Current Transformer Performance Optimization in Relation to its Burden for Power System Protection

OGUMBA, LEVI NNAMDI

Department of Electrical Electronic, University of Port Harcourt, Nigeria leviogumba@yahoo.co.uk

OGBOGU, NELSON O.

Department of Electrical Electronic, University of Port Harcourt, Nigeria <u>nelsonogbogu@gmail.com</u>

Abstract

In electrical power systems or networks, protection systems play a vital role in ensuring system safety and reliability, therefore, optimized performance of the protection system should be intensively evaluated to ensure that no failure is experienced. Evaluating the Burden of a current transformer (CT) is a valuable means of measuring the efficiency of the protection system since it is the principal point of communication amid the power system network and the protection system. Having compared the performance of rated C800 CT at different secondary burdens realized from changing the cable core sizes and varying the cable length, the behavior of the CT clearly informs if the CT is likely going to saturate or not when subjected to fault current condition, based on the IEEE guidelines for CT performance calculations. A program developed using Python programming language can show if the selected CT is adequate or not adequate based on the burden connected to its secondary terminal, maintaining other system parameters. This research work throws more light on the fact that increasing the cable length will increase the burden and increasing the cable size will reduce the rate of burden increase resulting from increased cable length. It is revealed that exceeding the burden that a selected CT can handle will lead to CT saturation which should be avoided in order to keep the electrical system intended to protect safe and reliable.

Key Words: System protection, Current transformer, Burden, Cable size and cable length.

Date of Submission: 27-02-2022

Date of Acceptance: 09-03-2022 _____

I. Introduction

The intention of a protection system in any power system/network is to monitor one or more parameters of the installation, such as current, voltage, frequency phase angle, etc. These mentioned parameters of the power system are continuously monitored by measuring and comparing its value per time with set points or thresholds values, beyond which the situation is considered abnormal and thereby could lead to an unacceptable result which could become dangerous to the system, personnel or environment. In event of fault occurrence, the protection device sends a predetermined command, such as signal, trip, lock, etc. to a circuit breaker for instance, with the intention to durably isolate the faulty part in the power system. It could as well prevent reclosing until the device has been fixed or replaced. It can also generate an alarm to inform operator/maintenance personnel which will enable them to take the necessary action. Basically, the summaries of what a protection system does are listed below:

- 1. Ensuring continuity of power supply in healthy circuits having isolated the faulty part in the power system.
- 2. To minimize danger to human life because if the fault is not eliminated, it poses a danger to human life.
- 3. To reduce electrically initiated fires that might occur due to electrical faults.
- 4. To avoid damaging the entire power system assets, equipment/circuits.

Current transformers (commonly denoted as CTs), are integral components for electrical protective relaying in power system protection. CT and VT (Voltage Transformer) are both classified as instrument transformers. They replicate the big values of voltage and current in a system to a small and standardized value that is easy for instruments used for measuring and protective relays to handle. Again these instrument transformers separate the measurement or protection system components from the big amount of voltage

and current from the main system – that is, keep them safe from high voltage and current. Focusing on the CT, the main need for current transformers in the power system network is to ensure safe and reliable operation of the electrical power system. The above could only be achieved when the CTs perform their stated functions normally starting from power generation systems, transmission networks and distribution systems. It will be right to say that all types of protection systems and measuring systems all need instrument transformers to function effectively. Once more, the type for protection function is referred to as Current Transformer (CT).

Current transformer as the name implies is the current-detecting component of the power system and is used at all levels of power system networks such as generating stations, transmission stations and distribution stations. CT is composed of primary winding, a core and then the secondary winging side. But we have to note that some CTs use an air core. (Forford and Linders, 2018). As stated by Sachin et al (2015), Current transformers as mentioned earlier are often used to scale high current value to a smaller standardized value. Without any compromise, Current transformers in any protection system must not saturate in the event of a fault occurrence as this will undermine the effectiveness of the protection system. All technical procedures, standards and good engineering design practices should be deployed in ensuring the safety and reliability of the electrical system and network installations while using current transformers as part of the protection system component.

Current transformers can become saturated due to many factors such as high AC fault current or DC current components, high burden, remanence etc. Clearly, the current values calculated or translated by the CT on the basis of the secondary saturated CT will fall very far from their correct values (Wu et al., 2016). In effect, incorrect calculation can lead to false decisions (for example, in the classification of over-current relays, loop impedance fault over-estimation in distance relays) and safety system disoperation. It can therefore be claimed that if adequate procedures for saturation detection or improvement are not implemented to remove the problem, the CT saturation occurrence can impair the reliability of the electrical system protection. However, for the optimal performance of a CT, the influence of the CT burden cannot be overstressed. Going by the IEEE C57-13 (2016), definition, the secondary burden of a current transformer is constituted by the secondary circuit properties of the connected load to the secondary winding of the current transformer. The CT burden is measured either as the total impedance in ohms, alongside the active components of resistance and reactance or as the total voltage and power factor of the secondary devices.

