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Abstract: In addition to the traditional time-series forecasting methods, researchers over the past few years 

have suggested various methods based on artificial intelligence for the prediction of meteorological conditions. 
We have proposed an architecture based on deep learning named CoLSTM (Convolution Stacked Long Short-

Term Memory), which convolutes the raw data before feeding into the LSTM layer capable of learning complex 

features. Additionally, we have compared the performance of CoLSTM with other deep learning models like 

FNN (Feedforward Neural Network) and SANN (Seasonal Artificial Neural Network) along with the traditional 

time-series forecasting model ARIMA (Auto-Regressive Integrated Moving Average). We have used the above-

mentioned models on monthly data of Minimum Temperature, Maximum Temperature and Vapour Pressure 

from the region of Meghalaya in India.  
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I. Introduction  
 Global Climate change in the past several decades has caused losses to unprecedented levels. It has 

caused multidimensional problems that need multidimensional solutions. The main problem lies in the 

prediction of its harmful consequences before time. India being a geologically diverse country has faced 
regional disparities for these consequences. Further the warming rate of 0.6 oC per year has been attributed to 

anthropogenic activities (IPCC, 2001a and 2001b). The need of predictions and forecasting of physical 

parameters have gained importance to avoid or nullify the far-reaching consequences of climate change from 

food security to tourism.  

The North East Himalayan region is well known for its frail landscape that makes it vulnerable to 

climate change. People living in these areas are cut off from mainland India and are dependent on Jhum 

Agriculture technique. Abrupt climate change in these areas possess serious danger, even then very little 

concern has been shown for this area. 

Crop yield is highly dependent on physical parameters like temperature [1], vapour pressure [2] and 

precipitation. These parameters are also interrelated to each other. Higher temperatures foster lower 

precipitation leading to droughts. Though, enough work has been done for precipitation prediction [3] but not 
sufficient work has been done for temperature and vapour pressure prediction. Slight increase in temperature 

can cause significant reduction in crop yield. Similarly, Vapour pressure deficit (VPD) also plays a very 

important role in estimating crop yield. Therefore, forecasting of these parameters becomes highly important, so 

that people are prepared for the needs of changing climate. Also, these predictions become useful for the 

supervision of other events like tourism, health sector, transport and providing agencies with the forecasted data 

that help them to make decisions for disaster management. 

There are many techniques already being used for forecasting ranging from Naive techniques like 

Moving Average, Auto regression to more complex techniques like Artificial Intelligence (AI), Machine 

learning (ML) and even more complex techniques like Deep Learning. Machine learning is based on the 

principle of adaptive learning and making sense of the data being fed to the machine. It is well suited for the 

problems in which data shows some patterns. Machine learning by nature has a unique ability to map complex 
nonlinear functions to the given data that helps to make accurate predictions but if we go further beyond Deep 

learning has the ability to map even more complex patterns that sometimes are not possible with simple dense 

neural network. Deep learning uses bigger architectures that allows it to have more trainable parameters and 

yield better results. But in some cases, especially with sequential data, as we have a deep architecture, problems 

of gradient vanishing and gradient explosion may occur leading to unfavourable results. We have to keep checks 

and balances on the data range all well and use more complex techniques to ensure that this problem does not 

occur. 

Temperature and vapour pressure data need highly complex mapping functions. That is possible with 

deeper architectures. In this paper we have proposed a model named CoLSTM (Convolutional Stacked Long 
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Short-Term Memory). This model uses convolutional as well as doubly stacked LSTM units making it highly 

adaptive to learn complex mapping functions along with being time efficient. We have also compared the 

forecasting result with three other well-known models used for forecasting – ARIMA (Auto-Regressive 
Integrated Moving Average), FNN (Feedforward Neural Network) and SANN (Seasonal Artificial Neural 

Network). We found that CoLSTM outperformed all the other three models. 

