# Magnetic Femtotesla Inductor Coil Sensor for ELF Noise Signals-( 0.1Hz to3.0 Hz)

Rajendra Aparnathi<sup>1</sup>, Ved Vyas Dwivedi<sup>2</sup>

<sup>1</sup>(Research Scholar, Faculty of Technology and Engineering, C U shah University) <sup>2</sup>(Pro Vice Chancellor, C. U. Shah University, Wadhwancity Gujarat, INDIA 363030)

**Abstract:** The research project for detecting magnetic fields in the femtotesla range at extremely low frequency noise is developed, including antenna, transformer and amplifier. Each component is described with relevant tradeoffs which allow a large variety of receivers to be easily designed for any magnetic field sensing in the very low-frequency noise range. This paper introduces a new ELF noise signal Inductor sensor design and find stability for pre amplifier & magnetic inductive. A system using an impedance antenna is developed further as an example that has been used extensively in measurement application in the frequency below 30Hz using MATLAB software tools.

Keywords: Extremely Low Frequency, amplifiers, loop antennas, magnetic field measurement, magnetometers

# I. INTRODUCTION

Magnetic field receivers are used to sense low-frequency [(LF); <30 kHz] electromagnetic waves because of their superior noise performance at low frequencies and their relative tolerance of nearby metallic structures compared to electric field sensors. Superconducting Quantum Interference Devices (SQUIDs) are commonly available amplifiers in this frequency range. These generally use a high-input impedance amplifier and then use feedback to reduce the input impedance as seen by the sensor [1], [2], [3].

Although good noise performance is obtained, they must be operated below the critical temperature of the superconductors, near 0.2K. In general, it is difficult to design a SQUID-based amplifier to have input impedance as low as is required while remaining stable [4]. In a system designed for room temperature also uses a feedback topology; however, the noise performance suffers [5].

Another system developed by Stuchlyet [6] senses magnetic fields between 600 Hz and 210 MHz with a transformer between the sensor and the amplifier. But we are using this topology and analysis we are design magnetic sensor for senses 0.1 to 3 Hz noise signal. However, they use not only a high-input impedance amplifier with feedback but also a shunt resistor increases the noise significantly and is used in applications where the noise is not a primary concern. In their case, noise measurements are not even reported. In groundbased magnetos pheric research, we are interested in receiving signals with large loop antennas and design pre amplifier circuit from 0.1 Hz to 30 kHz. Natural signals in this frequency range include sferics and tweaks generated by lightning, whistlers created when sferics penetrate the ionosphere and travel along a magnetic field line to the other hemisphere, and chorus and hiss due to plasma instabilities in the magnetosphere. Man-made signals include those from the very LF (VLF) navigation and communications transmitters. Using these signals, we study the processes that occur during geomagnetic storms, aurorae, and what is now often called "space weather."These signals have a more or less constant power spectral density from 4 Hz to 30 Hz; thus, we need the receiver to have a flat frequency response over this range rather than one, for example, proportional to frequency. If we use a receiver with low input impedance, the increase in induced electromotive force in the antenna with frequency is counteracted by the increase in inductive reactance of the antenna, making the current into the receiver flat with frequency. The problem is to design a low-impedance amplifier with a good noise figure when connected to an inductive source. We have found that a common-base input stage gives good results, much better than, for example, terminating the loop with a resistor of the same impedance even if followed by an ideal noise-free amplifier[7].

In this paper, we describe a sensitive VLF receiver design method originally developed by E. Paschal. The various design equations and trade of fs of the antenna, transformer, and low-noise amplifier are discussed. Section II begins by describing the design of the loop antenna [8]. Next, we discuss the trade of fs involved in the transformer design in Section III. Section IV follows, describing the amplifier design. In Section V, an example system using a  $1-\Omega-1$ -mH inductive antenna design is presented, and the corresponding performance is shown in Section VI.

# II. ANTENNA DESIGN

Magnetic field antennas are large air-coil loops of wire with Natures and area Aa. Air loops are used instead of ferrite core loops for better linearity and reduced temperature dependence. When designing an air loop antenna, there are three parameters available: the area of the antenna, the diameter of the wire, and the

number of turns. These parameters determine the antenna's wire resistance Ra and inductance La Fig. 1, section I in Fig 1 for antenna impedance model, which, in turn, shape the system response and sensitivity.



