0.177 

-0.474 
3.398 

-0.049 
0.584 

-0.334 
3.405 

-0.238 
2.188 

 
 

The data set was then loaded and divided into two parts: training data (first 228 values of each data set) 
and testing data (subsequent 48 values of each data set). Employed delay lines were used for both the input and 
the output, so the training began with the next data point of the tapped delay line. The Levenberg-Marquardt 
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(LM) algorithm was utilized to train the NNAR models because it has been shown to be fast, accurate, and 
reliable (Adamowski and Karapataki, 2010). 

   
SARIMA(3, 1, 2)(2, 1, 2)12 SARIMA(2, 1, 2)(2, 0, 1)12 SARIMA(1, 1, 2)(2, 1, 1)12 

   
SARIMA(2, 0, 1)(2, 1, 1)12 SARIMA(3, 1, 2)(2, 1, 3)12 SARIMA(2, 1, 2)(2, 1, 2)12 

   
SARIMA(2, 1, 2)(1, 1, 2)12 SARIMA(2, 1, 0)(1, 1, 1)12 SARIMA(2, 1, 2)(2, 0, 1)12 

 
SARIMA(2, 1, 2)(2, 1, 2)12 

Fig. 8: In sample SARIMA forecast of groundwater level in Rajshahi district 
 

To identify the optimal number of hidden neurons, a trial and error procedure was initiated with two 
hidden neurons, and the number of hidden neurons was increased to 20 with a step size of 1 in each trial 
(Ramana et al., 2013). For each set of hidden neurons, the network was trained in batch mode to minimize the 
mean square error of the output layer. To identify over fitting during the training, a cross validation step was 
performed by evaluating the efficiency of the fitted model. The training was stopped when there was no 
significant improvement in the efficiency, and the model was then used for its generalization properties 
(Ramana et al., 2013). 

 
IV. Comparison Of Model Performance 

Model performance was assessed using root mean square error (RMSE), percent of bias (PBIAS) and 
index of agreement (d). Root mean square error (Singh et al., 2005) is an estimate of the standard deviation of 
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the random components in the data, and the best model has a minimum RMSE. The percent of bias measures the 
average tendency of the simulated data to be larger or smaller than the observed counterparts. 
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Table 4: Accuracy of SARIMA model for original and wavelet de-noised groundwater level 

Upazila/ District SARIMA Denoised-SARIMA 
ME RMSE MAE MPE MAPE ME RMSE MAE MPE MAPE 

Baghmara 0.423 6.490 4.820 -8.740 91.500 -0.011 0.247 0.189 -0.557 3.695 
Boalia 0.676 7.810 5.490 -14.800 108.000 -0.001 0.246 0.175 -0.315 3.090 
Charghat 0.066 2.940 1.910 0.322 43.600 0.005 0.094 0.065 0.080 1.386 
Durgapur 0.048 9.850 7.300 -14.400 152.000 0.001 0.230 0.168 -0.134 3.436 
Godagari 0.328 3.890 2.930 1.300 40.600 0.007 0.129 0.095 0.109 1.288 
Mohanpur 0.076 6.910 4.860 -11.300 67.000 -0.014 0.211 0.147 -0.343 1.987 
Paba -0.106 3.560 2.420 -6.600 41.300 0.005 0.183 0.135 -0.111 2.338 
Puthia -0.069 5.330 4.100 -18.800 112.000 0.011 0.155 0.113 0.179 2.983 
Tanore 0.396 3.100 2.200 2.730 21.800 0.000 0.080 0.054 -0.010 0.527 
Rajshahi -0.007 2.720 1.870 -1.770 27.300 0.001 0.072 0.051 0.013 0.719 

 

Table 5: Accuracy of NNAR model for original and wavelet de-noised groundwater level 

Upazila/ District 
NNAR Denoised NNAR 

ME RMSE MAE MPE MAPE ME RMSE MAE MPE MAPE 
Baghmara 0.003 4.321 3.230 -7.317 60.741 0.001 0.321 0.249 -1.540 4.858 
Boalia 0.064 5.361 3.935 -28.987 81.722 0.000 0.270 0.207 -0.969 3.749 
Charghat 0.005 2.694 1.983 -5.086 45.968 0.000 0.109 0.081 -0.072 1.720 
Durgapur 0.034 6.222 4.580 -14.388 92.516 0.003 0.255 0.199 -1.521 4.338 
Godagari -0.002 7.320 5.729 -11.375 82.152 0.001 0.360 0.271 -0.250 3.640 
Mohanpur 0.020 6.027 4.379 -6.706 59.987 -0.001 0.422 0.325 -0.357 4.528 
Paba 0.002 3.554 2.702 -12.127 48.547 -0.001 0.256 0.212 -1.545 4.015 
Puthia -0.011 3.460 2.668 -10.384 75.180 0.000 0.142 0.110 -0.116 2.921 
Tanore 0.012 4.448 3.256 -2.078 32.433 0.000 0.198 0.154 -0.046 1.485 
Rajshahi 0.005 4.361 3.335 -4.199 49.525 0.000 0.274 0.213 -0.177 3.123 
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Fig. 9: Neural network performance curve of groundwater level in Rajshahi district 

