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Abstract: 
Background: Credit risk evaluation is central to financial stability and prudent lending practices. Conventional 

approaches, such as logistic regression, remain widely used because of their simplicity and ease of interpretation, 

yet they often struggle to detect the nonlinear patterns that characterize borrower behavior. Recent advances in 

machine learning (ML) — including algorithms like Random Forest, XGBoost, and Neural Networks — provide 

stronger predictive performance but are frequently criticized for their opacity, which raises concerns for 

practitioners and regulators. 

Materials and Methods: To address this gap, this study introduces an Explainable Artificial Intelligence (XAI) 

framework that integrates the predictive advantages of ML with interpretability methods such as SHAP and 

LIME. Drawing on an open-source credit dataset, the analysis compares traditional and ML models across 

multiple evaluation criteria 

Results: Results indicate that Logistic Regression delivers the highest overall accuracy (77.3%), while ensemble 

techniques such as Random Forest show greater effectiveness in distinguishing high-risk borrowers. The XAI 

tools further reveal that loan amount, borrower age, and loan duration are the most influential factors driving 

default risk, offering valuable insights for both lenders and policymakers. 

Conclusion: Overall, the findings suggest that embedding explainability within ML applications can achieve a 

balance between predictive precision and transparency, thereby supporting more responsible and trustworthy 

adoption of AI in credit risk management. 
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I. Introduction 
Credit risk has always been at the heart of banking and financial stability. The ability to assess whether 

a borrower will default on a loan not only determines institutional profitability but also influences systemic 

resilience. Traditionally, banks have relied on statistical techniques such as logistic regression or discriminant 

analysis. These methods are interpretable, straightforward to implement, and compliant with regulatory 

expectations. Yet they impose restrictive assumptions: linearity, additivity, and independence. Such assumptions 

no longer align with the dynamic realities of credit markets shaped by fintech innovations, digital payment 

systems, and the surge of alternative data sources. 

The emergence of machine learning (ML) has changed the landscape of credit scoring. Algorithms such 

as random forests, gradient boosting machines, and deep neural networks have demonstrated superior ability to 

capture nonlinearities and interactions in borrower data. In benchmark studies, ML models consistently 

outperform traditional methods, reducing misclassification rates and providing lenders with better tools to manage 

default risk (Lessmann et al., 2015). Despite this, adoption in regulated environments remains cautious. The 

“black-box” problem persists: how can a financial institution justify a loan rejection if it cannot explain how the 

model arrived at that decision? 

This paper addresses the long-standing tension between predictive accuracy and interpretability. 

Regulators demand transparency, borrowers seek fairness, and lenders need performance. Our argument is that 

neither traditional credit scoring nor black-box ML models alone can satisfy all three demands. Instead, an 

integrated approach that combines ML’s predictive power with the interpretability of Explainable AI (XAI) within 

a business analytics framework offers a more balanced path forward. 

The objective of this study is threefold. First, we benchmark traditional credit scoring techniques against 

ML algorithms using real-world lending data. Second, we apply explainability tools, notably SHAP and LIME, 
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to interpret the predictions of ML models. Third, we demonstrate how lenders can derive actionable business 

insights, ensuring that advanced analytics do not undermine transparency. In doing so, the paper contributes to 

both academic literature and financial practice by showing how ML and business analytics can work hand in 

hand. 

 

II. Literature Review 
Traditional Approaches to Credit Risk Assessment 

For decades, credit scoring relied on linear statistical models. Logistic regression, in particular, became 

the industry standard because it produces odds ratios that are easy to interpret and justify in regulatory settings 

(Thomas, Crook, & Edelman, 2017). However, these methods rest on strong assumptions of linearity and normally 

distributed predictors. In real-world lending, where interactions and nonlinear relationships abound—such as the 

combined effect of income volatility and high utilization—these models often fail to capture important risk 

patterns (Anderson, 2007). 