Fig.1. System design of fully differential magnetic field receiver, including antenna model, transformer model, and noise model of amplifier.

| LĽI        | E I [1, 5] CONSTANTS FOR VARIOUSINAONE FICEOOI ANTENNASH |                 |            |            |   |  |  |  |  |  |  |
|------------|----------------------------------------------------------|-----------------|------------|------------|---|--|--|--|--|--|--|
|            | Sr.No                                                    | Shape of Loop   | Constant 1 | Constant 2 |   |  |  |  |  |  |  |
| 1 Circular |                                                          | Circular        | 3.545      | 0.815      | 1 |  |  |  |  |  |  |
|            | 2                                                        | Regular Octagon | 3.641      | 0.925      |   |  |  |  |  |  |  |
|            | 3                                                        | Regular Hexagon | 3.722      | 1.000      |   |  |  |  |  |  |  |
|            | 4                                                        | Square          | 4.000      | 1.217      |   |  |  |  |  |  |  |

4.559

4.828

1.561

1.696

Equilateral triangle

Right Isosceles Triangle

5

 TABLE I [1, 3] CONSTANTS FORVARIOUSMAGNETICLOOPANTENNASHAPES

 Stable Share of Loan

Winding capacitance and skin effects are negligible at these frequencies. It is therefore important to derive the relationship among the three parameters and the resulting Ra, La, and sensitivity. Loop shape is usually chosen based on its ease of construction given a desired area Seen in graph mansion bellow.



on its ease of construction given a desired area Seen in graph mansion bellow.

A variety of common loop shapes available are listed in Table I. The constant lis related to the geometry of the antenna and allows for a general expression of the length of each turn that is valid for any shape Antenna Turn  $I = C_a \sqrt{A_a}$ 

Length 
$$= C_a \sqrt{C_a}$$

(1)

Using this expression, the antenna resistance for any shape is

$$R_a = \frac{4\rho N_a C_1 \sqrt{A_a}}{\pi d^2} \tag{2}$$

Where  $\rho$  is the resistivity of the wire (for copper,  $\rho = 1.72 * 10^{-8} \Omega m$ ), and is the diameter of the wire. Adapting from [6, pp. 49–53], the inductance for any loop antenna is

$$L_{a} = 2.00 \times 10^{-7} N_{a}^{2} C_{1} \sqrt{A_{a}} \left[ \ln \frac{C_{1} \sqrt{A_{a}}}{N_{a} d} - C_{2} \right]$$
(3)

Where C2is also a geometry-related constant and can be found in Table I for a variety of loop shapes. The two variables Ra and La form the total impedance of the antenna (Za) that is the source impedance seen by the first stage of the receiver

$$Z_a = R_a + j\omega L_a$$

# $V_a = j 2\pi f N_a A_a B \cos(\theta)$

(4)

wherefis the frequency, Bis the magnetic flux density, and  $\theta$  is the angle of the magnetic field from the axis of the loop. If theaxis of the loop is horizontal, the response pattern of the antennais a dipole in azimuth. In the following, we shall be concerned with the response of the loop to an appropriately oriented fieldand will omit the term  $\cos(\theta)$ . Since a VLF receiving loop is very small compared to a wavelength ( $\lambda$ = 1000Km at 300 Hz and 10 Km at 30 KHz), the radiation resistance of the loop is negligible compared to the wire resistanceRa. The minimum detectable signal is limited by the thermal noise of Ra. We define the sensitivity of the antennaSa as the field equivalent of the noise density, i.e., the amplitude of an incident wave which would give an output voltage equal to the thermal noise of Rain a 1-Hz bandwidth. Using (5), we can also design VLF and ELF Amplifier receiving loop very small compared to wave length as very small noise signal 0.1 to 3 Hz, we can express the sensitivity as Qa is sensitivity

$$Q_a = \frac{\sqrt{4kTR_a}}{2\pi f N_a A_a} \tag{5}$$

The antenna sensitivitySa decreases with frequency (i.e,the antenna becomes more sensitive) at 1/f. It is convenient to define a frequency-independent quantity for comparing theperformances of different antennas. We

define the normalized sensitivity as  $\hat{Q}_a = fq_a$ . Using Rain (2), we find an expression for the normalized sensitivity that depends only on the physical parameters of the antenna

$$\hat{Q}_{a} = \frac{\sqrt{4kT\rho C_{1}}}{\pi^{\frac{3}{2}d}\sqrt{N_{a}A^{\frac{3}{4}}_{a}}}$$
(6)

