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Abstract: The quantum harmonic oscillator is a quantum mechanical counterpart to the classical harmonic 

oscillator. It's also one of the few quantum-mechanical systems for which a precise, analytical solution exists. It 

is one of the most significant model systems in quantum mechanics because a given smooth potential can 

generally be represented as a harmonic potential at a vicinity of a stable equilibrium point. The tiny vibrations 

in a diatomic molecule are classically viewed using a quantum harmonic oscillator model, but the 

representation is universal in the sense that it may be extended to a range of other circumstances in physics and 

beyond. The main purpose of this paper is to review applications of quantum harmonic oscillator model in 

financial mathematics. 
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I. Introduction 
Finance theory is based on instrument pricing such as stock and option pricing. Finance community are 

facing many issues which have unknown analytical solution. As a result, the use of computer simulations to 

solve these challenges has exploded. Many computational finance problems are highly computationally 

complicated and take a long time to solve on classical computers. Option pricing becomes much more 

complicated as a result of the need to react to quickly changing markets.  

To take advantage of inaccurately priced stock options, for example, the computation must be 

completed before the next shift in the stock market, which is almost constantly changing. As a result, the 

financial community is constantly looking for solutions to the performance challenges that develop as a result of 

price options. This has led to financial study using alternate computing techniques. Quantum computing is one 

of these options. Computing, like physics models, has progressed from classical to quantum. Quantum 

computers have been demonstrated to outperform classical computers in the simulation of quantum mechanics 

as well as various other algorithms such as Shor's factorization method and Grover's quantum search algorithm, 
making them a promising topic for research in computational finance. The concept of bringing quantum 

mechanics to finance is not new: some well-known financial problems can be directly described in quantum 

mechanics. The Black-Scholes-Merton formula, for example, can be transferred to the Schrodinger equation, 

simulating the arbitrage linkages that led to its formulation. Even the entire financial market can be modelled as 

a quantum process, in which important financial quantities like the covariance matrix emerge spontaneously. 

Many financial problems can be described as optimisation problems. These are problems that are difficult for 

classical computers to solve, but which can be solved naturally employing quantum optimization techniques.  

This topic has risen in popularity in recent years, partly in response to the commercial availability of 

quantum computers. Nowadays many physical, mechanics and computer entities are being quantized and used 

for the betterments and research purposes. One important phenomenon of classical physics say, harmonic 

oscillator is a system that fluctuates away from equilibrium (like a pendulum) but has a restoring force that 
brings it back to it. The quantum analogue, a quantum harmonic oscillator, is a system that is displaced from 

equilibrium and has a restoring force, but it differs from the classical system in several ways, including the 

quantization of its energy levels (discrete). Here we want to focus on the quantum-mechanical analogue of 

the classical harmonic oscillator named quantum harmonic oscillator which is one of the most important model 

systems in quantum mechanics. It is one of the few quantum-mechanical phenomena for which an exact 

analytical solution is known.  

 

 

 

https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Harmonic_oscillator
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Quantum Harmonic Oscillator:   
               In nature, a quantum harmonic oscillator is a micro-physical system with a mathematical structure 

derived with the help of Bohr correspondence principle from the classical harmonic oscillator. There are 

numerous micro-physical systems like this. The diatomic molecule provides an example, as long as the energy is 

not too high and there is no rotation. It is frequently much easier to evaluate a system like a diatomic molecule 
in terms of how it moves as a whole—such as vibrate or rotate—rather than breaking it down into its numerous 

constituent particles. Collective motion refers to the overall motion of the system. The transition from classical 

to quantum entities is accomplished by substituting classical quantities such as position x and momentum p with 

the corresponding quantum mechanical operators Q and P, as per the quantization principles. The Hamiltonian 

H, a quantum energy operator, is then derived from the classical energy formula 

           
  

  
 

 

 
    

by making the replacements                      . As a result, the Hamiltonian is thought to represent 

the energy operator for the quantum harmonic oscillator and to express in the terms of  . Because    
 

 
 

(System follows oscillations with an angular frequency). After making the replacements, we will get quantum 

energy formula: 

  
  

  
 

 

 
     

The operators P and Q are postulated to satisfy the Heisenberg relations                 and       

        where   is the unit operator and   
 

  
, where is the Planck’s constant. The constants  and  are 

mass of the particle and kinetic energy constant. In the classical case the energy           , the momentum p, and 

the position x are real numbers whereas in the quantum-mechanical case the quantities are represented by the 

self-adjoint operators H, P, and Q, respectively. The constants μ and ω are characteristic of the particular 

physical system. 

 

The Hamiltonian based on quantum harmonic oscillator, with 
 

 
           , provides a satisfactory 

description in a limited energy range. Since vibrating diatomic molecules are the only harmonic oscillators 

described by the Hamiltonian here, only a finite number of the energy eigenstates       are physically important. 