 

Machine Learning in Credit Scoring 

The arrival of ML expanded the horizon. Ensemble methods such as random forests (Breiman, 2001) 

and gradient boosting machines (Friedman, 2002) demonstrated their ability to detect complex, nonlinear 

borrower characteristics. Deep learning approaches pushed predictive performance even further (Goodfellow et 

al., 2016). Empirical studies confirm these gains. Lessmann et al. (2015), for example, compared multiple 

classification algorithms across international datasets and found that gradient boosting and random forests 

consistently outperformed logistic regression in terms of predictive accuracy. Similarly, Brown and Mues (2012) 

showed that ML models could substantially reduce misclassification in imbalanced datasets where defaults are 

rare. 

 

The Black-Box Challenge 

The strength of ML models lies in their complexity, but this also becomes their weakness. Decision 

boundaries are not easily interpretable, and feature contributions are difficult to trace. Rudin (2019) argues that 

for high-stakes decisions such as credit approval, black-box models should be avoided altogether, as they 

undermine accountability. Regulators echo this concern. The European Banking Authority (2021) emphasizes 

that transparency and explainability are prerequisites for AI deployment in financial services. Without them, 

institutions risk reputational damage, legal challenges, and regulatory penalties. 

 

Explainable AI (XAI) 

Explainable AI emerged as a solution to the interpretability problem. Tools like SHAP (Lundberg & 

Lee, 2017) provide global and local explanations by attributing each prediction to individual features using 

concepts from cooperative game theory. LIME (Ribeiro, Singh, & Guestrin, 2016) approximates complex 

decision boundaries with simpler interpretable models in a local neighborhood of the prediction. More recently, 

counterfactual explanations have gained popularity, showing what minimal changes a borrower would need to 

make to shift from rejection to approval (Karimi et al., 2020). 

 

Empirical Review 

The integration of Explainable Artificial Intelligence (XAI) in credit risk analysis has been extensively 

explored in recent literature. Pandey et al. (2017) surveyed various techniques used in banking to evaluate credit 

approval risk. Misheva et al. (2021) implemented XAI on machine learning models using the Lending Club 

dataset. The existing research also highlights practical challenges and the potential of XAI in credit risk 

management on peer review platforms (Bussmann et al., 2020; Bussmann et al., 2021). Biecek et al. (2021) 

compared predictive models, finding tree-based models superior to others. Heng and Subramanian (2022) 

reviewed machine learning applications in credit risk modeling, emphasizing XAI's role in improving model 

predictability and transparency. Hu and Wu (2023) used XAI to identify causal relationships with restricted 

datasets, emphasizing cross-validation, regularization, and bootstrapping techniques. 

De Lange et al. (2022) integrated the LightGBM model with SHAP to interpret explanatory variables 

affecting predictions. Demajo et al. (2020) proposed an accurate and interpretable credit scoring model. van der 

Burgt (2020) cautioned that AI in banking requires regulatory adjustments. Gramespacher and Posth (2021) 

discussed machine learning's adaptability to credit risk evaluation needs. Sowmiya et al. (2024) employed LIME 

and SHAP to enhance the interpretability of risk evaluation in credit approvals, integrating gradient boosting 

algorithms (XGBoost, LightGBM) and Random Forest to provide a comprehensible framework, demonstrating 

improved transparency and trustworthiness in credit risk evaluation. The research collectively underscores the 

importance of XAI in enhancing trust and compliance in credit risk analysis, focusing on feature relationships 
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and interactions (Fritz-Morgenthal et al., 2022; Dessain et al., 2023; Davis et al., 2023; Nallakaruppan et al., 

2024). 

Despite advances in both predictive modeling and explainability, most studies treat them separately. 

Some focus on improving accuracy without regard to interpretability, while others prioritize interpretability but 

fail to demonstrate how these methods integrate with business analytics. The gap, therefore, lies in creating a 

unified framework that combines performance and interpretability, demonstrating not just technical feasibility 

but also business value. This is the gap the paper seeks to fill. 