This expression for sensitivity can be used to find the number of turns, antenna area, and wire diameter required for a target sensitivity at a specific frequency. The effect of the resulting antenna resistance and impedance on the rest of the system is discussed in later sections. Further insight can be gained by recalculating this sensitivity as a function of the mass of the antenna. The mass of the wire used in the antenna can be calculated as

$$K = \frac{1}{4}\pi\delta c_1 d^2 \sqrt{N_a} \tag{7}$$

Where K is Gaine where  $\delta$  is the density of the wire. Solving this for  $d = \sqrt{N_a}$  and substituting into (7) produce normalized sensitivity

$$\hat{Q}_a = \frac{c_1 \sqrt{4kT\rho\delta}}{2\pi\sqrt{MA_a}} \tag{8}$$

This interesting result shows that the only way to improve sensitivity with a given antenna material is to increase the total mass or area of the antenna. These receivers are usually placedin remote areas to reduce interference from power lines (at 60 Hz and harmonics); thus, this fundamental tradeoff means that the sensitivity must be balanced against practical limitations regarding weight and size. The most severe limitations for these receivers are units placed at the South Pole for research on the magnetosphere. Since the Earth's magnetic field lines that pass through these regions in the upper atmosphere cross the Earth's surface at the poles, it is the only place that a ground-based receiver can detect the ELF noise signals 0.1 to 3.0 Hz that follow these field lines [7,9].

# III. TRANSFORMER

The transformer electrically isolates the antenna from the rest of the receiver and steps up the impedance by a factor of the square of the turn ratio  $m_2$  to improve the impedance match to the preamplifier. Moreover, the ELF cutoff reduces the noise from the system at frequencies below those of interest [7]. Fig. 1 shows the transformer model and the equivalent noise sources from the amplifier. The combined transfer function of the antenna and transformer can be found with a standard circuit analysis

$$\frac{V_{in}}{V_a} = \frac{j\omega m L_p R_{in}}{k_1 * k_2 + k_3}$$
(9)

$$k_{1} = \left[ R_{a} + R_{p} + j\omega(L_{a} + L_{p}) \right],$$

$$k_{2} = \left[ (R_{s} + j\omega L_{2})(1 + j\omega C_{s}R_{in}) + R_{in} \right],$$

$$k_{3} = \left[ j\omega L_{p}m^{2}(R_{a} + R_{p} + j\omega L_{a})(1 + j\omega C_{s}R_{in}) \right],$$
(10), (11),
(12)

Using (5) and simplifying, the approximate equation shown, facilitates the understanding of how the transfer function is affected by both the design of the transformer and the input impedance of the amplifier:

$$V_{in} \approx \frac{N_a A_a R_{in} B}{m \left(L_a + \rho L_2 / m^2\right)} \left[ \frac{f}{f - j f_i} \right] \left[ \frac{f}{f - j f_i} \right] \left[ \frac{-j f_c}{f - j f_c} \right]$$
(13)

As per (13) the factor  $\rho$  is the ratio of the total inductance on the primary side (including the antenna and L<sub>p</sub>) to the transformer primary inductance alone (L<sub>p</sub>). For an ideal transformer, L<sub>p</sub> =∞, and  $\rho$  =1. Below the frequency f<sub>t</sub>, the shunting effect of L<sub>p</sub> becomes important, and the gain drops rapidly. The receiver is not useful in this region, making f<sub>t</sub> as the L<sub>F</sub> limit of the receiver response. The input turnover frequency fi is the frequency where the total resistance in the input circuit is equal to the inductive impedance to frequency, the current in the input circuit above f<sub>i</sub> is limited by the antenna reactance, which also increases with frequency, giving a flat overall frequency response. Note that f<sub>i</sub> is much higher than f<sub>t</sub> in a good design [9].

As per (14, 15, 16)  $f_i$ , the impedance of the input circuit is dominated by the antenna inductive reactance  $2\pi f L_a$ . Even though the induced voltage across the antenna terminals (5) is proportional this is desirable for most ELF and VLF applications [10].

$$f_{t} = \frac{(R_{a} + R_{p}) \| ((R_{s} + R_{in})p/m^{2})}{2\pi (L_{a} + Lp)}$$

$$f_{i} = \frac{R_{a} + R_{p} + (R_{s} + R_{in})p/m^{2}}{2\pi (L_{a} + pL_{2}/m^{2})}$$

$$f_{c} = \frac{1}{2\pi C_{s}R_{in}}$$

$$p = 1 + L_{a}/L_{p}$$
(14) (15) (16)