FACTORS AFFECTING CT PERFORMANCE

The optimum performance of current transformer hinges on some factors which include: Current magnitude, System X/R Ratio, Remanence, Burden, etc., which in this study, the focus is on the CT Burden. The CT Burden is the least understood of these factors and experience has shown, as reviewed, that this is the major cause of problems with current transformer application.

Among many other methods of analyzing CT performance, the CT Transient Performance Analysis method will be used to confirm the maximum burden allowed for a selected CT at a given fault current.

In Equation (1), the mathematical model for the above-mentioned methods as per IEEE definition has been stated.

$$\frac{I_{FAULT}}{I_{PRI}} = \frac{Z_{\mathcal{B}} + R_s}{Z_{\mathcal{B}STD} + R_s} \left(\frac{X}{R} + 1\right) \le 20 \tag{1}$$

Where,

I_{FAULT} equals the maximum primary winding fault current measured in amperes (A)

 I_{PRI} equals the marked primary side current of the CT. For instance, a 1000/5 CT (Ratio Marking), I_{PRI} is 1,000 A).

 $Z_{\rm B}$ equals the actual burden of the CT's secondary circuit. That is, the impedance of the connecting cable and that of the relay.

 R_S equals the CT secondary winding internal resistance which is provided in the manufacturer datasheet.

 $Z_{B STD}$ is the standard burden of the CT for instance, a C400 CT, the $Z_B STD$ is 4 Ω).

X over R(X/R) ratio accounts for DC offset for asymmetrical fault.

Referencing IEEE C57-13 (2016), as regards to voltage rating of a Current Transformer, it defines the minimum secondary voltage that the Current Transformer has to reproduce to a standard burden at 20 times rated secondary current and would not go more than 10% tolerable ratio error. Once the fault current over a CT is higher than 20 times of the CT current rating, or the connected burden is higher than the maximum allowable burden, we are at risk of the CT going into saturation, that is, over 10 percent error.

ANSI/IEEE accuracy class designations, in many applications, are adequate to assure satisfactory relay operation. There are two standard classes: Class T and Class C. These designations are followed by a number that indicates the secondary terminal voltage that the transformer can deliver as stated above, for example C400. Class C CT accuracy class is constructed such that the leakage flux is negligible; hence the performance of the CT can be determined by calculation. The ten per cent ratio error won't be surpassed at any current from 1 to 20 times the rated secondary current at the standard burden or any lesser standard burden. For relays, standard Burden is represented by a later B followed by a number which corresponds to the voltage class. For instance, the voltage classes of 100, 200, 400 and 800 V, the corresponding standard burden are B-1, B-2,B-4 and B-8 respectively. These burdens are at 0.5 power factor. The burdens are measured in ohms which are derived by dividing the voltage rating by times 20 of the rated secondary current. For example, for a 400 V rating, the burden is equal to 400 V divided by 100 A which equals 4 ohms, assuming that the current rating of the secondary is 5 A. 400 / (20 * 5) = 4 ohms.

Secondary terminal voltage (V)	Secondary burden designation	Resistance (Ω)	Inductance (mH)	Impedance (Ω)	Total power (VA at 5 A)
10	B-0.1	0.09	0.116	0.1	2.5
20	B-0.2	0.18	0.232	0.2	5.0
50	B-0.5	0.45	0.580	0.5	12.5
100	B-1.0	0.50	2.30	1.0	25.0
200	B-2.0	1.00	4.60	2.0	50.0
400	B-4.0	2.00	9.20	4.0	100.0
800	В-8.0	4.00	18.40	8.0	200

Table 1: IEEE C57.13 various relay accuracy classes and CT burden data.

Again, the mathematical model stated in equation (1) has been written in Python programming language to analyze the impact of the cable length connected to the secondary terminal of the CT, cable size used and the resistance of the relay in relation to burden adequacy as the real burden connected to the secondary terminal of the CT is the sum of the impedance of the connected cable per meter and the impedance of the relay. Microsoft Visual Studio using C# programming language will be used also, such that selecting a CT suited for any given task can be very easy and simple for system protection engineers by inputting the necessary parameters in the application programs to determine if the chosen current transformer is adequate according to the burden connected to it, taking into consideration properly other system parameters.

The program will be developed in such a way that it can assess and evaluate the burden of the chosen current transformer with respect to the cable size and its length (distance from current transformer to relay) and the program will be very simple and user friendly.

ANALYSIS PERFORMED

Having written equation 1 using Python programming language, with the site data collected from one of the Nigerian LNG switchgear, such as the CT internal resistance, the CT standard burden and the Protection relay resistance, a C800 CT was run through the program, in which the CT was adequate in one scenario and not adequate in another scenario due to different burdens connected to its secondary terminal at different times. It was noted that the burden at the secondary terminal of the CT is a function of the selected cable size, type and the distance of the cable from the CT to the Relay and as well the relay resistance. All data inputted into the program can be seen in appendix A.

SCENARIOS 1. CABLE SIZE OF 1.5 MM² AT 10 METER DISTANCE.

