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Abstract: Power consumption has become one of the biggest challenges in design of high performance 

microprocessors. In this paper we present a design technique using GALs (Globally-Asynchronous Locally-

Synchronous) for implementing asynchronous ALUs, which aims to eliminate the global clock. Here ALUs are 

designed with delay insensitive dual rail four phase logic and CMOS domino logic. It ensures economy in 
silicon area and potentially for low power consumption. This has been described and implemented in order to 

achieve a high performance in comparison with synchronous and available asynchronous design. Also 

simulation results, show significant reduction in the number of transistors as well as delay.   
 

I. Introduction 
The ALU (Arithmetic Logic Unit) is implemented by using asynchronous pipeline architecture. The 

architecture is having simple handshake cells and the handshake cells are embedded in the pipeline stage as 

normal logic cells. As a result, the speed of the ALU can be very fast. Pipeline is an important methodology to 

speed up the design [1]. It allows many operations to occur in parallel. Most pipeline systems use synchronous 

pipeline, in which a global clock is used to clock all the stages in the synchronous pipeline system. As a result 

the global clock signal is always connected to many logic cells and so the time of the clock signal to reach 

different logic cells may be different due to different length of connection from the global clock to different 
logic cells and hence this a problem.  Asynchronous pipeline may be a solution. In asynchronous pipeline global 

clock is removed. Instead of global clock, handshake control signals are used to govern the operation of the 

pipeline [1&2].  

One approach which promises high performance with low power consumption is the use of 

asynchronous computing techniques. To investigate this self-timed implementation of the ARM microprocessor 

- a 32-bit RISC architecture developed by Advanced RISC Machines Limited - is being produced as a 

commercially realistic technology demonstrator. Other researchers [3] have demonstrated the feasibility of 

building a complete asynchronous microprocessor; the current project addresses the problems associated with 

the re-implementation of an existing commercial architecture with the specific goal of minimizing power 

consumption several approaches to asynchronous circuit design are currently being investigated [4].  

Some propose by using gated clocks to reduce the switching activity of logic in redundant cycles [5]. 
Although it minimizes the skew, this methodology is limited when operating frequency is very high. On the 

other hand, Globally Asynchronous and Locally Synchronous (GALS) technique aims to eliminate the global 

clock, by partitioning the system into several synchronous blocks and communicating asynchronously among 

blocks [7]. However, the global signaling protocol increases the total area power penalty and affects 

performance of the system. Several researchers propose asynchronous approaches to cope with performance and 

timing issue. Designed a 16-bit asynchronous ALU with an asynchronous pipeline architecture [6]. In this 

approach, simple handshake cells embedded in pipeline stages make the ALU run fast. Increases total area 

power penalty and affects performance of the system. However, large power has consumed by this design while 

waiting for the incoming data.  

Since the inappropriate rotate-wire concept of data buses, the time required for each multiplication 

operation becomes larger. In reducing the time dependency of an asynchronous design of Quantum dot Cellular 

Automata (QCA), Paper [8] used GALS with delay-insensitive data encoding scheme. Here each gate has 
locally synchronized by corresponding clocking zone(s). We focus in this asynchronous design to reduce the 

transistors count, power consumption and delay significantly by using delay insensitive dual rail logic and 

bundled data bounded delay model.  

 
II. Introduction of Asynchronous Circuits 

Asynchronous circuits are fundamentally different; they also assume binary signals, but there is no 

common and discrete time. Instead the circuits use handshaking between their components in order to perform 

the necessary synchronization, communication, and sequencing of operations. Expressed in „synchronous terms‟ 

this results in a behavior that is similar to systematic fine-grain clock gating and local clocks that are not in 

phase and whose period is determined by actual circuit delays – registers are only clocked where and when 
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needed. In all protocols, Muller pipeline is used. The 4-phase bundled data and 2–phase bundled data are 

pipelined designs in which matching delay elements needed to be inserted between latches to maintain correct 

behavior in the request signal path. On the other hand, 4-phase dual rail has designed to combine encoding of 

data and request. [10].  
 

Figure 1. (a) A bundled-data channel (b) A 4-phase bundled-data protocol (c) A 2-phase bundled-data protocol 
 

2.1. Bundled-data Protocols 

The term bundled-data refers to a situation where the data signals use normal Boolean levels to encode 

information, and where  separate request and acknowledge wires are bundled with the data signals, Figure. 

1(a). In the 4- phase protocol illustrated in Figure. 1(b) the request and acknowledge wires also use normal 

Boolean levels to encode information, and the term 4-phase refers to the number of communication actions: (1) 

the sender issues data and sets request high, (2) the receiver absorbs the data and sets acknowledge high, (3) the 

sender responds by taking request low (at which point data is no longer guaranteed to be valid) and (4) the 

receiver acknowledges this by taking acknowledge low. At this point the sender may initiate the next 
communication cycle. 