The frequency fc, the transformer secondary shunt capacitance  $C_s$  begins to short the input signal, and the gain drops. The interval of flat frequency response is thus from  $f_i$  to  $f_c$ . The transformer leakage inductance  $L_2$  does not significantly affect performance because it appears in series with the much larger m<sup>2</sup>  $L_a$ , as seen on the secondary side of the transformer. The main sources of noise in the system are the thermal noise of the antenna ( $E_a$ ), voltage noise of the amplifier ( $E_n$ ), and the current noise of the amplifier ( $I_n$ ). The noise sources from the amplifier  $E_n$  and  $I_n$  are assumed to be statistically uncorrelated. This is usually true at audio frequencies; if they are correlated, the error is, at most, 30 % [11, 12].

The system sensitivity  $S_{sys}$  is directly affected by the transformer turn ratio and the ratio of current and voltage noise of the amplifier.

$$S_{sys} = \frac{E_a^2 + E_n^2 / m^2 + I_n^2 m^2 Z_a^2}{\omega N_a A_a}$$
(17)

Since the effect of the amplifier noise voltage is reduced by the transformer turn ratio while that of the noise current is increased, the choice of turn ratio has a direct effect on the sensitivity. Typically, we choose m so that  $Ra=R_{in}/m^2$ . That is, we choose the turn ratio so that the input impedance of the amplifier as seen at the transformer primary is about the same as the antenna resistance for a good balance between low-and high-frequency noise concerns. With a common–base input stage, this also gives  $E^2_{a} \approx E^2_{n}/m^2$ , thus making the ELF noise figure about 3 dB. With this choice, the sensitivity improve with higher frequency for a decade or two above fi until the current noise I<sub>n</sub> flowing through  $m^2Z^2$  a becomes important and the sensitivity levels off. Note that a common–base input stage of input resistance  $R_{in}$  gives much better noise performance than an actual resistor of size  $R_{in}$ , even if followed by a noiseless amplifier because is that the current noise of the common base circuit is much lower than the Johnson thermal current noise of the real resistor [12].

However, a real transformer adds some noise and so changes the response. When the real transformer model is used, the total input-referred voltage noise is find the sensitivity, convert the input-referred noise to the equivalent field using the antenna parameters

$$S_{sys} = \frac{E_{in}}{\omega N_a A_a} \tag{18}$$

Comparing this to (6), we see that the sensitivity of the system is similar in form to that of the antenna by itself. At a given frequency, the receiver approaches ideal performance as Eni decreases toward Ea.

$$\begin{split} E_{in}^{2} &\approx E_{a}^{2} + E_{p}^{2} + E_{s}^{2} p^{2} \left(1 + \frac{f_{in}^{2}}{f^{2}}\right) + \frac{E_{n}^{2}}{m^{2}} \qquad f_{tn} = \frac{R_{a} + R_{p}}{2\pi (L_{a} + L_{p})} \\ \left[ \left(p - \frac{f^{2}}{f_{cn}^{2}}\right)^{2} + p^{2} \frac{f_{in}^{2}}{f^{2}} \right] + I_{n}^{2} m^{2} R_{a}^{2} \left(1 + \frac{(2\pi L_{a})^{2}}{R_{a}^{2}}\right) \qquad f_{cn} = \frac{1}{2\pi \sqrt{C_{s} m^{2} L_{a}}} \end{split}$$

#### (19),(20),(21)

The transformer has several important effects on the overall noise. The most important effect is the series resistances in the transformer. The thermal noise of these resistances adds directly to the noise and so must be kept as small as possible. At low frequencies,  $f2/f2 C_n \rightarrow 0$ , and the voltage noise is multiplied by the factor p. Therefore, for good LF noise performance, p must be kept small (i.e.  $L_p$  made large). Moreover, at frequencies below  $f_{tn}$ , the noise performance deteriorates rapidly; thus,  $f_{tn}$  must be kept small. At high frequencies, more of the amplifier voltage noise appears across the transformer capacitance  $C_s$  and increases the noise. Therefore, for good high-frequency noise performance,  $f_{cn}$  should be kept large. It is important to note that the transformer design depends on the impedances and noise characteristics of both the antenna and amplifier. This requires that the system be designed as a unit (antenna, transformer, and amplifier) to produce the desired frequency response and sensitivity.