The C800 CT was adequate as the burden connected to its secondary is suitable for the CT, which entails that the CT is not likely going to saturate at times 20 of the rated secondary current, maintaining a ten per cent (10%) ratio error. To achieve this suitable burden, cable size selected is 1.5 mm^2 and the

distance of the cable from the CT to the relay is kept at 10 meters. See figure 1, below being graph of Threshold Value vs. Cable Lengths in meter:

Figure 1: Graph of Threshold Value vs. Cable Lengths in meter

SCENARIOS 2. CABLE SIZE OF 1.5 MM² AT 20 METER DISTANCE.

From above figure 1, it is also seen that the C800 CT was not adequate as the burden connected to its secondary is not suitable for the CT, which shows that the CT may likely saturate at times 20 of the rated secondary current beyond a 10 percent ratio error. This burden was achieved by selecting a cable size of 1.5 mm^2 and the distance of the cable from the CT to the relay is kept at 20 meters. However, to reduce the burden in this scenario, increasing the cable size to 2.5 mm^2 would make the C800 CT become adequate.

Discussion of Finding

There are two main insights from this research:

1. the higher the cable length connected from the CT to the Relay the higher the burden to be carried at the secondary terminal of the CT.

2. the rate at which the burden increases as a result of increased cable length, are reduced by increasing the cable size.

The above two points can be clearly read and understood from figure 2 being the graph of calculated Burden (Ohms) vs. Cable Lengths (m).

The plot shows the burdens for each cable size at lengths, 5,10,15,20,25 and 30 meters. From the graph, it can be seen that the longer the length, the higher the burden, but increasing the cable sizes reduces the effect of increased cable length as also demonstrated in figure 2.

BURDEN ADEQUACY STANDALONE APPLICATION FOR A SELECTED CT.

With intent to develop a standalone application with all possible flexibility to enable a protection engineer easily select the right CT with respect to the burden adequate for the selected CT based on his design requirement, a visual studio standalone application written in C# programming language have also been developed in which the necessary parameters can be keyed in. when the 'calculate' button is pressed, the application runs and displays either 'Suitable' or 'not Suitable' with respect to the value of burden entered in the application. That is to say, if 'Suitable' is displayed, the selected CT is not likely going to saturate maintaining other system parameters and when it displays 'not Suitable' the selected CT is likely going to saturate due to the high connected burden, For explanation, see figure 4 and figure 5 for the two events mentioned.

	CURRENT TRANSFORMER SA	TURATION DICTACTOR
	Transformer Location :	SUBSTATION 21
	Transformer ID:	2000 / 5 A
	Transformer Type:	10P20, CL. C800
	User ID:	SB21B1
		Next
	Figure 3: 0	CT data.
	CURRENT TRANSFORMER S	ATURATION DICTACTOR
	Maximum Fault Current (Ifault)(A) 18000
	Primary Current (Ipr)	2000
	Actual Burden (Zb)	0.1870
	Internal Resistance (Rs):	0.15
	Standard Burden(Zb stnd)	(OHM): 8
	X/R	24
	9.30368098159509 Suitable	20
Г	BACK CALCUL	ATE NEXT

Figure 4: Inputted Fault current and CT data with 'Suitable' burden.

CU	RRENT TRANSFORMER SATURATIO	N DICTACTOR
	Maximum Fault Current (Ifault)(A)	18000
	Primary Current (Ipr)	2000
	Actual Burden (Zb)	0.705
	Internal Resistance (Rs):	0.15
	Standard Burden(Zb stnd) (OHM):	8
	X/R	24
	23.6042944785276 Not Suitable	20
BACK	CALCULATE	NEXT

Figure 5: Inputted Fault current and CT data with 'not suitable' Burden.

5.
5

-	1.5	2.5	4	6	10	16	25
0	0.2105	0.1870	0.1730	0.1654	0.1591	0.1557	0.1536
1	0.2710	0.2241	0.1961	0.1808	0.1683	0.1615	0.1573
2	0.3315	0.2611	0.2192	0.1962	0.1774	0.1673	0.1609
3	0.3920	0.2982	0.2422	0.2116	0.1866	0.1730	0.1645
4	0.4525	0.3352	0.2652	0.2270	0.1957	0.1787	0.1682
5	0.5130	0.3723	0.2883	0.2424	0.2049	0.1845	0.1718

```
Burden of 0.1605 is Accepted
Burden of 0.221 is Accepted
Burden of 0.2815 is Unacceptable
Burden of 0.342 is Unacceptable
Burden of 0.4025 is Unacceptable
Burden of 0.463 is Unacceptable
Burden of 0.5235 is Unacceptable
Burden of 0.584 is Unacceptable
Burden of 0.6445 is Unacceptable
Burden of 0.705 is Unacceptable
Burden of 0.1371 is Accepted
Burden of 0.1741 is Accepted
Burden of 0.2112 is Accepted
Burden of 0.2482 is Accepted
Burden of 0.2853 is Unacceptable
Burden of 0.3223 is Unacceptable
Burden of 0.3593 is Unacceptable
Burden of 0.3964 is Unacceptable
Burden of 0.4335 is Unacceptable
```

Figure 6 – Result of Acceptable and Unacceptable Scenarios.

