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 Abstract : Image upscaling (and more generally image interpolation) is the process of resizing a digital 

image. Enlarging an image is generally common for making smaller imagery fit a bigger screen in full screen 

mode, for example. In “zooming” an image, it is not possible to discover any more information in the image 

than already exists, and image quality inevitably suffers, for that reason several methods have been proposed to 
obtain better results, involving simple heuristics, edge modeling or statistical learning. The most powerful ones, 

however, present a high computational complexity and are not suitable for real time applications, while fast 

methods, even if edge-adaptive, are not able to provide artifacts-free images. So that’s why a new method for 

image upscaling is proposed i.e. Iterative Curvature Based Interpolation (ICBI), it is based on a two-step grid 

filling and an iterative correction of the interpolated pixels obtained by minimizing an objective function 

depending on the second order directional derivatives of the image intensity. These are implemented in a variety 

of computer tools like printers, digital TV, media players, image processing packages, graphics renderers and 

so on.   
Keywords - Upscaling, ICBI, NEDI, nVidia CUDA 

 

I.  INTRODUCTION 
Image upscaling (and more generally image interpolation) methods are implemented in a variety of 

computer tools like printers, digital TV, media players, image processing packages, graphics renderers and so 

on. The problem is quite simple to be described: we need to obtain a digital image to be represented on a large 

bitmap from original data sampled in a smaller grid, and this image should look like it had been acquired with a 

sensor having the resolution of the upscaled image or, at least, present a ‖natural‖ texture. Methods that are 

commonly applied to solve the problem (i.e. pixel replication, bilinear or bicubic interpolation) do not fulfill 

these requirements, creating images that are affected by visual artifacts like pixelization, jagged contours, 
oversmoothing. They obviously rely on the assumption that, in natural images, high frequency components are 

not equally probable if low frequency components are known and a good algorithm is able to guess the image 

pattern that would have been created by a higher resolution sensor better than other methods.  

More effective non-iterative edgeadaptive methods like NEDI (New Edge Directed Interpolation or 

iNEDI (improved NEDI), present a relevant computational complexity, even higher than that of many learning 

based methods. In this paper we propose a new image upscaling method able to obtain artifact-free enlarged 

images preserving relevant image features and natural texture. The method, as several edges directed ones, 

approximately doubles the image size every time is applied by putting original pixels in an enlarged grid then 

filling holes. The hole filling is done in two steps, linearly interpolating closest points in the direction along 

which the second order derivative of the image brightness is lower. After each hole filling step an iterative 

refinement is performed, updating the values of the newly inserted pixels by minimizing the local variations of 

the second order derivatives of the image intensity while trying to preserve strong discontinuities. The main 
contributions of our paper can be summarized in the following items: 

•  A review of constant covariance constraint used in the NEDI method with the proof of the relationship of 

that constraint with the second order derivatives smoothness used in our algorithm. 

•  A new algorithm for image upscaling based on the iterative smoothing of second order derivatives (ICBI, 

Iterative Curvature-Based Interpolation). The algorithm is initialized using a simple filling rule based on 

second order derivatives (FCBI, Fast Curvature-Based Interpolation) that can be considered an edge 

directed interpolation algorithm too. 

•  A GPU implementation of the ICBI method able to enlarge images at interactive frame rates. 

The paper is organized as follows: Section 2 gives the basic description of the particular class of image 

upscaling methods based on grid doubling and hole filling, Section 3 describes the NEDI algorithm, showing 

that some of its drawbacks can be removed by changing the constant covariance constraint with a more 
restrictive one, then Section 4 demonstrates the relationship between this constraint and the hypothesis of 

second order derivatives continuity used in our new ICBI method. Section 5 describes the new method in detail 

and the experimental tests showing its advantages are reported in Section 6. The GPU implementation realized 

using the CUDA technology is described in Section 7. 

http://en.wikipedia.org/wiki/Digital_image
http://en.wikipedia.org/wiki/Digital_image
http://en.wikipedia.org/wiki/Digital_image
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II.  Interpolation From 4 Neighbors: Fast Methods And The Nedi Algorithm 
We focused our analysis on the ―edge-directed‖ interpolation algorithms that, each time they are 

applied, approximately duplicate the image size by copying original pixels (indexed by i, j) into an enlarged grid 

(indexed by 2i, 2j) and then filling the gaps with ad with ad hoc rules obtaining the missing values as weighted 
averages of valued neighbors, with weights derived by a local edge analysis. Algorithms of this kind are the 

well-known Data Dependent Triangulation and NEDI. 