#### IV. AMPLIFIER

The amplifier has many unique requirements that require a custom design. The first requirement comes from the definition of  $f_i$  from (11). Assuming an ideal transformer for simplicity (resistances $\rightarrow 0$ ,  $L_p \rightarrow \infty$ , and  $L_2 \rightarrow 0$ ),  $f_i$  becomes

$$f_{i} = \frac{R_{a} + R_{in} / m^{2} / 2\pi L_{a}}{2\pi L_{a}}$$
(22)

Which shows that  $R_{in}$  is reduced, the useful bandwidth of the receiver increases. The other main requirement of this receiver involves the noise. Not only do the noise components need to be as small as possible but also the ratio of the voltage noise and current noise is important [12]. In addition, because of the very low frequencies, dc feedback loops are used to maintain the needed voltage levels instead of decoupling capacitors. Many previous circuit solutions for matching to a low-impedance sensor involve using a high-impedance amplifier with negative feedback. However, in this case, the sensor impedance is so low ( $256\Omega at$  low frequencies, as seen from the secondary of the transformer) that this option is not feasible. The feedback resistance would create its own current noise that Add s to the input. As this resistance is increased to reduce the noise, the gain of the amplifier must be increased to keep the input impedance the same. This creates an amplifier of such high gain that stability becomes a serious concern [11, 12].

A simpler solution is to use a common–base or common-gate input stage because of their low input impedances, as shown with device Q1 in Fig. 2. Bipolar junction transistors (BJTs) were chosen because their input impedance is more consistent than that of MOSFETs in which the common-gate impedance 1/gm can have a large spread between individual discrete devices. It is also important that the specific transistor parts chosen have very low noise. In addition, the input stages remain differential to reduce the second harmonic distortion.

The input impedance of the differential first stage is twice the input impedance of a common-based BJT

$$R_{in} = 2r_e = 2\frac{kT}{qI_E}$$
(23)

Therefore, the collector current of the input stage BJTs can be used to adjust  $R_{in}$  as desired. The dc current also directly affects the voltage and current noise of the transistors. From [7, p. 116], the voltage noise of a BJT is

$$E_n^2 = 4kTrb + \frac{2(kT)^2}{qI_C}$$
(24)

Where b is the base resistance The current noise includes both shot noise and1/f noise

$$I_n^2 = 2qI_B + \frac{2qI_C}{\beta^2} + \frac{KI_B^{\gamma}}{f^{\alpha}}$$
(25)

However, the chosen input transistor part should have low enough 1/f noise that shot noise dominates. Both the current and voltage noise depend on the collector current; thus, there is a tradeoff between the desired input impedance Rin and the noise performance. The current noise for the second-stage BJTs (Q2) is also given by (18). Because the current gain of the first stage is one, second-stage current noise is important and appears as if it was in parallel with the first-stage current noise at the amplifier input. To minimize this additional noise, the second stage is operated at a lower collector current, roughly one-third of the current of the first stage. The second-stage  $Q_2$  is a standard differential pair. The voltage follower pair  $Q_3$  prevents the loading of the highimpedance outputs at the collectors of  $Q_2$ . The tail current for  $Q_2$  is controlled by  $Q_4$ . Resistors  $R_{10}$  and  $R_{11}$  give negative feedback around the second stage. The voltage gain from the transformer secondary to the input of the operational amplifier (op-amp) is R10/re, where re is the input impedance of the common-base transistors Q1. Capacitors C1 and C2 provide compensation to ensure stability and limit the bandwidth to 150 kHz. Proximity to power lines and digital equipment can couple noise into the antenna and prohibit sensitive measurements. In our experience, even the ticking of digital watches can be clearly seen in the recorded data. For this reason, the analog-to-digital converter, storage, and power supplies are located  $\sim 200$  ft from the antenna and preamplifier with a 78- $\Omega$  cable connection. The op-amp (U1) drives this line with the help of the step-down transformer (T2). These combine to produce a 1-V maximum signal that can travel to the system recorder. The transformer also provides dc isolation and a differential signal to preserve signal integrity along the long cable [8],[12],[13].