 

 
Figure: Proposed Flowchart 

 

III. Material And Methods 
This study utilizes the well-known German Credit Risk Dataset, obtained from the UCI Machine 

Learning Repository (Hofmann, 1994). The dataset contains 1,000 anonymized loan applicant records provided 

by a major financial institution in Germany. Each record captures a borrower’s demographic profile (age, 

employment status, housing status), financial history (e.g., credit history, savings, existing liabilities), and loan 

characteristics (e.g., loan amount, installment rate, loan purpose). The dependent variable is binary: default (1) or 

non-default (0), making the dataset suitable for supervised classification tasks (Hosmer et al., 2013). 

 

 
Figure2: A sample of Data used 
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Data Preprocessing 

The data preparation process was conducted in two stages. First, the raw Stata file was cleaned and 

structured: categorical variables such as job type, foreign worker status, and housing were encoded into numeric 

categories, while continuous variables such as age, duration, and loan amount were standardized for 

comparability. Dummy variables were generated where necessary, and inconsistent entries were resolved. The 

cleaned dataset was then exported as a CSV file and further processed in Python using Jupyter Notebook. At this 

stage, missing values were handled, variables were normalized, and the dataset was split into training and testing 

subsets to ensure unbiased model evaluation. These preprocessing steps align with best practices in applied 

machine learning (Bishop, 2006; Goodfellow et al., 2016). 

This box plot indicates that loan amounts in the German credit data vary by credit history, with "Critical" 

borrowers requesting the highest median amounts (7,500–10,000 units) and showing the most extreme outliers 

(up to 20,000 units). This suggests a potential link between poor credit history and larger loan requests, which 

could inform risk management strategies 

 

 
Figure 3: Boxplot showing the distribution of loan amount 

 

Logistic and Machine Learning Models (XGBoost & Random forests) 

Two sets of predictive models were developed. The first set applied traditional statistical models, 

specifically logistic regression analysis, which remain widely used in credit risk classification due to their 

interpretability and strong statistical support (Hosmer et al., 2013). The second set explored advanced machine 

learning approaches. Random forests, introduced by Breiman (2001), were employed for their ensemble learning 

capacity and robustness to overfitting. Gradient boosting machines, implemented through the XGBoost 

framework, were included for their efficiency in handling structured tabular data (Chen & Guestrin, 2016). 

Finally, feed-forward neural networks were trained to capture nonlinear interactions and complex patterns within 

the borrower data, reflecting modern advances in deep learning for financial applications (Goodfellow et al., 

2016). 

The dual approach was deliberate. Traditional models like logistic regression provide transparency, 

allowing researchers and practitioners to identify which borrower characteristics most strongly influence default 

probability. This interpretability is crucial in regulated financial environments where decision-making must be 

explained. In contrast, machine learning models often deliver higher predictive accuracy by leveraging ensemble 

methods or deep learning architectures, but at the cost of interpretability. By comparing both approaches, this 

study balances insight (interpretability) with performance (predictive power), thereby producing a comprehensive 

evaluation of credit risk prediction. 

 

Explainability and Evaluation Metrics 

To determine the quality of predictions, the study relied on metrics that go beyond simple accuracy, 

since credit risk decisions demand both fairness and precision. The area under the ROC curve (AUC-ROC) was 

particularly useful because it captures how well models distinguish between reliable borrowers and potential 

defaulters across thresholds (Hanley & McNeil, 1982). Precision and recall were equally important: while 

precision measured the proportion of predicted defaulters who truly defaulted, recall reflected the model’s success 

in identifying those at risk. The F1-score then offered a balanced single indicator, combining both measures. All 

models were evaluated on the same balanced dataset, and 10-fold cross-validation was applied to ensure 

comparability and to minimize the risk of random bias in performance estimates (Kohavi, 1995). 
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Model Integration using SHAP & LIME 

Yet predictive accuracy alone cannot guarantee trust in financial decisions. To address this, the study 

incorporated model explainability using two state-of-the-art techniques. SHAP (SHapley Additive exPlanations) 

provided a global ranking of features while also generating borrower-specific explanations by assigning each 

variable a contribution value to the final prediction (Lundberg & Lee, 2017). In contrast, LIME (Local 

Interpretable Model-Agnostic Explanations) focused on the neighbourhood of individual predictions, showing 

how the model behaved in borderline cases where loan approval decisions were most uncertain (Ribeiro, Singh, 

& Guestrin, 2016). Taken together, these approaches ensured that the models were not only predictive but also 

transparent, bridging the gap between machine learning performance and the accountability required in credit risk 

assessment. 