In these methods the higher resolution grid is usually filled in two steps: in the first one, pixels indexed 

by two odd values (e.g. darker pixel in Figure 1 A) are computed as a weighted average of the four diagonal 

neighbors (corresponding to pixels of the original image); in the second the remaining holes (e.g. black pixel in 

Figure 1 B) are filled with the same rule, as a weighted average of the 4 nearest neighbors (in horizontal and 

vertical directions). 

 

 
Fig.1. Two steps Interpolation based on a weighted average of four neighbors 

 

For example, for the first step, the interpolated value is usually computed as: 

 

I2i+1, 2j+1 = 
 .(I2i,2j , I2i,2j+2, I2i+2,2j , I2i+2,2j+2).  (1) 

and specific algorithms of this kind differ for the way they estimate the coefficients vector 

0 1 2 3( , , , )


   
 
from the neighboring valued pixels in the grid. 

 

In the Data Dependent Triangulation the weighted average is computed setting to zero the weights of 

the two diagonally opposite pixels that differs more among themselves, and to 0.5 those of the other two. In the 

NEDI method the weights are computed by assuming the local image covariance constant in a large window and 

at different scales. With this constraint, an overconstrained system of equations can be obtained and solved for 

the coefficients. Images upscaled with this method are visually better than those obtained with the previously 

described methods, especially if some tricks are used to adapt window size and to handle matrix conditioning. 

However, even applying the rule only in non-uniform regions and using instead a simple linear interpolation 
elsewhere the computational cost of the procedure is quite high.  

 
III. CONSTANT COVARIANCE CONDITION REVISED: A MODIFIED,  

WELL-CONDITIONED NEDI 
If we analyze the locally constant covariance assumption used in NEDI, we clearly see that it is not 

ideal to model a classical step edge profile. In this case the brightness changes only perpendicularly to the edge 

and it means that the overconstrained system solved to obtain the parameters is badly conditioned due to the 

rank deficiency of the problem (the expected rank of the matrix to be inverted is 2 and not 4). The simple 

solution to avoid computational problems consists of finding the minimum norm solution using the pseudo 

inverse. Finding a different constraint leading to a well-conditioned problem would be, however, more 

satisfactory, as in the ill-conditioned case it would be possible to have a completely absurd pattern satisfying 

exactly the condition imposed to the local intensity. 

We can obtain easily a better constraint by assuming that coefficients in   multiplying opposite 

neighbors are equal. In this case, we can write: 

 

I2i+1, 2j+1 =  
β

 . (I2i, 2j +I2i+2, 2j+2, I2i, 2j+2+I2i+2,2j).  (2) 

and, assuming that this relationship is true with the same coefficients in a neighborhood of the point and also at 

the coarser scale, we can, as in the NEDI algorithm, write an overconstrained system and solving it to find 

1 2β , β .In this case, the inverted matrix if full-ranked. The solution is clearly faster (about 35% in our 

experiments) and, most important, the quality of the interpolation is the same obtained with the NEDI method 

(see Section 4). 
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IV. NEDI CONSTRAINT AND THE ITERATIVE CURVATURE BASED INTERPOLATION 

If the condition 2 holds in a neighborhood and across scales, it is reasonable to think that an algorithm 

iteratively refining interpolated pixels by locally minimizing a function that should be zero when the constraint 

is valid would be effective in obtaining a good result. From 2, we have: 

1β (I2i, 2j − 2I2i+1, 2j+1 + I2i+2, 2j+2)+ 

2β (I2i, 2j+2 − 2I2i+1, 2j+1 + I2i+2,2j) = 

(1 − 2(
1β +

2β ))I2i+1, 2j+1        (3) 

 

The idea of ICBI is rather simple: in the two step filling method described in Section 2, after the 

computation of the new pixel values with a simple rule (in our case we take the average of the two neighbors in 

the direction of lowest second order derivative, an algorithm we called FCBI, Fast Curvature Based 

Interpolation), we define an energy component at each new pixel location that is locally minimized when the 

second order derivatives are constant. We then modify the interpolated pixel values in an iterative greedy 

procedure trying to minimize the global energy. The same procedure is repeated after the second interpolation 

step. Images obtained with this method do not present the evident artifacts; adding additional terms to reduce the 

image smoothing and heuristics to deal with sudden discontinuities, we obtained results that compare favorably 

with other ‖edge based‖ techniques, with a computational cost that is compatible with real time applications (see 

Section 7). 
 