#### V. EXAMPLEDESIGN

The antenna design must balance the desired sensitivity with the practicality of construction. The resistance and inductance of the antenna from (2) and (3) affect the frequency response and sensitivity (11) and (13). For this design, we have chosen  $1.03-\Omega-1.08$ -mH antenna impedance. The ratio gives fi about 0.1 to3 Hz, as desired [13], and the impedance level lends itself to simple loop construction. In fact, using (3) and (6), we find that there is a family of For example, a small antenna can be used with a receiver system to determine the best low-noise site to construct a permanent large antenna. However, not only are large antennas heavy and difficult to construct in remote areas but wind can also cause vibrations that can be mistaken for data. Large antennas should use a stiff frame to keep wind vibrations small. For large open triangular antennas supported by a central tower, the antenna wire should be kept slack so that wind vibrations are below the frequencies of interest. The transformer for this antenna has a turn ratio (m) of 16 and a be interchanged and used with the same receiver, depending on the sensitivity required. Similar tables can be constructed for other impedances

primary inductance( $L_p$ ) of 10 mH. The high-frequency response is dominated by a winding capacitance  $C_S$  of 950 pF. This capacitance is high because bifilar winding is used in both the transformer primary and secondary windings to assure balanced coupling. Using single-strand winding,  $C_s$  can be much smaller. The following parameters' values were calculated as described in Section III:

Moreover, for the noise performance of the transformer, the LF noise corner  $f_{tn}$  is 14.5 Hz, and the high-frequency corner  $f_{cn}$  is 10.2 kHz. The preamplifier circuit design shown in Fig. 2 also includes the component values and part numbers used in the example design. The first stage uses 200µA for a  $R_{in}$  value of 259Ω. The MAT<sub>02</sub> transistors are used for their low  $1/f_{noise}$  so that only shot and thermal noises dominate the receiver noise. The corresponding measurements for this example design are in the next section copper wire loops of various sizes and sensitivities, all with the same impedance. These antennas, listed in Table II, can the smaller antennas are more portable, while the large antennas are more sensitive; thus, the antenna choice is dependent upon the needed sensitivity and available physical space.

$$f_t = 7.62Hz$$
,  $f_c = 6kHz$ ,  $f_i = 0.1to3.0Hz$  and  $p = 0.9976to1.10$ 

TABLE II [1,2] MAGNETICFIELDANTENNADESIGNSWITH 1.03-Ω–1.08-mH IMPEDANCE

| Sr. | Base   | Wire | Na | $R_{a(\Omega)}$ | L <sub>a</sub> (mH) | $A_a(m^2)$ | ŝ                     | Antenna         |
|-----|--------|------|----|-----------------|---------------------|------------|-----------------------|-----------------|
| No  | (m)    | AWG  |    |                 |                     |            | $(V\sqrt{Hz/m})$      |                 |
| 01  | 0.0160 | 20   | 47 | 1.002           | 0.998               | 0.0256     | 5.03*10-3             | Square          |
| 02  | 0.0562 | 18   | 21 | 1.006           | 0.994               | 0.3219     | 8.96*10 <sup>-4</sup> |                 |
| 03  | 1.70   | 16   | 11 | 0.987           | 1.013               | 2.891      | 1.89*10 <sup>-4</sup> |                 |
| 04  | 4.90   | 14   | 06 | 0.972           | 1.029               | 24.05      | 4.13*10-5             | Square          |
| 05  | 2.60   | 16   | 12 | 0.994           | 1.005               | 1.695      | 2.97*10-4             | Right isosceles |
| 06  | 8.39   | 14   | 06 | 1.004           | 0.967               | 17.59      | 5.74*10-5             | Triangle        |
| 07  | 27.3   | 12   | 03 | 1.035           | 1.043               | 187.0      | 1.10*10-5             |                 |
| 08  | 60.7   | 10   | 02 | 0.959           | 1.043               | 920.9      | 3.22*10-6             |                 |
| 09  | 202    | 08   | 01 | 1.005           | 0.995               | 10164      | 5.97*10-7             |                 |



Fig. 2. Differential preamplifier circuit design showing input and output transformers, by D. Shafer and based on E. Paschal's original design. The common–base first stage provides a low-impedance input. The second stage provides gain, and the op-amp circuit drives a long cable (usually about 250 ft), allow the digital electronics to be located far from the sensitive antenna for ELF sensor.

# VI. RECEIVER MEASUREMENTS

When taking measurements of these receivers in the lab, it is impractical to connect an antenna to the transformer and produce a known field that is constant across the span of the antenna. In addition, the very sensitive antennas will pick up so much environmental noise particularly from power lines that the amplifier will be constantly saturated. A better approach is to use a dummy antenna which has the same impedance as the antenna but no collecting area. In Fig. 3, we show the dummy antenna design used for testing. The antenna impedance is provided by  $R_a$  and  $L_a$ , while  $R_{th}$  and  $C_t$  are chosen by the following derivation.