 

 
Fig. 10: Accuracy assessment of groundwater level models obtained using a W-SARIMA-NNAR model 

 
V. Results And Discussion 

5.1 The SARIMA results 
The SARIMA models for groundwater level forecasting for study sites were developed using the R 

software. Since the SARIMA method is a univariate time series analysis method, only one variable can be used 
(groundwater level). The first step is to determine the stationarity of the input data series via the autocorrelation 
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function (ACF). It was determined that the groundwater level data series were not stationary. The SARIMA 
model requires the input data to have a constant mean, variance, and autocorrelation through time. Therefore, 
the input data series were transformed into a stationary model through a differencing process. In the models that 
were developed, the number of autoregressive terms (p) varied from 0 to 5, and the number of lagged forecast 
errors in the prediction equation (q) varied from 0 to 5. All SARIMA models were first trained using the data in 
the training set (January 1991 to December 2009), and then tested using testing set (January 2010 to December 
2013). 

 
 

Fig. 11: W-NNAR performance curve of groundwater level in Rajshahi district 
 

Table 4 shows the accuracy of the SARIMA estimation was verified by determining the following 
values: Mean error 0.423, Mean absolute error 4.820, Root mean squared error 6.490, Percentage error -8.74, 
Mean absolute percentage error 91.50 for original groundwater level of Baghmara upazila. The value of 
the average error should be close to zero. In this case, there is a slight underestimation. The MAE informs about 
the average aberrations of the actual realizations from the forecast ones for the forecasted variable in the period 
of forecast. The PE indicates what percentage of the actual realization of the forecast variable is the forecast 
error. The MAPE error should rather be used to compare models and should not be used to determine a single 
forecast error. Secondly, the SARIMA model was used. The autocorrelation diagram (ACF) and the partial 
autocorrelation graph - PACF were produced (Fig. 4). 

 
(i) Model identification 

The first step is to check whether there is any seasonality exists in the observed data and if the data is 
stationary. Time Series plot (Fig. 4) shows that there is a clear seasonality with periodicity of one year (twelve 
month) in the data set. The ACF (Autocorrelation Function) and PACF (Partial Autocorrelation Function) are 
significant in identifying stationary of the data set. 

In order to fit an SARIMA model stationary data in both variance and mean are needed. Stationarity could 
be attained in the variance by having log transformation and differencing of the original data to attain stationarity in 
the mean. Since data series contain zero values straight forward log transformation is not possible. In this data 
series, a seasonal first difference (D = 1) of the original data was done in order to obtain stationarity. Thereafter, 
ACF and PACF for the differenced series were tested to check stationarity. The ACF and PACF (Fig. 4) show that 
one order seasonal differencing is adequate. Although further differencing shows a similar result but first seasonal 
differencing has a minimum standard deviation. Therefore, one order difference is enough for the data series. From 
this, a preliminary SARIMA (p, 1, q)×(P, 1, Q)12 was selected. 

 
(ii) Model Estimation 

Since the orders P, p and Q, q necessary to adequately model for a given problem is not known to us. It is 
required to determine the model that best fits the data based on observing the ACF and the PACF of the differenced 
data. After carefully examining ACF and PACF, following five models were identified for test. These models are: 
SARIMA(3, 1, 2)(2,1, 2)12, SARIMA(2, 1, 2)(2,0,1)12, SARIMA(1,1,2)(2,1,1)12, (Fig. 8). 
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(iii) Model Diagnostic Checking 
Once the models have been fitted to the data, a number of diagnostic checks were initialized. If the 

model fits well, the residuals should be uncorrelated with constant variance. Moreover, in developing model this 
is often assumed that the errors are normally distributed. Hence, we expect the residuals to be more or less 
normally distributed. 

Standard checks for SARIMA is to compute the ACF and the PACF of the residuals. Further 
diagnostics checking can be done by looking at the residuals in various ways (Fig.11).If the residuals are 
normally distributed, they should all more or less lie on a straight upward sloping line (Bowerman, and 
O'Connell, 1993). 

 
(iv) Forecasting 

SARIMA(p, d, q) (P, D, Q)12 was applied to forecast the monthly groundwater level data from January 
1991 to December 2013. Forecasted values of January 2014 to December 2018 ware used to compare the 
observed and forecasted values. The SARIMA accuracy of forecasted value for groundwater level shows Table 
4, that is significant result. It is observed that measured monthly values fall within the error bound, and the 
forecasted track of the seasonal pattern fits reasonably well. 