Table 2 shows the different calculated Burden at distances of 5,10,15,20,25 and 30-meter interval

based on the different resistance data of various copper cable sizes taken from Nexans manufacturer Catalogue. See appendix B. Refer to figure 1. Note that "acceptable and unacceptable" remarks are interchangeably used with "suitable and not suitable" outputs.

II. Conclusion

In order to avoid the danger that may occur due to failure of protection system put in place to protect an entire electrical system or network as a result of Current Transformer saturation during a fault condition, that is over 10 percent error, it is very important that the burden of the selected CT is critically looked into and confirmed quite adequate for the selected CT by considering the right cable size, type and distance from the secondary terminal of the CT to the Protection relay. Morden Relays have low internal resistance, hence this is of less concern, but in any case, should be considered as well while calculating the adequate burden of a selected CT as has been demonstrated in this work.

There are factors that affect CT performance which include Current magnitude, System X/R Ratio, Remanence and Burden. In this work, how to optimize the CT burden has been examined. However, to ensure total effectiveness, safety and reliability of any protection system, other factors as mentioned should at the same time be optimized alongside the CT burden. Some recommendations as listed below should be considered by a protection engineer to inform his decision in selecting adequate CT:

That study should always be conducted before confirming that a particular CT is adequate, 1. meeting all design requirements.

That the result of the study should be strictly adhered to, by purchasing and installing the confirmed 2. selected CT having considered the burden and other factors that affect CT performance.

Any action that might lead to a connection of high burden to a selected CT should be avoided such 3. as changing the right cable size or increasing the cable length during installation without checking again if the selected CT is still capable to handle the burden that has resulted due to the changes made.

Higher cable sizes are selected to ensure secondary burn adequacy, especially when it is seen that the 4. relay is far away from the point of relay installation.

Select relays that are microprocessor-based as they have lesser internal resistance which contributes 5. to the entire CT secondary burden.

References

- [1]. Ariana, H., Michael, J. T., and Brad, H. (2017). Beyond the Knee Point: A Practical Guide to CT Saturation. Schweitzer Engineering Laboratories, Inc.
- Barner, K N. Klingerman, M. Thompson, R. Chowdhury, D. Finney, and S. Samineni, (2019). Out of Phase Synchronization: [2]. proceedings of the 73rd Annual Georgia Tech Protective Relaying Conference, Atlanta, GA.
- Cowan, P., Neale, R. (2017): Holistic Substation Asset Management. Energize Power Journal of the South African Institute of [3]. Electrical Engineers, 42-25.
- Forford, T. and Linders, J. R. (2018). A Half Cycle Bus Differential Relay and Its Application. IEEE Transactions on Power [4]. Apparatus and Systems, vol. 93, no. 4, pp. 1110-1120.
- Linders, J. R., Barnett, C. W. and Chadwick, J. (2018). Relay Performance Considerations with Low-Ratio CTs and High-[5]. Fault Currents. IEEE Transactions on Industry Applications, Vol. 31, Issue 2. Mariani, F. (2017). Inductive Instrument Transformers and Protective Applications.
- [6].
- Johannesburg, Crown Publications, 2(6), 632-646 [7].
- [8]. Morshuis, P.H.F. (2016). Degradation of Solid Dielectrics due to Internal Partial Discharge.
- IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 12 (5), 905-906. [9]
- [10]. Obi, P.I., Oputa, O., Okeke, C., Onwuka, I.K. and Apkan, A.E. (2018) Evaluating Protective System's Reliability Using Current Transformer Burden Rating. Nigerian Research Journal of Engineering and Environmental Sciences 3(1) 2018 pp. 148-153.
- [11]. Sachin T. and Aditya P. (2015). Current Transformer Sizing & Saturation Calculation with Transient Performance Analysis of CT Using ATP Software. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol. 4, Issue 5, pp3853-3860
- Wright, A. (2018). Current Transformers: Their Transient and Steady State Performance. [12].
- [13]. IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 12 (5), 905-906.
- [14]. Wu, T., Zhou Y. Q. and Gong W. (2016). Performance Analysis on Electronic Current Transformer Based on PCB Planartype of Air Core Coil. Power System Technology, Vol. 34, No. 6, pp. 210-214. Zocholl, S. E. (2004). Analyzing and Applying Current Transformers. Schweitzer Engineering Laboratories, Inc., Pullman,
- [15]. WA, 2004.