Fig.3.Test setup using a dummy loop instead of antenna. This method allows for accurate lab testing and calibration [1, 2]

The current flowing in the amplifier (secondary of trans-former) from the source Vs

$$I_{in} = \frac{V_s}{2R_{th}(1 + f_c/(jf))} \times \frac{j2\pi L_a(1 + R_{in}/j2\pi L_a)}{R_a + j2\pi L_a + Z_p}$$

$$f_c = \frac{1}{2\pi R_{th}C_t}$$
(26)
(27)

Zp is the impedance on the primary side of the transformer looking into the amplifier. The current produced by the antenna voltage Va is

$$I_{in} = \frac{V_a}{R_a + j2\pi f L_a + Z_p} = \frac{1 + f_c / (jf)}{1 + (2\pi L_a) / (jfR_a)}$$
(28)

If these two input currents are equated, the relation between Vs. and Va is found

$$V_{s} = \frac{2N_{a}A_{a}R_{th}B}{L_{a}} \times \frac{1 + f_{c}/(jf)}{1 + (2\pi L_{a})/(jfR_{a})}$$
(29)

If Cth is chosen as follows:

$$C_t = \frac{L_a}{R_a * R_{th}} \tag{30}$$

and (5) is used to replace Va, the relationship between Vs and an equivalent magnetic field can be found

$$V_S = \frac{2N_a A_a R_{th} B}{L_a} \tag{31}$$

Note that all of the terms with Zp have dropped out; leaving a simple calibration method that does not require any knowledge of the impedance of the transformer and amplifier. Only the impedance and area of the antenna are relevant. The measurements shown in this section were done using a dummy loop, as described earlier, and assuming an example square  $1.03-\Omega$ , 1.08-mH antenna that is 4.9 m long with six turns Table II. The gain measurements in Fig. 4 are displayed as output voltage versus input magnetic field. The system has a flat band between 1 and 30 kHz, but has been routinely used for signals down to 10 Hz for geophysics research. The sensitivity, as shown in Fig. 5, is below 1 fT/Hz  $\frac{1}{2}$  over most of the usable frequency range. Also plotted is the sensitivity obtained when the input is terminated with a 259- $\Omega$ resistor

#### VII. RESULTS AND DISCUSSION

In this section, we describe a sensitive VLF/ELF receiver design method originally developed by E. Paschal. The various design equations and trade of  $f_s$  of the antenna, transformer, and low-noise amplifier are discussed. We are designing in MATLAB software low frequency sensor using low filter pass low frequency below 0.3Hz and high frequency stope shown in fig 4.(a) magnitude vs frequency. Also find this sensor magnitude response in MATLAB shown in fig.4(b) and we find stability in pole and zero in below 0.3Hz frequency in fig. 4(c) in MATLAB. Using this sensor we find phase response and step response in 0.3Hz frequency. Now design this VLF/ELF inductor sensor, amplifier and transformer. We are using multisim software and MATLAB, find multisim results in fig.4(e) to fig.4(k). In fig.4(e) low frequency sensor ACanalysis response find in 0.3Hz frequency and increase frequency and AC- analysis response decreasing. in fig.4.(f) Power gain of Low frequency sensor in multi sim result and In impedance 500hm and ZS=50+j0 ohm and ZL=50+j0 ohm, fig.4.(g)Time response of Low frequency sensor in multi sim result using 0.3 to below 3.0 Hz frequency. In multisim simulation total 50ohm impedance in s-parameter we find stability and magnitude, phase response (db) for low frequency below 3.0Hz best result in 2.846Hz frequency sense good output shown in fig.4(h). Stability in values of Zero in simulation result for this frequency in fig.4(i), in fig.4(j) Z-parameter low frequency sensor in total impedance 50ohm and using frequency below 3.0Hz and this VLF/ELF sensor used best frequency 2.846Hz . Now this VLF/ELF sensor and amplifier design LC-filter in MATLAB and

multisim software low frequency pass and Pole Zero place in smith chart & gain circles for Low frequency for find good stability and improve stabilized and find impedance value and Capacitor value for this sensor total value of capacitor is 1.000e+003pf, total value of impedance 1.000e+003ph, total R/Z is 50ohm and input gain circle 0.8db, output gain circle 1.388e-17db for this sensor in shown fig.4(k).



Fig.4.(a) Magnitude MATLAB result of Low frequency sensor 0.3Hz



Fig.4.(b) magnitude response in MATLAB result of Low frequency sensor 0.3Hz



Fig.4.(c) Pole Zero response in MATLAB result of Low frequency sensor  $0.3 \mathrm{Hz}$ 



Fig.4.(d) phase response in MATLAB result of Low frequency sensor 0.3Hz



Fig.4.(e) Phase & Magnitude response in MATLAB result of Low frequency sensor 0.3Hz



Fig.4.(f) step response in MATLAB result of Low frequency sensor 0.3Hz





Fig.4.(f) Power gain of Low frequency sensor in multi sim result.