V.  Icbi In Details 
Let us describe the algorithm in details. The two filling steps, as written before, are performed by first 

initializing the new values with the FCBI algorithm, i.e., for the first step, computing local approximations of 

the second order derivatives ˜I11(2i+1, 2j+1) and ˜I22(2i+1, 2j+1) along the two diagonal directions using eight 

valued neighboring pixels (see Fig. 2): 

˜I11(2i + 1, 2j + 1) = I(2i − 2, 2j + 2) + I(2i, 2j)+ 

+I(2i + 2, 2j − 2) − 3I(2i, 2j + 2) − 3I(2i + 2, 2j) + 

+I(2i, 2j + 4) + I(2i + 2, 2j + 2) + I(2i + 4, 2j) 
˜I22(2i + 1, 2j + 1) = I(2i, 2j − 2) + I(2i + 2, 2j)+ 

+I(2i + 4, 2j + 2) − 3I(2i, 2j) − 3I(2i + 2, 2j + 2) + 

+I(2i − 2, 2j) + I(2i, 2j + 2) + I(2i + 2, 2j + 4)         (4)  

 

and then assigning to the point (2i+1,2j+1) the average of the two neighbors in the direction where the 

derivative is lower: 

 

I(2i,2j)+I(2i+2,2j+2)/2        if ˜I11(2i+1, 2j +1)    

                                                    < ˜I22(2i+1, 2j +1) 

I(2i+2,2j)+I(2i,2j+2)/2              ; otherwise. 

 
Fig. 2. At each step (here it is shown the first), the FCBI algorithm fills the central pixel (black) with the 

average of the two neighbors in the direction of lowest second order derivative (I11 or I22). I11 and I22 are 

estimated using for each one the 8 valued neighboring pixels (evidentiated with different colors). 

 

Interpolated values are then modified in an iterative procedure trying to minimize an ‖energy‖ function. 

This function is obtained by adding a contribution for each interpolated pixel, depending on the local continuity 

of the second order derivatives and on other quantities that are minima when desired image properties are 

reached. The sum of these pixel components should be minimized globally by varying the interpolated pixel 

values. It is clear that the computational cost of the procedure could be high. We apply, however, a greedy 
strategy just iterating the local minimization of each pixel term. Being the initial pixel value guess obtained with 
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FCBI reasonable, the procedure leads quickly to a local minimum that appears to be reasonable for our task. We 

said that the main energy term defined for each interpolated pixel should be minimized by small changes in 

second order derivatives. For the first interpolation step (filling gaps in the enlarged grid at locations (2i + 1, 2j 

+ 1)), we defined this term as: 

Uc(2i + 1, 2j + 1) =   (5)  

w1(|(I11(2i, 2j) − I11(2i + 1, 2j + 1))| + 
|(I22(2i, 2j) − I22(2i + 1, 2j + 1))|) + 

w2(|(I11(2i, 2j) − I11(2i + 1, 2j − 1))| + 

|(I22(2i, 2j) − I22(2i + 1, 2j − 1))|) 

w3(|(I11(2i, 2j) − I11(2i − 1, 2j + 1))| + 

|(I22(2i, 2j) − I22(2i − 1, 2j + 1))|) + 

w4(|(I11(2i, 2j) − I11(2i − 1, 2j − 1))| + 

|(I22(2i, 2j) − I22(2i − 1, 2j − 1))|)   (6)  

     

where I11, I22 are local approximations of second order directional derivatives, computed as: 

I11(2i + 1, 2j + 1) =    (7)  

I(2i − 1, 2j − 1) + I(2i + 3, 2j + 3) − 2I(2i + 1, 2j + 1) 

 
I22(2i + 1, 2j + 1) =   (8)  

I(2i − 1, 2j + 3) + I(2i + 3, 2j − 1) − 2I(2i + 1, 2j + 1) 

 

This energy term sums local directional changes of second order derivatives. Weights wi are set to 1 

when the first order derivative in the corresponding direction is not larger than a threshold T and to 0 otherwise. 

In this way smoothing is avoided when there is a strong discontinuity in the image intensity. Assuming that the 

local variation of the gray level is small, second order derivatives can also be considered an approximation of 

the intensity profiles curvature. This is why we call this term a‖curvature smoothing‖ term, and defined the 

algorithm ‖Iterative Curvature Based Interpolation‖ (ICBI). The optimization procedure minimizing the sum of 

the curvature smoothing terms is really effective in removing artifacts, but tends to create oversmoothed image. 