APPENDICES Appendix A

```
Levi Ogumba - Original copy
```

```
In [1]: import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import matplotlib.patches as mpatches
In [2]: #Initialise cable sizes
         cable sizes = { '1.5':0.0121, '2.5':0.00741, '4': 0.00461, '6':0.003
         08, '10':0.00183,'16':0.00115,'25':0.000727}
In [3]: cable_sizes
Out[3]: {'1.5': 0.0121,
          2.5': 0.00741,
          '4': 0.00461,
          '6': 0.00308,
          '10': 0.00183,
          '16': 0.00115,
          '25': 0.000727}
In [4]: #initialise cable lengths
         cable lengths = [5,10,15,20,25,30]
         relay_impedance = 0.15
In [5]: #calculate burden for 2 by 6 for 20meters
         Burden_Zb = (cable_sizes['6'] * cable_lengths[3]) + 0.15
         Burden Zb
Out[5]: 0.21159999999999998
         #Get the burdens for all the cable types at different cable lengths
In [6]:
         Burdens = {}
         for cable, resistance in cable sizes.items():
             burds = []
             for length in cable_lengths:
                 burds.append(round((resistance * length)+0.15,4))
             Burdens[cable] = burds
         Burdens
Out[6]: {'1.5': [0.2105, 0.271, 0.3315, 0.392, 0.4525, 0.513],
          '2.5': [0.187, 0.2241, 0.2611, 0.2982, 0.3352, 0.3723],
          '4': [0.173, 0.1961, 0.2192, 0.2422, 0.2652, 0.2883],
          '6': [0.1654, 0.1808, 0.1962, 0.2116, 0.227, 0.2424],
         '10': [0.1591, 0.1683, 0.1774, 0.1866, 0.1957, 0.2049],
'16': [0.1557, 0.1615, 0.1673, 0.173, 0.1787, 0.1845],
          '25': [0.1536, 0.1573, 0.1609, 0.1645, 0.1682, 0.1718]}
```

```
Levi Ogumba - Original copy
                                                                              08/03/2021, 19:40
    In [7]: burdens table = pd.DataFrame(Burdens)
             burdens table
    Out[7]:
                   1.5
                         2.5
                                4
                                      6
                                            10
                                                  16
                                                        25
              0 0.2105 0.1870 0.1730 0.1654 0.1591 0.1557 0.1536
              1 0.2710 0.2241 0.1961 0.1808 0.1683 0.1615 0.1573
              2 0.3315 0.2611 0.2192 0.1962 0.1774 0.1673 0.1609
              3 0.3920 0.2982 0.2422 0.2116 0.1866 0.1730 0.1645
              4 0.4525 0.3352 0.2652 0.2270 0.1957 0.1787 0.1682
              5 0.5130 0.3723 0.2883 0.2424 0.2049 0.1845 0.1718
             plt.figure(figsize=(20,10))
    In [8]:
             plt.plot(cable_lengths, Burdens['1.5'])
             plt.plot(cable_lengths, Burdens['2.5'])
             plt.plot(cable_lengths, Burdens['4'])
             plt.plot(cable_lengths, Burdens['6'])
             plt.plot(cable_lengths, Burdens['10'])
             plt.plot(cable_lengths, Burdens['16'])
             plt.plot(cable_lengths, Burdens['25'])
             plt.title('Calculated burden Zb(Ohms) VS Cable Length (m)')
             plt.grid()
             blue_patch = mpatches.Patch(color='blue', label='1.5 cable size')
             orange_patch = mpatches.Patch(color='orange', label='2.5 cable size
              1
             green_patch = mpatches.Patch(color='green', label='4 cable size')
             red_patch = mpatches.Patch(color='red', label='6 cable size')
             maroon_patch = mpatches.Patch(color='darkorchid', label='10 cable s
             ize')
             brown_patch = mpatches.Patch(color='brown', label='16 cable size')
             pink_patch = mpatches.Patch(color='fuchsia', label='25 cable size')
             plt.legend(handles=[blue patch,orange patch,green patch,red patch,m
             aroon_patch, brown_patch, pink_patch])
             plt.xlabel('Cable length (m)')
             plt.ylabel('Burden Zb')
             plt.show()
```

08/03/2021, 19:40

As can be seen on the graph, two points should be noted:

- 1. The higher the cable length, the higher the burden.
- From the slope of the lines, the rate of change reduces as cable size increase even at a higher cable length.

```
In [9]: plt.figure(figsize=(20,10))
        plt.plot(Burdens.keys(), list(burdens_table.iloc[0]))
        plt.plot(Burdens.keys(), list(burdens_table.iloc[1]))
        plt.plot(Burdens.keys(), list(burdens_table.iloc[2]))
        plt.plot(Burdens.keys(), list(burdens_table.iloc[3]))
        plt.plot(Burdens.keys(), list(burdens_table.iloc[4]))
        plt.plot(Burdens.keys(), list(burdens_table.iloc[5]))
        plt.title('Calculated burden Zb(Ohms) VS Cable size (mm sq)')
        plt.grid()
        brown_patch = mpatches.Patch(color='brown', label='30m cable length
        ')
        maroon_patch = mpatches.Patch(color='darkorchid', label='25m cable
        length')
        red_patch = mpatches.Patch(color='red', label='20m Cable length')
        green_patch = mpatches.Patch(color='green', label='15m Cable lengt
        h')
        orange patch = mpatches.Patch(color='orange', label='10m Cable leng
        th')
        blue_patch = mpatches.Patch(color='blue', label='5m Cable length')
        plt.legend(handles=[brown_patch,maroon_patch,red_patch,green_patch,
        orange_patch,blue_patch])
        plt.xlabel('Cable size (mm sq)')
        plt.ylabel('Burden Zb (ohms)')
        plt.show()
```