 

IV. Result 
This section presents the results of the credit risk analysis, showing how borrower characteristics and 

financial indicators influence the likelihood of default. Using the trained models, we examine not only predictive 

accuracy but also which features contribute most to the predictions. Advanced explainability techniques, 

including SHAP and LIME, allow us to see both the global influence of each variable and the local dynamics 

behind individual predictions. The findings provide a clear picture of the patterns of risk within the dataset, 

highlighting key factors that drive creditworthiness and offering practical insights for lenders and policymakers.  

Figures 4-7 shows the performance scores of each both the traditional and Machine Learning Models 

 

 
Figure 4: XGBoost Performance Score 

 

 
Figure 5: Random Forest Performance Score 

 

 
Figure 6: Neural Network Performance Score 

 

 
Figure 7: Neural Network Performance Score 
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The Random Forest model achieved an overall accuracy of 74.3 percent, indicating that it was able to 

correctly classify about three-quarters of all borrowers in the dataset. Its strength lay in identifying defaulters, 

with a recall of 91 percent and a precision of 77 percent, meaning it correctly flagged most risky borrowers and 

was generally accurate when making such predictions. However, the model struggled with non-defaulters, 

recording only 36 percent recall, which reveals a tendency to misclassify many safe borrowers as risky. This 

conservative bias may protect lenders from defaults but at the cost of excluding legitimate borrowers who could 

have repaid. 

XGBoost offered slightly better performance, with an accuracy of 75.3 percent. Compared to Random 

Forest, it improved its ability to recognize non-defaulters, reaching 45 percent recall, while maintaining strong 

performance in detecting defaulters with a recall of 89 percent and precision of 79 percent. This balance 

demonstrates that XGBoost is not only reliable in identifying high-risk borrowers but also fairer to low-risk 

applicants than Random Forest. Its predictive power, combined with more balanced classification, makes it a 

practical choice for institutions seeking both financial safety and inclusion. 

The Neural Network (MLP) recorded an accuracy of 73.3 percent, which was slightly weaker than the 

tree-based models. While it maintained respectable results in predicting defaulters, with a recall of 85 percent and 

precision of 79 percent, it was less effective at identifying non-defaulters. With a precision of 57 percent and 

recall of 47 percent for class 0 borrowers, it misclassified nearly half of the safe applicants. This suggests that, 

within the context of structured financial data, deep learning models like MLP may not necessarily outperform 

more traditional algorithms, highlighting their relative inefficiency in this domain. 

Logistic Regression outperformed all other models, achieving an accuracy of 77.3 percent. It offered the 

best balance between precision and recall, particularly excelling in identifying non-defaulters with 68 percent 

precision. At the same time, it maintained a high recall of 90 percent for defaulters and a strong overall F1-score 

for class 1 borrowers. These results demonstrate that simpler, interpretable models like Logistic Regression can 

rival or even surpass more complex machine learning algorithms in predictive accuracy and fairness. Its 

performance underscores the value of transparency and reliability in credit risk assessment, where business 

stakeholders often prioritize clarity in decision-making as much as predictive power. 

 

Explainability Insights from SHAP & LIM 

SHAP (SHapley Additive exPlanations) offers a global view of feature importance across the entire 

dataset. By assigning each variable a contribution value for every prediction, SHAP reveals which borrower 

characteristics most strongly influence default probability. For instance, it can show that loan amount, credit 

history, or employment type consistently drive the model’s predictions. This global perspective allows analysts 

and policymakers to identify systemic risk factors and make informed strategic decisions. 