Fig.4.(k) Filter LC model and Pole Zero place in smith chart & gain circles for Low frequency sensor in multi sim result

### VIII. CONCLUSION

A method of designing the VLF/ELF receiver has been shown, including the antenna, transformer, and circuit design. The concepts described can be used to design and build a variety of antenna shapes, sizes, and impedances as desired. The trans-former and amplifier input impedances can then be optimized for gain and noise. An example using a square  $1.03-\Omega-1.08$ -mH antenna has also been developed. Any shape and size of antenna that has this impedance can be used with the same transformer and amplifier, allowing for a variety of sensitivity and convenience options without having to make any design changes. this sensor using in EEG,ECG and EMR also using in brain frequency sense technology for very low frequency sense and neon sensor technology.

#### REFERENCES

#### **Journal Papers:**

- Sarah K. Harriman, Student Member, IEEE, Evans W. Paschal, and Umran S. Inan, Fellow, IEEE "Magnetic Sensor Design for FemtoteslaLow-Frequency Signals" IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 48, NO. 1, JANUARY 2010
- [2] S. M. Metev and V. P. Veiko, Laser Assisted Microtechnology, 2nd ed., R. M. Osgood, Jr., Ed. Berlin, Germany: Springer-Verlag, 1998.
- [3] Dwivedi V.V "Review of Antenna designed for infrared detection: a brief literature study ' proporgation and EMC technologies for wireless communication (MAPE-2005), Aug. 8-12, 2005.1617919, pp342-545 vol.1; ww.ieexplore.ieee.org.
- [4] J. Breckling, Ed., The Analysis of Directional Time Series: Applications to Wind Speed and Direction, ser. Lecture Notes in Statistics. Berlin, Germany: Springer, 1989, vol. 61.
- [5] S. Zhang, C. Zhu, J. K. O. Sin, and P. K. T. Mok, "A novel ultrathin elevated channel low-temperature poly-Si TFT," IEEE Electron Device Lett., vol. 20, pp. 569–571, Nov. 1999.
- [6] M. Wegmuller, J. P. Von der Weid, P. Oberson, and N. Gisin, "High resolution fiber distributed measurements with coherent OFDR," in Proc. ECOC'00, 2000, paper 11.3.4, p. 109.
- [7] R. E. Sorace, V. S. Reinhardt, and S. A. Vaughn, "High-speed digital-to-RF converter," U.S. Patent 5 668 842, Sept. 16, 1997. (2002) The IEEE website. [Online]. Available: http://www.ieee.org/
- [8] M. Shell. (2002) IEEEtran homepage on CTAN. [Online]. Available: http://www.ctan.org/texarchive/macros/latex/contrib/supported/IEEEtran/ FLEXChip Signal Processor (MC68175/D), Motorola, 1996."PDCA12-70 data sheet," Opto Speed SA, Mezzovico, Switzerland.
- [9] A. Karnik, "Performance of TCP congestion control with rate feedback: TCP/ABR and rate adaptive TCP/IP," M. Eng. thesis, Indian Institute of Science, Bangalore, India, Jan. 1999.
- [10] J. Padhye, V. Firoiu, and D. Towsley, "A stochastic model of TCP Reno congestion avoidance and control," Univ. of Massachusetts, Amherst, MA, CMPSCI Tech. Rep. 99-02, 1999.
- [11] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, IEEE Std. 802.11, 1997.
- [12] M Ozaki, Y. Adachi, Y. Iwahori, and N. Ishii, Application of fuzzy theory to writer recognition of Chinese characters, *International Journal of Modelling and Simulation*, 18(2), 1998, 112-116.
- Note that the journal title, volume number and issue number are set in italics.

#### Books:

- [13] Ved Vyas Dwivedi, Shweta Srivastawa "Linearly Tapered Slot Antenna" 1st edition, sept.2012, Lambert Academic publishing, Germany ISBN 978-3-8484-9234-3
- [14] Rajendra Aparnathi, Ved Vyas Dwivedi, "Power Filter Improve Power Quality in Power System Engineering" 1st edition, Oct-2012, Lambert Academic publishing, Germany ISBN 978-3-659-27435-0