The plot shows the burdens for each cable size at lengths, 5, 10,15,20,25 and 30 meters. From the graph, it can be seen that the longer the length, the higher the burden, but increasing the cable sizes reduces the effect of increased cable length as also demostrated in figure 4.1.

```
In [10]: #check adequacy of each burden with the formula
          def check_adequacy(Zb):
              \mathbf{Z}\mathbf{b} = \mathbf{Z}\mathbf{b}
              Ifault = 18000
              Ipri = 2000
              Rs = 0.5
              X R = 24
              Zbtsd = 8
              formula = (Ifault/Ipri) * (((Zb + Rs)/(Zbtsd + Rs)) * (X_R + 1)
          )
              if formula <= 20:
                  print('Burden of ' + str(Zb) + ' is Accepted')
              else:
                  print('Burden of ' + str(Zb) + ' is Unacceptable')
              return formula
In [11]: def calc_burden(cable_size, cable_length):
              #get the resistance
              res = cable_sizes[str(cable_size)]
              relay impedance = 0.1
              #calculate burden for 2 by 6 for 20meters
              burden = round((res * cable_length) + relay_impedance,4)
              return burden
In [12]: check_adequacy(0.5130)
         Burden of 0.513 is Unacceptable
Out[12]: 26.81470588235294
```

08/03/2021, 19:40

```
In [13]: #inputs
          #collect cable size
         size = str(input('Enter cable size: '))
         length = int(input('Enter length(m): '))
         burden = calc_burden(size,length)
         print(burden)
         #check adequacy of burden
         check adequacy(burden)
         Enter cable size: 2.5
         Enter length(m): 10
         0.1741
         Burden of 0.1741 is Accepted
Out[13]: 17.843823529411768
In [14]: calc_burden(2.5,5)
Out[14]: 0.1371
In [15]: vals = {}
         s = [1.5, 2.5, 4, 6, 10, 16, 25]
         for j in s:
             values = []
             for i in range(5,55,5):
                 burden = calc_burden(j,i)
                 values.append(check_adequacy(burden))
             vals[str(j)] = values
         vals
         Burden of 0.1605 is Accepted
         Burden of 0.221 is Accepted
         Burden of 0.2815 is Unacceptable
         Burden of 0.342 is Unacceptable
         Burden of 0.4025 is Unacceptable
         Burden of 0.463 is Unacceptable
         Burden of 0.5235 is Unacceptable
         Burden of 0.584 is Unacceptable
         Burden of 0.6445 is Unacceptable
         Burden of 0.705 is Unacceptable
         Burden of 0.1371 is Accepted
         Burden of 0.1741 is Accepted
         Burden of 0.2112 is Accepted
         Burden of 0.2482 is Accepted
         Burden of 0.2853 is Unacceptable
         Burden of 0.3223 is Unacceptable
         Burden of 0.3593 is Unacceptable
         Burden of 0.3964 is Unacceptable
         Burden of 0.4335 is Unacceptable
```

Levi Ogumba - Original copy

Burden	of 0.4705 is	Unacceptable
Burden	of 0.1231 is	Accepted
Burden	of 0.1461 is	Accepted
Burden	of 0.1692 is	Accepted
Burden	of 0.1922 is	Accepted
Burden	of 0.2152 is	Accepted
Burden	of 0.2383 is	Accepted
Burden	of 0.2614 is	Unacceptable
Burden	of 0.2844 is	Unacceptable
Burden	of 0.3075 is	Unacceptable
Burden	of 0.3305 is	Unacceptable
Burden	of 0.1154 is	Accepted
Burden	of 0.1308 is	Accepted
Burden	of 0.1462 is	Accepted
Burden	of 0.1616 18	Accepted
Burden	of 0.177 18	Accepted
Burden	of 0.1924 18	Accepted
Burden	of 0.2078 18	Accepted
Burden	of 0.2232 is	Accepted
Burden	of 0.2386 18	Accepted
Burden	of 0.254 18	Accepted
Burden	of 0.1092 18	Accepted
Burden	of 0.1183 18	Accepted
Burden	of 0.12/5 18	Accepted
Burden	of 0 1457 is	Accepted
Burden	of 0 1549 is	Accepted
Burden	of 0 1641 is	Accepted
Burden	of 0 1732 is	Accepted
Burden	of 0.1824 is	Accented
Burden	of 0.1915 is	Accented
Burden	of 0.1058 is	Accented
Burden	of 0.1115 is	Accepted
Burden	of 0.1173 is	Accepted
Burden	of 0.123 is	Accepted
Burden	of 0.1288 is	Accepted
Burden	of 0.1345 is	Accepted
Burden	of 0.1403 is	Accepted
Burden	of 0.146 is	Accepted
Burden	of 0.1517 is	Accepted
Burden	of 0.1575 is	Accepted
Burden	of 0.1036 is	Accepted
Burden	of 0.1073 is	Accepted
Burden	of 0.1109 is	Accepted
Burden	of 0.1145 is	Accepted
Burden	of 0.1182 is	Accepted
Burden	of 0.1218 is	Accepted
Burden	of 0.1254 is	Accepted
Burden	of 0.1291 is	Accepted
Burden	of 0.1327 is	Accepted
Burden	of 0.1363 is	Accepted