The smoothing effect can be only slightly reduced by replacing the second order derivative estimation with the 
actual directional curvature. 

 

In our experiments we found more effective the addition of another energy term enhancing the absolute 

value of the second order derivatives: 

 

Ue(2i + 1, 2j + 1) = −|I11(2i + 1, 2j + 1)| + |I22(2i + 1, 2j + 1)|   (9) 

 

This term creates sharper images, but can introduce artifacts, so its weight should be limited. Another 

term we tested to reduce artifacts is related to isophotes (i.e. isolevel curves) smoothing. This is derived from 

[12], where an iterative isophote smoothing method is presented, based on a local force defined as 

 
2 2

1 22 1 2 12 22 1

2 2

1 2

( , ) ( , ) 2 ( , ) ( , ) ( , ) ( , ) ( , )
( )

( , ) ( , )

I i j I i j I i j I i j I i j I i j I i j
f I

I i j I i j

 
 



 

 

with I11, I22, I12, I1, I2 being local approximations of first and second order directional derivatives. The related 

energy term we applied is: 
 

Ui(2i + 1, 2j + 1) = f(I)|2i+1,2j+1I(2i + 1, 2j + 1)  (10) 

with I11, I22 computed as before and 

 

I12(2i + 1, 2j + 1) =           (11) 

0.5(I(2i + 1, 2j − 1) + I(2i + 1, 2j + 3) − 

I(2i − 1, 2j + 1) − I(2i + 3, 2j + 1))  

 

I1(2i + 1, 2j + 1) =          (12) 

0.5(I(2i, 2j) − I(2i + 2, 2j + 2)) 

 
I2(2i + 1, 2j + 1) =                                          (13) 

0.5(I(2i, 2j + 2) − I(2i + 2, 2j))       
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Actually this term has a very small influence in improving the perceived and measured image quality. 

The complete energy function for each pixel location (2i + 1, 2j + 1), sum of the ‖curvature continuity‖, 

‖curvature enhancement‖ and ‖isophote smoothing‖ terms becomes 

therefore: 

 

U(2i + 1, 2j + 1) = aUc(2i + 1, 2j + 1)+ bUe(2i + 1, 2j + 1) + cUi(2i + 1, 2j + 1)              (14) 
 

Using this pixel energy, the first step of the iterative interpolation correction (adjusting pixel values 

with two odd indexes) is finally implemented as a simple greedy minimization as follows: after the placement of 

the original pixels at locations (2i, 2j) and the insertion of rough interpolated ones at locations (2i+1, 2j +1), we 

compute, for each new pixel, the energy function U(2i + 1, 2j + 1) and the two modified energies U+(2i + 1, 2j + 

1) and U−(2i + 1, 2j + 1), i.e. the energy values obtained by adding or subtracting a small value   to the local 

image value I(2i + 1, 2j + 1). The intensity value corresponding to the lower energy is then assigned to the pixel. 

This procedure is iteratively repeated until the sum of the modified pixels at the current iteration is lower than a 

fixed threshold, or the maximum number of iterations has been reached. The number of iterations can be also 

fixed in order to adapt the computational complexity to timing constraints. In our implementation we change the 

value of  from an initial value of 4 to the unit value during the iteration cycle in order to speed up the 

convergence. a, b and c and T were chosen by trial and error in order to maximize the perceived and measured 

image quality. Note that the value of c and T are not critical (if T = Imax and c = 0) results are only slightly 

worse. If too large, the isophote smoothing term can introduce a bit of false contouring, flattening texture. The 

ratio between a and b determines a tradeoff between edge sharpness and artifacts removal. Actually, it may be 

also a reasonable option to use only the derivative-based constraint and to enhance contrast in post processing. 

After the second hole-filling step (assigning values to all the remaining empty pixels), the iterative procedure is 

repeated in a similar way, just replacing the diagonal derivatives in the energy terms with horizontal and vertical 

ones and iteratively modifying only the values of the newly added pixels. 

 

VI. Experimetal Results 

For our experimental needs, we used images representing various objects, animals, flowers and 

buildings. These categories were chosen because they provide a wide range of colors and natural textures. 