 

II. Literature Review  
Mislan et al. [4] proposed a Back Propagation Neural Network (BPNN) algorithm to predict rainfall 

with good accuracy in Tenggarong, East Kalimantan, Indonesia. They used monthly rainfall data from 1986 to 

2003 and 2004 to 2008 as training and test data, respectively. Two different architectures of BPNN were used 

for comparison, with each having two hidden layers. The parameter of Mean Square Error (MSE) has been used 

to calculate prediction accuracy. 
Paras et al. [5] have used an algorithm based on the Artificial Neural Network to forecast different 

weather parameters like maximum temperature, minimum temperature, and relative humidity. They have 

worked on weekly data from April 1996 to March 1999 collected at Pantnagar station in Uttarakhand state of 

India.  

Sumi et al. [6] have compared the performance of different machine learning models, including 

Artificial Neural Network (ANN), Multivariate Adaptive Regression Splines (MARS), K-Nearest Neighbour 

(KNN) and Support Vector Regression (SVR) on average daily and monthly rainfall of Fukoka city in Japan. It 

further suggests constructing a hybrid multi-model method based on the individual predictive models. It has 

been shown that the hybrid method performs better than the single models for daily rainfall series while SVR 

performs better than the hybrid method for monthly rainfall series. 

Deshpande [7] found that the results of Multilayer Perceptron (MLP) Neural Network and Jordon 
Elman Neural Network were the closest to the actual output in comparison to other predictive models. Data was 

collected from the Government Rainfall Monitoring Agency in Yavatmal in Maharashtra state of India. The 

performance of the models was calculated from parameters like Mean Square Error (MSE) and Normalized 

Mean Square Error (NMSE). ‘Neurosolution 5.0’, which is an object-oriented environment for designing, 

prototyping, simulating, and deploying Artificial Neural Network (ANN) solution, has been used to measure the 

performance parameters. 

Barde and Patole [8] have performed a comparative study of different machine learning techniques for 

regression and classification of weather attributes. It has been shown that K-Nearest Neighbour (KNN) performs 

better for classification while Naïve Bayes performs better for regression. 

Nanda et al. [9] adopted the complex statistical model ARIMA along with three different kinds of 

Artificial Neural Network (ANN), namely Multilayer Perceptron (MLP), Legendre Polynomial Equation (LPE) 

and Functional Link Artificial Neural Network (FLANN) to predict rainfall. Based on Absolute Average 
Percentage Error (AAPE), it has been found that FLANN gives a very close and better prediction result in 

comparison to the ARIMA model. 

Dikshit et al. [10] have proposed a stacked Long Short-Term Memory (LSTM) architecture to forecast 

a commonly used drought measure, that is, Standard Precipitation Evaporation Index. The challenge of 

forecasting at long lead times has been a challenge due to climate change and complexities involved in drought 

assessment, but the authors believe deep learning techniques like stacked LSTM can solve this issue. The model 

was applied in the New South Wales region of Australia. It was trained using data from the period 1901-2000 

and tested on data from the period 2001-2018 with the results being forecasted at lead times ranging from 1 

month to 12 months. The model was based on two statistical measures, namely the Coefficient of Determination 

and Root Mean Squared Error. 

 

III. Dataset Description and Workflow 
The dataset is revived from MC (Meteorological Center) Shillong in the state of Meghalaya in India. 

The data was accessed through the official website of IMD (Indian Meteorological Department). The dataset 

contains monthly data for physical parameters like minimum temperature, maximum temperature and vapour 

pressure for 102 years from 1901 to 2002. 

Before using this data into our models for training, we need to clean and process the data. For any 

missing observation, we need to substitute a value for the missing place. We have used the technique of linear 

interpolation for this substitution. Also, if there are any outliers, we need to take care of them as they can affect 

the training of the model. We have used K-means clustering algorithm [11] for removing the outliers. 
 After pre-processing, we need to scale the data for better training. We have used a Min-Max Scaler for 

this purpose, which scales the data between 0 and 1. It is represented in the equation form by (1). 

   
         

             
                        

(1) 
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Here    denotes the corresponding scaled value of           denotes the minimum value in the series, and 

       denotes the maximum value in the series. We need scaling to ensure that the trainable parameters are 
able to completely capture the complex functions. If we do not scale the data, large values will be given in the 

training leading to large gradients and thus the parameters may not be trained suitably. 