20 69676470509235	
22 200235204117640	
23 000705002352046	
25.003705002552540,	
27 092647050023523	
20 604117647050025	
28.09411/04/058825,	
30.295588235294115,	
31.897058825529415],	
2.5 : [10.804411/04/0588,	
17.843823529411768,	
18.82588235294118,	
19.80529411764706,	
20.78735294117647,	
21.766764705882352,	
22.746176470588235,	
23.728235294117646,	
24.71029411764706,	
25.68970588235294],	
'4': [16.493823529411767,	
17.10264705882353,	
17.714117647058824,	
18.32294117647059,	
18.931764705882358,	
19.543235294117647,	
20.154705882352943,	
20.763529411764708,	
21.375,	
21.983823529411765],	
'6': [16.29,	
16.697647058823527,	
17.105294117647063,	
17.512941176470587,	
17.92058823529412,	
18.328235294117647,	
18.735882352941175,	
19.14352941176471,	
19.551176470588235,	
19.958823529411767],	
'10': [16.125882352941176,	
16.366764705882353,	
16.610294117647058,	
16.851176470588236,	
17.09205882352941,	
17.335588235294118,	
17.579117647058826,	
17.82,	
18.063529411764705,	
18.304411764705883],	
'16': [16.035882352941176,	
16.186764705882354,	
16.34029411764706,	
16.491176470588236,	
16.64470588235294,	