Selected files were RGB color images with a depth of eight bits per channel. In all the previous equations we 

considered grayscale images; color images can be enlarged in the same way by repeating the procedures 

independently on each color channel or by computing interpolation coefficients on the image brightness and 

using them also for the other channels, reducing the computational cost and avoiding color artifacts. The high 

quality of the images obtained with the new method can be clearly seen comparing the images upscaled of the 

same factor with NEDI(see above snapshots ). However, we also performed both subjective and objective tests 

in order to compare quantitatively the quality of the images created with different methods and the related 

computational. 

 
(a) OBJECTIVE TEST: The objective test compares images obtained by downsampling the original images 

and then enlarging them with different methods, with reference images obtained just downsampling the original 

ones to the corresponding size. We performed this test on images converted to 8 bit grayscale, being the use of 

all three color channel not relevant to this test. Do not enlarge exactly the images by 2×/4× factors, being the 

exact enlargement at each step equal to (2width − 1)/width horizontally and (2height − 1)/height vertically. 

Finally we measured the differences between the upscaled images and the reference ones by evaluating the Peak 

Signal to Noise Ratio, defined as: 

 

PSNR = 20log10(MAXPIX/  

W H

2

i=1 j=1

(upscale(i,j)-original(i,j)) /W*H)  

where Iupscale(i, j) is the upscaled subsampled image, Ioriginal the original one, W and H the image dimensions and 

MAXPIX the end scale value of the pixel intensity. 

 

Tab 6.1: Comparison of PSNR And Computation Time Of ICBI And NEDI 

 ICBI NEDI 

PSNR Value      29. 7638 21.533 

Computation TIME 14.3906 61.875 
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(b) SUBJECTIVE TEST 

In order to compare perceived image quality, we have taken some color images and enlarged them by a 2× 

factor with two different algorithms. 

 

 
Fig 6.1: Comparison of Time and PSNR between NEDI and ICBI 

 

(c) IMAGE SHARPNESS AND ARTIFACTS 

  Subjective tests reveals that quality scores should be analyzed with care, being the perception of image 

quality related to image contents and to different factors that may be weighted differently according to the user’s 

needs. The decrease in the perceived ‖image quality‖ is related to a linear combination of blurriness and 

artifacts, with higher weight given to blurriness (most people seem to prefer an increase in sharpness rather than 

a similarly noticeable artifact removal). This is probably one of the reasons why, for the enlargement of high 

resolution images for printing enhancement, photographers often use software that does not create natural detail 

or maximize similarity between high resolution patches and low resolution upsampled ones. Default options of 

professional photo zooming software usually strongly enhance contrast and straight lines, locally flattening 

texture. Of course, this is not necessarily a good choice if the enlarged bitmap should preserve detail 
recognition, realism and a correct depth perception from defocus. Learning based methods are also able to 

reconstruct sharp detail at the risk of creating ‖hallucinated‖ objects, and the perceived quality may be good or 

bad according to the fact that the detail is realistic or not in that position. It seems, therefore, a reasonable 

statement to say that there is not an interpolation method that is ideal in any condition: the choice of the 

algorithm is largely dependent on the application. The ICBI method proposed here is, in our opinion extremely 

effective in removing sampling artifacts, even if it does not enhance strongly lines and contrasted edges and 

results appear a bit oversmoothed. If the user wants to obtain images with less defocusing and enhanced 

contours, the final result can be, however, post-processed with sharpening filters to obtain a more contrasted 

image or clearer lines, without creating texture appearing too artificial or ―painted‖ (see Figure 6.2).The other 

good feature of the method here proposed is the low computational complexity that allowed us to obtain real 

time performances with a GPU implementation. 
 

 
Fig 6.2. 4× upscaling of a 4 Megapixel image (not downsampled). A: Nearest neighbor enlargement showing a 

small detail at the original resolution. B: Same detail enlarged with ICBI: pixelization is removed without 

creating evident jaggies or artifacts, but the image appears oversmoothed. C: The same upscaled detail in B 
after a simple post-processing (selective smoothing and sharpening) enhancing the perceived quality of the 

printed image. 

 

In the most recent generations of Graphic Processing Units (GPUs), the capacities of per-pixel and 

texturing operations have greatly increased. Millions of these GPUs are already present in the computers of 

consumers worldwide. Today you can easily apply those texturing and pixel engines, originally designed for 3D 

modeling and rendering, to many classic image-processing problems to provide tremendous speed increases 

over CPU-only implementations—and without any compromise in final image quality. This short introduction 
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describes the basic methods of GPU usage for image processing and provides useful pointers to documentation, 

demo programs, and other developer tools. 