 
5.2 The NNAR results 

The autoregressive neural networks model (NNAR) estimation (training) methodology has been used. 
This algorithm is one of the most commonly used methods because of its valuable properties which are seen as 
having big advantages. In neural networks, there is no specific method to find the best design of the network. 
Thus, forecasts of the groundwater level in Rajshahi district with different parameter values have been 
examined, considering different number of hidden layers, and different lags. The researcher found that the 
minimum values of the RMSE, for the time series was 2.55 at 50 hidden layers and 12 lags. 

Applying NNAR, the percentage of observations for training, which must have the same number of 
observations, 228 (January, 1991 to December, 2009), as we have in SARIMA for training is determined, so we 
have increased in a series of 48 (January, 2010 to December, 2013) observations for comparison in the 
prediction. 

The learning rate assumed a continuous learning rate throughout the training. The performance of the 
algorithm is very sensitive to the proper setting for the learning rate. If you have chosen too high learning rate, 
the algorithm may oscillate and becomes unstable. If the selected learning rate is very small, the algorithm 
would take a long time to converge. 

Selection of hidden layers need to experience more than the mathematical technique. When the number 
of hidden layers units is small, the correlation of the output and input cannot be studied well and the errors 
increase. Moreover, when the number of hidden layers units is more than adequate, even an unrelated noise can 
be studied as well as the correlation of both input and output, and the error increase accordingly. 

There are some methods to get the number of hidden layer units; however, there is no general solution 
for this problem (Kermanhahi, et al, 2002). Therefore, we decided to start with one hidden layer and gradually 
increasing the number of hidden layers to a thirteen layers. 

Wavelet transformation decomposed the time series into time - frequency space, enabling the 
identification of both the dominant modes of variability and how those modes vary with time. It identified 
significant variability (at the 95% confidence level) at an March-May month period from 1991 to 2013. Fig. 2 
shows the wavelet decomposition of the groundwater level signal for the Rajshahi district. The signal wavelet is 
reconstructed using the approximation-and-detail process described above, and wavelet denoising is performed. 
Fig. 3 and 4 show the denoised signals of the groundwater level at the Rajshahi district, respectively. The red 
lines indicate the original signals, and the black lines indicate the denoised signals. Outliers and noise are 
removed from the denoised signal, but the trend is the same as in the original series; this is the main mechanism 
of wavelet denoising. 

The augmented Dickey - Fuller (ADF) test was applied to test the unit root in the denoised groundwater 
level of the all upazila for different situations, such as in the presence of a drift, a drift and a linear trend, and no 
drift and a linear trend. Table 2 presents the ADF unit root test results for the original and 1st differenced series. 
The autocorrelation function (ACF) and partial autocorrelation function (PACF) are used to identify the order of 
the tentative model. The correlogram shows that the ACF has significant spikes at several lags, which display a 
periodic order over 12 months due to seasonal effects. The PACF also has significant spikes at several lags. 
Thus, the model may be a seasonal autoregressive integrated moving average (SARIMA) model. The least 
squares method is applied to estimate the parameter of the time series. For the groundwater level, the final 
candidate model for estimating the parameter is SARIMA (p, d, q) (P, D, Q)m. The estimated values, standard 
error, t-statistic and p-values for the SARIMA model are shown in Fig. 8. All coefficients for the estimated 
model are significant at the 5% level of significance. The R2value of the estimated model is 0.903, indicating 
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that approximately 90.3% of the variation in the monthly groundwater level can be explained by the estimated 
previous lag value and the lagged error terms. The R2 and adjusted R2 values suggest the goodness of fit of the 
model. The autocorrelation was evaluated using the Durbin-Watson (DW) test, and the results suggest that the 
estimated coefficients are free from autocorrelation problems because the DW value is approximately 2. The 
minimum values of the Akaike information criterion (AIC), Schwarz information criterion (SC) and Hannan- 
Quinn criterion (HQ) are also satisfactory. Fig. 8 shows that the fitted values nearly match the actual values and 
that the residuals do not vary significantly; thus, the fit is good. Hence, the final W-ARIMA models for the 
selected variables were chosen. 

 
5.3 Comparison between W-ARIMA and W-NNAR results: 

Comparison is made between, the results obtained from applying both ARIMA and NNAR methods 
through looking at the results. 

Can be easily note from the preceding table the RMSE of SARIMA model equivalent to 10 times 
RMSE of the NNAR model, this means that it is higher by 92.516 from NNAR model. Finally, we can conclude 
from the above dissuasion that the results of NNAR model are much better than the ARIMA model results and 
more efficient. 

We can conclude from the above dissuasion that the results of NNAR model are much better than the 
ARIMA model results and more efficient. 

VI. Conclusion 
 

A brief comparison among the sophisticated methods of forecast process was conducted proper 
validation. The forecast of groundwater level data is a complex process for several reasons. The most important 
reason encountered during this work is the fact that this series are usually very noisy. Excellent forecast 
performances were confirmed by the W-SARIMA model. The methods applied to the data of 9 upazilas and 
found to be consistently performed. 
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