	17.099999	99999999999 23529411	98, 76,				
	17.40441	176470588	8],				
•	25': [15	.9776470	5882353,				
	16.07558	82352941	16,				
	16.17088	23529411	74,				
	16 36411	764705882	23				
	16.45941	17647058	84,				
	16.55470	588235293	38,				
	16.65264	70588235	3,				
	16.74794	11764705	87,				
	10.84323	529411/64	44]}				
va	ls_data						
va	ls_data	2.5	4	6	10	16	2
va	1.5 17.483824	2.5 16.864412	4 16.493824	6	10 16.125882	16 16.035882	2
0 1	1.5 17.483824 19.085294	2.5 16.864412 17.843824	4 16.493824 17.102647	6 16.290000 16.697647	10 16.125882 16.366765	16 16.035882 16.186765	2 15.97764 16.07558
0 1 2	1.5 17.483824 19.085294 20.686765	2.5 16.864412 17.843824 18.825882	4 16.493824 17.102647 17.714118	6 16.290000 16.697647 17.105294	10 16.125882 16.366765 16.610294	16 16.035882 16.186765 16.340294	2 15.97764 16.07558 16.17088
0 1 2 3	1.5 17.483824 19.085294 20.686765 22.288235	2.5 16.864412 17.843824 18.825882 19.805294	4 16.493824 17.102647 17.714118 18.322941	6 16.290000 16.697647 17.105294 17.512941	10 16.125882 16.366765 16.610294 16.851176	16 16.035882 16.186765 16.340294 16.491176	2 15.97764 16.07558 16.17088 16.26617
0 1 2 3 4	1.5 17.483824 19.085294 20.686765 22.288235 23.889706	2.5 16.864412 17.843824 18.825882 19.805294 20.787353	4 16.493824 17.102647 17.714118 18.322941 18.931765	6 16.290000 16.697647 17.105294 17.512941 17.920588	10 16.125882 16.366765 16.610294 16.851176 17.092059	16 16.035882 16.186765 16.340294 16.491176 16.644706	2 15.97764 16.07558 16.17088 16.26617 16.36411
0 1 2 3 4 5	1.5 17.483824 19.085294 20.686765 22.288235 23.889706 25.491176	2.5 16.864412 17.843824 18.825882 19.805294 20.787353 21.766765	4 16.493824 17.102647 17.714118 18.322941 18.931765 19.543235	6 16.290000 16.697647 17.105294 17.512941 17.920588 18.328235	10 16.125882 16.366765 16.610294 16.851176 17.092059 17.335588	16 16.035882 16.196765 16.340294 16.491176 16.644706 16.795588	2 15.97764 16.07558 16.17088 16.26617 16.36411 16.45941
0 1 2 3 4 5 6	1.8_data 1.5 17.483824 19.085294 20.686765 22.288235 23.889706 25.491176 27.092647	2.5 16.864412 17.843824 18.825882 19.805294 20.787353 21.766765 22.746176	4 16.493824 17.102647 17.714118 18.322941 18.931765 19.543235 20.154706	6 16.290000 16.697647 17.105294 17.512941 17.920588 18.328235 18.735882	10 16.125882 16.366765 16.610294 16.851176 17.092059 17.335588 17.579118	16 16.035882 16.186765 16.340294 16.491176 16.644706 16.795588 16.949118	2 15.97764 16.07558 16.17088 16.26617 16.36411 16.45941 16.55470
0 1 2 3 4 5 6 7	1.5 17.483824 19.085294 20.686765 22.288235 23.889706 25.491176 27.092647 28.694118	2.5 16.864412 17.843824 18.825882 19.805294 20.787353 21.766765 22.746176 23.728235	4 16.493824 17.102647 17.714118 18.322941 18.931765 19.543235 20.154706 20.763529	6 16.290000 16.697647 17.105294 17.512941 17.920588 18.328235 18.735882 19.143529	10 16.125882 16.366765 16.610294 16.851176 17.092059 17.335588 17.579118 17.820000	16 16.035882 16.196765 16.340294 16.491176 16.644706 16.795588 16.949118 17.100000	2 15.97764 16.07558 16.17088 16.26617 16.36411 16.45941 16.55470 16.65264
0 1 2 3 4 5 6 7 8	1.5 17.483824 19.085294 20.686765 22.288235 23.889706 25.491176 27.092647 28.694118 30.295588	2.5 16.864412 17.843824 18.825882 19.805294 20.787353 21.766765 22.746176 23.728235 24.710294	4 16.493824 17.102647 17.714118 18.322941 18.931765 19.543235 20.154706 20.763529 21.375000	6 16.290000 16.697647 17.105294 17.512941 17.920588 18.328235 18.735882 19.143529 19.551176	10 16.125882 16.366765 16.610294 16.851176 17.092059 17.335588 17.579118 17.820000 18.063529	16 16.035882 16.186765 16.340294 16.491176 16.644706 16.795588 16.949118 17.100000 17.250882	2 15.97764 16.07559 16.17089 16.26617 16.36411 16.45941 16.55470 16.65264 16.74794

```
Levi Ogumba - Original copy
```

```
In [17]: plt.figure(figsize=(20,10))
          plt.plot(range(5,55,5), vals_data['1.5'])
          plt.plot(range(5,55,5), vals data['2.5'])
          plt.plot(range(5,55,5), vals_data['4'])
          plt.plot(range(5,55,5), vals_data['6'])
          plt.plot(range(5,55,5), vals_data['10'])
          plt.plot(range(5,55,5), vals_data['16'])
         plt.plot(range(5,55,5), vals_data['25'])
          plt.grid()
          blue_patch = mpatches.Patch(color='blue', label='1.5 Cable size')
          orange_patch = mpatches.Patch(color='orange', label='2.5 Cable size
          1)
          green_patch = mpatches.Patch(color='green', label='4 Cable size')
          red_patch = mpatches.Patch(color='red', label='6 Cable size')
          maroon_patch = mpatches.Patch(color='darkorchid', label='10 Cable s
          ize')
          brown_patch = mpatches.Patch(color='brown', label='16 Cable size')
          pink_patch = mpatches.Patch(color='fuchsia', label='25 Cable size')
          plt.legend(handles=[blue patch,orange patch,green patch,red patch,m
          aroon_patch, brown_patch, pink_patch])
          plt.title('Threshold Value VS Cable length (m)')
          plt.ylabel('Threshold Value')
          plt.xlabel('Cable length (m)')
          plt.show()
                                       Threshold Value VS Cable length (m)
           23
           30
                                           Cable levals (w)
```

CARLE STANDARD RESISTANCE (Extract from Novers Cable Date)									
CABLE STANDARD RESISTANCE (EXtract from Nexans Cable Data)									
2 CORE CONDUCTOR 0.6/1 KV (COPPER STRANDED									
XLPE INSULATED, PVC SHEATHED)									
Cross AC									
ection Resistance									
mm ²	at 20 ⁰ C								
	(ohm/m)								
	0.0404000								
2C+E x 1.5	0.0121000								
2C+E x 2.5	0.0074100								
2C+E x 4	0.0046100								
2C+E x 6	0.0030800								
2C+E x 10	0.0018300								
2C+E x 16	0.0011500								
2C+E x 25	0.0007270								
ACTUAL BURDEN	(Zb) = SUM	OF THE CA	BLE IMPEDA	NCE/METER					
PLUS THE IMPED	ANCE OF TH	IE RELAY.							
	Selected								
	Cable	Cable	Relay	Actual Burden					
Cable Selected	Resistance	Length	Impedance	Zb					
	(ohm/m)	(m)	(ohm)	(ohm)					
2C+E x 1.5	0.0121	20	0.8	1.042					

Appendix B

Appendix B - Nexans Cable data.x

CTCHECKERS.msi

OGUMBA, LEVI NNAMDI, et. al. "Current Transformer Performance Optimisation In Relation To Its Burden for Power System Protection." *IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE)*, 17(2), (2022): pp. 01-17.