In GPU each pixel in the rendered image can have image-based texturing applied (up to 16 

simultaneous input images per pass can be accessed), and each pixel can run one or more small programs, called 

pixel shaders, to generate the final output color at each individual pixel. The GPU executes these shaders for 

many pixels at a time in parallel. Multiple passes of rendering may be executed, and the GPU provides 
additional image-blending hardware to permit images to be built-up in composited layers of arbitrary 

complexity. The results of each rendering pass, or any disk image, can likewise be passed back into the GPU 

pixel shader engine as another texture. This means that arbitrarily complex compositing operations can also be 

expressed as pixel shader operations. Image pixels can even be used as address indices into other images. 

Once in the GPU, data flows in parallel for vertices and fragments. One can think of rendering as a 

SIMD problem where each instruction is executed on parallel streams of vertices or fragments. These streams 

only interact in the pipeline, either through the texture buffers or through accessing information in the frame 

buffer via multiple pipeline passes. In this way, one can think of the texture and frame buffers as pipeline 

registers. Since each stage is executed in lockstep, RAW hazards are avoided. In addition, by using two buffers, 

we can avoid RAW hazards between the original image to be processed and intermediate results. In our 

application we traverse the rendering loop on the GPU for each orientation we are searching. 

In vertex processor the first stage through the pipeline for our application is determining the 
coordinates for the texels (texture primitives), and the color at each texel location. In this stage of the pipeline, 

the texel color can be altered by shading or blending with the underlying polygon. However, in our application, 

the vertex program execution is a compulsory part of the pipeline, where no actual computations are performed. 

Fragment programs are used to implement these per-pixel operations.  

 

VII. Cuda Implementation And Real Time Interpolation 
CUDA is a technology developed by nVidia allowing programmers to write code that can be uploaded 

and executed in recent nVidia graphics cards, exploiting their massively parallel architecture in order to obtain a 

relevant reduction of the computing time. C++ developers can write particular functions called ‖kernels‖ that 

can be called from the host and executed on the CUDA device simultaneously by many threads in parallel. 

Using this technology, we implemented the ICBI algorithm by creating several CUDA kernels corresponding to 

the different steps of the algorithm. In this way computation performed in different blocks of the image can be 

executed in parallel, while the execution of the different steps is synchronized (see Figure 8). A first kernel 

creates the high resolution image from the low resolution one, a second fills odd pixels with the FCBI method, 

then two kernels computing derivatives and correcting the interpolated values are executed repeatedly. The 

second interpolation step is implemented in the same way, with a first kernel inserting new pixel values, and the 

iterative call of the two kernels computing derivatives and locally changing the interpolated values optimizing 

the energy function. With this implementation, we obtained the 4× enlargement of 128×128 color images in 
16.2 ms on average, corresponding to a ideal frame rate of 62 frames per second and the 2× enlargement of 256 

× 256 images in 12.3ms on average using a nVidia GeForce GTX280 graphic card (240 cores) and obtaining the 

same image quality of the Matlab and C version of the code. This example implementation clearly shows the 

possibility of applying ICBI for real time applications. 

 
Fig.8. Flow chart representing the execution of the CUDA ICBI implementation. Ellipses represent kernels 
where matrices are processed in parallel creating multiple threads each one processing a separate block. 
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VIII. Conclusion 

In this project we discussed several issues related to the problem of creating high quality upscaled 

images from low resolution original data. By using New Edge Directed Interpolation (NEDI) method can be 

leads to creating more time for program execution due to ill conditioned over constrained systems of equations 
and obtaining the high image quality compared to previous methods like Nearest Neighbour, Bicubic, and 

Bilinear Interpolation Techniques but we need to slightly reduce computation time. Then we showed used in our 

new ICBI (Iterative Curvature Based Interpolation) technique. This technique uses mainly the assumption that 

the second order derivatives of the image brightness are continuous along the interpolation directions and is able 

to obtain very good results, especially for its ability of removing artifacts without creating ‖artificial‖ detail, as 

proved by our objective and subjective tests. The new technique, based on a greedy minimization of an energy 

function that includes Curvature continuity, Curvature Enhancement And Isophote Smoothing defined at the 

interpolated pixel locations, is not computationally expensive like example based methods or the NEDI 

procedure and it is easily parallelizable.  
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