 After scaling the data, the next step is to split the data in train and test sets. We have used a 90:10 split 

for training and testing. Lastly, we have quantified the model evaluation with Root Mean Squared Error 

(RMSE). We have used Keras for modelling, which is a top-level API for Tensorflow, which in turn is a GPU-

based Python library for deep learning. 

 The flowchart in Figure 1 summarizes the procedure followed from pre-processing the dataset to 

training different models on it: 

 
 

Figure 1: Experiment Workflow 

IV. Proposed Architecture 
Feedforward Neural Network (FNN) 

Feedforward Neural Network (FNN) is one of the most widely used neural network models. It finds 

application in various fields due to its ability to model non-linear time series data [12],[13]. FNN is 

characterized by an architecture of an input layer, one or more hidden layers and an output layer.  

The formula governing the relationship between the inputs      (i = 1, 2, . . . . , p) and the output     in 

an FNN with p input nodes, h hidden nodes and 1 output node is given in (2) 

             
 
                 

 
                            

(2) 

Where   ,     (i = 1, 2, . . . . , p; j = 1, 2, . . . . , h) are the connection weights,   ,     are the bias terms, F, G are 

activation functions of hidden and output layer, respectively.  

We have proposed a FNN model with a three-layered architecture to perform one-step ahead 

forecasting. The number of nodes in each layer for forecasting the three different parameters has been decided 

on the basis of capturing the maximum information and minimized the root mean squared error (RMSE). In the 

implemented model, ReLU activation function is used, and the model is optimized using Adam Optimizer. 

Figure 2 shows the FNN architecture implemented for modelling maximum temperature. 
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Figure 2: FNN Architecture for Maximum Temperature 

Seasonal Artificial Neural Network (SANN) 

Hamzaçebi [14] has proposed an alternative model, namely Seasonal Artificial Neural Network 

(SANN) which has proved to be quite efficient in dealing with data that is strongly seasonal in nature. The 

structure is similar to a regular three-layered FNN model with s input nodes, h hidden nodes and s output nodes, 

where s is the seasonality of the time series data. Thus, we are predicting the next ‘s’ data points by 

implementing a neural network that takes the previous ‘s’ data points as the input.  

As the seasonality of rainfall data is 12, we have proposed an SANN model with 12 input nodes and 12 
output nodes to forecast the next 12 data points. The number of hidden nodes vary according to the forecasted 

parameter. The loss metric to choose the number of nodes along with the activation function and model 

optimizer remain the same as the FNN model. Figure 3 shows the SANN architecture implemented for 

modelling maximum temperature. 

 
Figure 3: SANN Architecture for Maximum Temperature 

Auto-Regressive Integrated Moving Average (ARIMA) 

Auto-Regressive Integrated Moving Average (ARIMA) [15],[16] is a common model used for time 

series modelling and forecasting. The ARIMA model consists of three parts. The Auto-Regressive (AR) part 

signifies the weighted moving average over the past observation. The Integrated (I) part signifies the linear trend 

or the polynomial trend. The Moving Average (MA) part signifies the weighted moving average over the past 

errors. Thus, to describe a ARIMA model, we need 3 parameters, namely p (related to AR) = order of 

autocorrelation; d (related to I) = order of integration; q (related to MA) = order of moving average. 

For modelling any time series with ARIMA, the first step is to make the time series stationary, that is, 
we need to remove all the trends and seasonality. To check whether the series is stationary, we have used the 

Dickey Fuller test. Here the null hypothesis is that the time series is non-stationary. The test results consist of a 

test statistic and some critical values for different confidence levels. If the ‘test statistic’ is less than the ‘critical 

value’, we can reject the null hypothesis and say that the series is stationary. 

Second step is to find the autocorrelation and the partial autocorrelation between the values in any 

sequential data. Auto-correlation is defined as the correlation between the current observation and the 

observation after k periods. The value of ACF lies between -1 and 1.  
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Partial autocorrelation is the conditional correlation between the current observation and the 

observation after k periods. The value of PACF lies between -1 and 1. The values of ACF and PACF are found 

from the ACF and PACF plots shown below: 

 

 
Figure 4: A) ACF Plot and B) PACF Plot for Maximum Temperature 

Convolutional Stacked Long Short-Term Memory (CoLSTM) 

Recurrent neural networks (RNN) [17] are well suited for modelling sequential data which are 
correlated to their previous values. Data series like temperature, stock market prices [18] and vapour pressures 

can be forecasted within a small error range using RNN as they have a correlation with their previous values. In 

addition to this correlation, temperature and pressure also show cyclical trends. 