 

 
Figure 8: Feature Importance 
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This feature importance plot indicates that amount is the most critical factor in predicting credit risk in 

the German credit data, followed by age and duration. This aligns with the earlier box plot’s observation of larger 

loan amounts in high-risk categories ("Critical," "Poor"). The results can guide XAI-enhanced credit risk models 

(e.g., using SHAP or LIME as in Sowmiya et al., 2024) to improve transparency and trust in banking decisions. 

LIME (Local Interpretable Model-Agnostic Explanations), in contrast, provides local explanations for 

individual predictions. It approximates the model’s behavior in the neighborhood of a single test instance, 

showing why a particular borrower was classified as “high risk” or “low risk.” This level of detail is essential for 

operational decision-making, as it highlights borderline cases where careful scrutiny is needed, ensuring that loan 

approval or denial can be justified transparently. 

 

 
Figure 8: LIME Explanation prediction probabilities 

 

After training the XGBoost model on the preprocessed borrower dataset, the next step was to interpret 

the predictions using SHAP (SHapley Additive exPlanations). The goal was to determine which features most 

strongly influenced the model’s classification of borrowers as high or low credit risk. First, the preprocessed test 

dataset was prepared to match the features used during training, ensuring consistency in the inputs. Then, SHAP’s 

Tree Explainer was applied to the trained XGBoost model to calculate the contribution of each feature to every 

individual prediction. Finally, a summary plot was generated to visualize global feature importance, highlighting 

the variables that consistently drive the model’s predictions. 

 

 
Figure 9: SHAP value -Impact on model output 
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Comparative Performance 

 

 
 

The model comparison shows that Logistic Regression achieved the highest overall accuracy (77.33%), 

closely followed by Random Forest at 75.33%. Logistic Regression also maintained strong precision (76.26%), 

recall (77.33%), and F1-score (75.98%), indicating a balanced ability to correctly identify both good and bad 

credit cases while minimizing misclassifications. In terms of AUC-ROC, Random Forest slightly outperformed 

Logistic Regression (0.7755 vs 0.7743), suggesting it has a marginally better overall discriminative ability 

between good and bad credit, despite its slightly lower accuracy. XGBoost and Neural Network (MLP) showed 

lower performance across all metrics, with XGBoost achieving an accuracy of 74.67% and AUC-ROC of 0.7214, 

and MLP achieving 73.33% accuracy and 0.7341 AUC-ROC. Overall, while Logistic Regression provides the 

most balanced performance in terms of accuracy, precision, recall, and F1-score, Random Forest demonstrates 

slightly superior discriminative power according to AUC-ROC, making both models strong candidates for reliable 

credit risk prediction depending on the priority between accuracy and class separation. 

The cross-validation results indicate that Random Forest achieved the highest mean CV-accuracy of 

76.6% with a low standard deviation of 1.91%, reflecting both strong predictive performance and consistent 

stability across folds. Logistic Regression and XGBoost showed similar mean accuracies (74.8% and 75.0%, 

respectively) but with slightly higher variability, while the Neural Network (MLP) had the lowest mean accuracy 

at 74.4% and the highest standard deviation of 3.56%, suggesting less reliable performance across different data 

splits. 

Overall, traditional models like Logistic Regression was competitive with modern ML algorithms for 

structured tabular data, while ensemble methods like Random Forest provide slightly better robustness and 

discriminative ability, making a combined evaluation across accuracy, precision, recall, F1-score, and AUC-ROC 

essential for selecting the most appropriate model for credit risk prediction. 

 

V. Discussion 
The study's findings offer valuable insights into the application of machine learning (ML) models for 

credit risk assessment, particularly in the context of explainable artificial intelligence (XAI). The comparison 

between traditional and ML models, coupled with the use of SHAP and LIME for interpretability, underscores 

the evolving landscape of credit scoring. 

 

Benchmarking Traditional and ML Models 

The research highlights that traditional models like Logistic Regression can perform competitively with 

advanced ML algorithms. Logistic Regression achieved an accuracy of 77.3%, with a balanced precision and 

recall, making it a strong candidate for credit risk prediction. This aligns with findings from Hadji Misheva et al. 