The quantum harmonic oscillator has a lowest energy value    
  

 
, known as the zero-point energy. This 

feature, particular to quantum mechanics, is to be contrasted with the classical convention that the minimum 

energy of the oscillator is zero.  

Physical quantum harmonic oscillators occur in nature in many different forms, in particular as 

diatomic molecules such as              . Each of these oscillators has different values of the system 

constants k and μ, resulting in a different value of angular frequency ω. But otherwise, the Hamiltonian of each 

of the vibrating diatomic molecules has the same form written above, leading to equal spacing between energy 

levels. The vibrating diatomic molecule is one such physical system that can be approximately described as a 

quantum harmonic oscillator. From energy loss experiments, for diatomic molecules the energy levels are found 

to be equally spaced within a certain range of data. Thus, within this range, diatomic molecules can be described 

as quantum harmonic oscillators. 

A quantum harmonic oscillator model is generally used to represent the tiny vibrations in a diatomic 

molecule, but the description is universal in the sense that it can be expanded to a range of other cases in physics 

and even beyond, as we mentioned before. A new study shows that the restoring force in a vibrating quantum 

harmonic oscillator seems to give a decent approximation of the market force that returns a volatile stock to 
equilibrium.  

 

Diagram:  
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Figure -1 showcase the Eigen-function based on the time independent, quantum harmonic oscillator where the 

normalized stationary states for the oscillator are given in the terms of Hermite polynomials, 

 
Figure -2 elaborates the Eigen-states and the probability density distributions of the quantum harmonic 

oscillators for the Eigen-states n=4. Figure-3 gives the exact difference about classical and quantum harmonic 

oscillator where the classical harmonic  oscillator is denoted by the orange colour and its quantum counterpart is 

denoted by the blue  colour.       

 

  Figure 3 

From the diagram one can easily see that, at the centre of the well, the probability density distributions 

for a quantum oscillator in the ground low-energy state are largest. It is expected that the particle spent its most 

of the time to oscillate at the centre of the well in order to be detected there with the greatest likelihood. This is 
in contrast to the behaviour of a classical oscillator, in which the particle spends the majority of its time at the 

turning points travelling at relatively slow speeds. 

   Some important axioms regarding quantum harmonic oscillator: 

 Allowed energies are discrete and uniformly spaced for quantum harmonic oscillator and the spacing 

between the energies are as same as the Planck's energy quantum. 

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(LibreTexts)/05%3A_The_Harmonic_Oscillator_and_the_Rigid_Rotor/5.07%3A_Hermite_Polynomials_are_either_Even_or_Odd_Functions
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 The ground state energy is always greater than zero which means a quantum oscillator is never at rest 

like its classical counterpart, even at the bottom of a potential well. 

 For high quantum numbers, the motion of a quantum oscillator becomes  

more similar to the motion of a classical oscillator as per the Bohr’s correspondence  

principle. 

 The stationary states (states of definite energy) have nonzero values also in regions beyond classical 

turning points. When in the ground state, a quantum oscillator is most likely to be found around the position of 

the minimum of the potential well, which is the least-likely position for a classical oscillator. 

 The probability of finding a ground-state quantum particle in the classically forbidden region is about 

16%. 

 Eigen-functions of quantum harmonic oscillator are nothing but the Hermite polynomials with degree 

depends on the oscillations. 

 

II. Literature Review 
Ye and Huang (2008) proposed a model to explain persistent economic fluctuations was based on 

quantum mechanics, while Frisch's classical damping oscillator model has failed to do so successfully. Since the 

same stock has a price range rather than a set price at different times, this is predicated on the concept that the 

value might be a wave packet that determines the probability of each price. In this situation, the market is 

viewed as a device capable of determining value and determining a price. The numerical simulation findings are 

then used to qualitatively explain long-term stock market changes. 

Ataullah (2009) shows how quantum mechanics' complementarity principle relates to stock market 

prices, and how the wave function it generates leads to a probability density that is very compatible with the 

FTSE All Share Index's returns. Our research reveals that the probability density of stock market returns is 

strongly leptokurtic, with a minor negative skewness. 

Cotfasa and Cotfas (2013) look into an extension that is actually associated to the quantum harmonic 
oscillator. Using a finite oscillator and the Harper functions, a finite-dimensional version is created. This 

reduced model retains the key qualities of the continuous one, but instead of series and integrals, it uses finite 

sums. 