 
Figure 5: Basic Architecture of RNN 

Figure 5 shows the basic architecture of RNN.  Each node is connected to its previous and succeeding 

node. The output of each node is dependent on the input of the current node and the activation function of the 

previous node. The weights associated with each connector are trainable parameters and are trained as to 

minimize the error in predicted output. The relation between different parameter is given by (3),(4),(5). 

                                     
(3) 

                                               

(4) 

                                

(5) 

Where    denotes the output vector,    denotes the input vector,    denotes the hidden layer vector,   ,   ,    

denotes the weighing matrices, g denotes a real valued activation function. In our model we have used      as 

the activation function. 

 For the calculation of   , we multiply the    and    matrices recursively. Thus, the resulting values 
can be very high and can vanish which leads to an exploding and vanishing gradient problem. We use LSTM 

nodes that take care of this problem, which solves the long-term dependencies by storing data unlike other nodes 

[19]. RNNs having such long short-term memory nodes are called LSTM network. Even though LSTM is able 

to solve the problem of long-term dependencies, it fails to learn complex functions which ultimately affect the 

accuracy of the predictions.  
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 To learn complex functions, two modifications have been applied to the LSTM network. Firstly, as 

Convolutional Neural Network (CNN) [20] are good for pattern recognition, we have added a CNN layer before 

the LSTM layer. The major advantage of this modification is that now the input to the LSTM layer is not a raw 
input since it is already processed by a convolutional layer thereby helping in deeper learning of parameters. 

Secondly, we have stacked LSTM layers. Stacking improves the complex feature learning because the input 

given to a LSTM layer is already an output from the previous LSTM layer [21]. 

 Figure 6 shows that the final model for maximum temperature is divided into three sections. The first 

section is the convolution part that has sixty 1 X 1 convolutional nodes. This layer is mainly responsible for 

extraction of patterns from the raw input. In this layer, ReLU activation function is used.  The second section is 

the stacked LSTM section. By stacking the LSTM nodes vertically, the network is able to improve its ability to 

learn complex features. This section has two stacked layers of sixty LSTM nodes each. In both the layers, tanh 

activation function is used. The first layer of the section returns data at each node because we need to stack 

another LSTM layer over it. The second layer of the section does not return data at each node, rather it returns 

only for the last time stamp.  The third and the final section is a small fully connected traditional neural network. 
As the output from the last LSTM layer is a vector of dimension 60 X 1, we need to map the result on scalar 

quantity which in our case is minimum temperature, maximum temperature, and vapour pressure. This section 

has four fully connected dense layers. For each layer in this section, we have used the ReLU activation function. 

The entire model is compiled and optimized using Adam Optimization and is judged based on Root Mean 

Squared Error (RMSE). 

 

 
Figure 6: CoLSTM Architecture for Maximum Temperature 

 

V. Results and Analysis 

Each of the three climatic parameters, that is, minimum temperature, maximum temperature and vapour 

pressure have been predicted using CoLSTM, SANN, FNN and ARIMA. All the models were optimized by 

performing a grid search on the perspective parameters. The performance of these models on each parameter has 

been compared using the loss metric of RMSE. 

 

Minimum Temperature 
To minimize the loss metric RMSE, different permutations of the parameters were used. It was found 

that the three-layered FNN and SANN models performed best with an architecture of (12,4,1) and (12,7,12) 

respectively, with each model having a batch size of 20 and number of epochs equal to 300. The RMSE for 

FNN and SANN was found to be 0.86 0C and 0.63 0C, respectively.  

Conventional ARIMA model works best with the parameters p = 2, d = 1, q = 1, with an AIC score of 

1685.125. The RMSE for ARIMA is 0.72 0C.  
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For CoLSTM, we found the following architecture to give the best results: Convolutional section 

consists of a single layer with 54 nodes, with each node resulting because of convolution of input with a 54 X 1 

filter; RNN section of the model consists of two layers with 54 nodes each, with only the first layer returning 
output at each timestamp; Dense section of the model works best with 3 layers with an architecture of (8,4,2,1) 

nodes. CoLSTM model gives the least RMSE of 0.52 
0
C. 