(2021), who noted that simpler models can offer transparency and reliability in financial decision-making. 

In contrast, ensemble methods like Random Forest and XGBoost demonstrated higher accuracy and 

recall, particularly in identifying defaulters. However, these models also exhibited challenges in classifying non-

defaulters, indicating a trade-off between sensitivity to defaults and the risk of misclassifying safe borrowers. 

This trade-off is critical for lenders aiming to balance risk and inclusion. 

 

Explainability with SHAP and LIME 

The application of SHAP and LIME provided deeper insights into model decision-making. SHAP's 

global feature importance analysis revealed that variables like loan amount, age, and loan duration significantly 

influenced default predictions. This is consistent with findings by Gramegna et al. (2021), who demonstrated that 

SHAP values can effectively capture the impact of individual features on credit risk predictions. 

LIME, offering local interpretability, allowed for examination of individual predictions, highlighting 

cases where model decisions may require further scrutiny. This capability is essential for operational decision-

making, ensuring that loan approvals or denials are justifiable and transparent. 
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Implications for Lenders and Policymakers 

The study emphasizes the importance of integrating XAI techniques into credit risk models. By 

providing transparent and interpretable predictions, lenders can make more informed decisions, enhancing trust 

and accountability in the lending process. Moreover, policymakers can utilize these insights to develop 

regulations that promote fairness and reduce bias in credit assessments. 

The research underscores the potential of combining traditional and ML models with XAI techniques to 

improve credit risk assessment. This approach not only enhances predictive accuracy but also ensures that the 

decision-making process remains transparent and accountable, aligning with the objectives of the study to 

benchmark models, apply explainability tools, and derive actionable business insights. 

 

Theoretical Contributions 

This study contributes to credit risk literature by empirically demonstrating that traditional models like 

Logistic Regression can perform on par with modern ML algorithms in structured tabular lending data, 

challenging the assumption that more complex models always outperform simpler ones. By applying SHAP and 

LIME, it also enriches theoretical understanding of explainable AI (XAI) in financial contexts, highlighting how 

global and local interpretability can be systematically integrated into credit scoring. These findings provide a 

framework for future research exploring model transparency, fairness, and feature influence, bridging the gap 

between predictive performance and interpretability in credit risk modeling. 

 

Practical Contributions 

From a practical standpoint, the study offers actionable insights for financial institutions and 

policymakers. Lenders can leverage the balanced predictive power of Logistic Regression or the discriminative 

ability of Random Forest to optimize credit decisions, while employing SHAP and LIME to justify approvals or 

denials transparently. This approach mitigates default risk without unfairly excluding low-risk applicants, 

promoting inclusive lending. Policymakers can also use the feature importance results to identify systemic risk 

factors—such as high loan amounts or poor credit history—and design regulations or interventions that enhance 

stability and fairness in the credit market. 

 

Limitations and Future Research 

While comprehensive, this study has limitations. First, the dataset reflects a specific lending 

environment, which may limit the generalizability of findings across different countries or financial systems. 

Second, the analysis focused primarily on structured borrower features, leaving unstructured data (e.g., 

transaction logs or social media profiles) unexplored. Third, while SHAP and LIME provide transparency, their 

interpretations are sensitive to model choice and data preprocessing. Future research could extend this work by 

incorporating alternative datasets, evaluating temporal changes in credit risk, integrating unstructured data, and 

exploring hybrid models that combine interpretability with enhanced predictive power. 

 

VI. Conclusion 
In conclusion, this study demonstrates that combining traditional credit scoring models with modern ML 

algorithms, supported by XAI techniques, yields both accurate and interpretable credit risk predictions. Logistic 

Regression proved that simplicity and transparency can rival complex models, while Random Forest and 

XGBoost offer strong predictive performance when sensitivity to defaulters is paramount. The use of SHAP and 

LIME ensures that decisions are explainable, justifiable, and actionable, fostering trust among lenders and 

borrowers alike. Overall, the research highlights the complementary role of predictive analytics and 

interpretability in shaping responsible, effective, and inclusive credit risk management 
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