Meng et al. (2016) construct an econophysical structure for the stock market based on quantum 

mechanics' physical concepts and mathematical structures, in which we analogously map massive numbers of 

single stocks into a reservoir consisting of many quantum harmonic oscillators, and their stock index into a 

typical quantum open system—a quantum Brownian particle. In Heisenberg's uncertainty principle of quantum 

mechanics, the irrationality of stock transactions is quantitatively treated as the Planck constant in a similar 

manner. Furthermore, he uses the quantum Brownian motion model to analyse real stock data from the Shanghai 

Stock Exchange of China and investigate fat-tail phenomena and non-Markovian behaviours of the stock index, 

interpreting and studying the limitations of the classical Brownian motion model for the efficient market 

hypothesis from a new perspective of quantum open system dynamics. 
Gao and Chen (2017) offer a financially interpretable quantum model to examine the probability 

distributions of stock price returns. The dynamics of a quantum particle are likened to the movement of a stock 

market. Then, using the wave functions that evolve according to the Schrodinger equation, the probability 

distributions of price return can be determined. In this study, instead of using a harmonic oscillator, a quantum 

anharmonic oscillator is used on the stock in the liquid market. With the addition of mixed-state and multi-

potential, proposed quantum model effectively recreates leptokurtic price return distributions. As a special case 

of the illiquid market, the trend following dominant market is examined, in which the price return follows a 

bimodal distribution. 

Ahn et. al. (2018) demonstrate that the quantum harmonic oscillator model outperforms traditional 

stochastic process models, e.g., geometric Brownian motion and the Heston model, with smaller fitting errors 

and better goodness of fit statistics. The solution of the Schrodinger equation for the quantum harmonic 
oscillator shows that stock returns follow a mixed distribution, which describes Gaussian and non-Gaussian 

features of the stock return distribution. In addition, they provide an economic rationale of the physics concepts 

such as the eigenstate, eigenenergy, and angular frequency, which sheds light on the relationship between 

finance and Physics literature.  

Oduro et. al. (2021) designed study to obtain the energy eigenvalues and the corresponding 

Eigenfunctions of the Quantum Harmonic oscillator through an alternative approach. They recover the 

Schrodinger Equation together with its eigenvalues and eigenfunctions of the quantum harmonic oscillator via 

the use of Gram Schmidt orthogonalization process in the usual Hilbert space. Significantly, it was found that 

there exist two separate sequences arising from the Gram Schmidt Orthogonalization process; one in respect of 

the even eigenfunctions and the other in respect of the odd eigenfunctions. In the case of a strike price that is not 

too far from the current price of the underlying asset, the Black-Scholes model predicts the observed pricing for 
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options quite well. A proper modification of the coefficients in the Black-Scholes equation can yield some 

helpful extensions.  

Xiangyi et al. (2022) explores the behaviour of stocks in daily price-limited stock markets. In a 

quantum spatial-periodic harmonic oscillator potential well, the stock price is considered to be oscillating and 

damping. With the energy band structure of the model in question, a sophisticated non-linear relationship 
between the volatility and trading volume of a stock is statistically calculated, including inter-band positive 

correlation and intra-band negative correlation. The efficiency of price limits is re-examined, with our quantum 

model being used to investigate some observable aspects of price-limited stock markets in China. The Financial 

Times-Stock Exchange (FTSE) All Share Index's instantaneous return is modelled as a frictionless particle 

travelling in a one-dimensional square well with a non-trivial probability of tunnelling through the well's 

retaining walls.  

     

III. Conclusion and Future scope 
Because the harmonic oscillator is just a lowest order estimation of an arbitrary binding potential, the 

quantum harmonic oscillator is essential to every problem regarding physics and finance, involving quantum 

degrees of freedom in a potential well. Quantum harmonic oscillator (QHO) involves square law 

potential      in the Schrodinger equation and is a fundamental problem in quantum mechanics. The quantum 
harmonic oscillator model can be solved using a variety of traditional methods, including:  

(i) analytical methods involving Hermite polynomials,  

(ii) algebraic methods involving ladder operators, and  

(iii) approximation methods involving perturbation, variation method, semiclassical, and other techniques. 

Beyond the small diatomic molecule, the quantum harmonic oscillator has far-reaching implications. It is the 

basis for comprehending complicated modes of vibration in larger molecules, the mobility of atoms in a solid 

lattice, and many more applications in heat capacity theory, stock distribution in financial mathematics, supply 

and demand, and so on. Only at the lowest levels, where the potential is a reasonable approximation of the 

"mass on a spring" type harmonic potential, are energy spacings identical in real systems. The anharmonic terms 

that exist in a diatomic molecule's potential can be used to map the detailed potential of such systems. Finally, 
we can say that the quantum harmonic oscillator model can be used in various issues regarding financial 

mathematics because of its ample applications and useful axioms. Even many modifications can be done in 

quantum harmonic oscillator as per the demands of the respective problems. Formulations can also be made for 

the stock distribution with the help of quantum harmonic oscillator model which can give better results for 

goodness of fit tests. 
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