 

Figure 7: Comparison of Actual vs Forecasted values of Minimum Temperature using A) FNN, B) ARIMA,            

C) SANN, D) CoLSTM 

Maximum Temperature 
 The most optimized architecture of FNN and SANN for this case too was calculated by performing a 

grid search on the different parameters and it was found to be (12,6,1) and (12,5,12) respectively, with a batch 

size of 20 and number of epochs equal to 500. The RMSE for FNN and SANN was calculated to be 3.07 0C and 

2.75 0C, respectively. 

Conventional ARIMA model works best with the parameters p = 2, d = 0, q = 1 giving an AIC score of 

1784.538. The RMSE for ARIMA is 2.40 0C.  

For CoLSTM, we found the following architecture to give the best results: Convolutional section 

consists of a single layer with 60 nodes, with each node resulting because of convolution of input with a 60 X 1 

filter; RNN section of the model consists of two layers with 60 nodes each, with only the first layer returning 

output at each timestamp; Dense section of the model works best with 4 layers with an architecture of (8,4,2,1) 

nodes. CoLSTM model gives the least RMSE of 1.71 0C. 
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Figure 8: Comparison of Actual vs Forecasted values of Maximum Temperature using A) FNN, B) ARIMA,            

C) SANN, D) CoLSTM 

Vapour Pressure 

  Due to its relatively less variability with respect to temperature, vapour pressure is easier to predict 

than the other two parameters and correspondingly has a lower RMSE. The models FNN and SANN best 

performed with the architecture (12,5,1) and (12,9,12) respectively, with a batch size of 20 and number of 

epochs equal to 500. The most optimized versions of these models gave an RMSE of 0.89 Torr and 0.57 Torr, 
respectively.  

Conventional ARIMA model works best with the parameters p = 2, d = 1, q = 1 giving the AIC score 

of 1635.067. The RMSE for ARIMA is 0.77 Torr. 

For CoLSTM, we found the following architecture to give the best results: Convolutional section 

consists of a single layer with 60 nodes, with each node resulting because of convolution of input with a 30 X 1 

filter; RNN section of the model consists of two layers with 30 nodes each, with only the first layer returning 

output at each timestamp; Dense section of the model works best with 4 layers with an architecture of (8,4,2,1) 

nodes. CoLSTM model gives the least RMSE of 0.35 Torr. 
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Figure 9: Comparison of Actual vs Forecasted values of Vapour Pressure using A) FNN, B) ARIMA, C) SANN,    

D) CoLSTM 

Table 1 summarizes the results in terms of RMSE found by applying the four models on each of the parameters. 

 RMSE 

 Minimum Temperature (
0
C) Maximum Temperature (

0
C) Vapour Pressure (Torr) 

FNN 0.86 3.07 0.89 

ARIMA 0.72 2.40 0.77 

SANN 0.63 2.75 0.57 

CoLSTM 0.52 1.71 0.35 

 

VI. Conclusion and Future Work 
In this paper, we studied a deep learning-based approach for forecasting three physical parameters 

affecting the meteorological conditions of a region. These parameters are minimum temperature, maximum 

temperature and vapour pressure and the area of study was Meghalaya in India. We proposed a deep learning 

architecture named CoLSTM. The results suggest that our proposed model outperformed the three other models 

used for comparison, which include ARIMA, ANN and SANN in terms of RMSE. The model works with a 

RMSE of  0.52 0C, 1.71 0C and 0.35 Torr for minimum temperature, maximum temperature, and vapour 

pressure, respectively. Also, the model is computationally efficient.  The forecasting of these three physical 

parameters is an important task as it can be used in many fields ranging from agriculture to tourism.  
As a part of future work, we aim to increase the performance of our model by incorporating physical 

parameters of nearby areas while training the model. We also aim to derive direct correlations between the 

agricultural yield and physical parameters  in Meghalaya region. 
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