 
2.2. The 4-phase dual-rail protocol concept 

This protocol makes the reliable communication between blocks of designed architecture regardless of 

delays in the wires connecting two blocks and also which is delay insensitive [9&10]. It uses a single wire for 

each data bit and one extra control line for each data word. It provides the reliable communication between 

blocks by combined encoding of data and request with an acknowledge signal after completion detection. This 

logic uses two request wires per bit of information d:; one wire d.t is used for signaling a logic 1(or true), and 

another wire d.f is used for signaling logic 0(or false). In a single bit channel with 4 phase dual rail logic, the 
request signal can be either of d.t or d.f for handshaking purpose. Viewed together the {x.f, x.t}={1,0} and {x.f, 

x.t}={0,1} represent “valid data” (logic 0and logic 1 respectively) and {x.f, x.t}={0,0} represents “no data” (or 

“empty value” or “E”). The codeword {x.f, x.t}={1,1} is not used, and a transition from one valid codeword to 

another valid codeword is not allowed, as illustrated in Figure. 2(a).  
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Figure 2. (a) The 4-phase dual rail logic (b) Muller C-element and indication concept and (c) Muller Pipeline   

 

2.3.  Muller C-element and Indication Concept 

The concept of indication or acknowledgement plays an important role in the design of asynchronous 

circuits for synchronization. Muller C-element is a state-holding element much like an asynchronous set-reset 

latch [1]. When both inputs are 0 the output is set to 0, and when both inputs are 1 the output is set to 1. For 

other input combinations {(0, 1) or (1, 0)} the output does not change. Consequently, one can see the output 

changes from 0 to 1 can conclude that both inputs are now at 1, similarly one can see the output changes from 1 

to 0 may conclude that both inputs are now 0. In this circuit design, the absence of a clock means that, in many 

circumstances, signals are required to be “valid data: {x.f, x.t}={1, 0} and {x.f, x.t}={0, 1}” all the time that 
every signal transition has a meaning and, consequently, that hazards and races must be avoided. Signal 

transitions are not indicated (acknowledged) for the other signal transitions such as    {(0, 1), (1, 0)} and that are 

used to avoid the source of hazards. A circuit accomplish this requirement with Muller C-element is as shown in 

Figure. 2(b). The Muller C-element is indeed a fundamental component that is extensively used in asynchronous 

circuit design [1].  

 

2.4. Muller Pipeline 

A 4-phase dual-rail pipeline is based on the Muller pipeline that relays handshakes in Figure. 2(c). In 

the Muller pipeline, there is a 1-bit wide and 3-stage deep pipeline that uses a common acknowledge signal per 

stage to synchronize. Here the pipeline stage can store empty codeword {d.t, d.f}={0, 0}, causing the 

acknowledge signal out of that stage to be logic 0 or one of the two valid code words {0, 1} and {1, 0}, causing 
the acknowledge signal out of that stage to be logic 1. Initially all of the C-elements have been initialized to 0 

and during the operation, according to the successor value; the current C-element transfers its predecessor‟s 

value for handshaking [11]. To understand what happens let‟s consider the ith C-element, c[i]: It will propagate a 

1 from its predecessor c[i-1], only if its successor c[i+1] is 0. In a similar way it will propagate a 0 from its 

predecessor if its successor is 1.  

 
Figure 3. The Adder Circuit in ALU 
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This ALU has no special fast carry logic and performs addition with a chain of thirty two full adders. The only 

concession to the asynchronous nature of the unit made at the design stage was that the carries between the 

individual bits are encoded onto pairs of wires signaling the “0” and “1” states of the carry bit respectively. In 

this fashion it is possible to detect that a carry signal has arrived at a given bit position by observing a change in 

state of one of these signals. ALU completion is signaled when a carry has been transmitted to all 32 bits in the 

word [10]. 

 

III. Design and Implementation of ALU 
Using the logics and principles outlined in Section II, an ALU has designed at the transistor level for 

single bit operation as shown in the Figure. 3 to demonstrate our design concept. A single bit-slice ALU uses 

only 53 transistors and is capability of operations in Table 1. Since we emphasize on the design of asynchronous 

component, there is no hardware implementation for 4- phase dual rail with Muller C. However, the proposed 

circuit assumes the signaling from such logic blocks. For example, c0out and c1out act as two wires of 4- phase 
logic, which makes reliable operation between its predecessor and successor blocks.  

 
3.1. Architecture design & Implementation: 

We designed a 32-bit ALU, which requires 1696 transistors. The basic principle of Bundled data – 

Bounded delay model of Sutherland‟s micro pipelines is used here [1]. The timing characteristics of all data 

busses of this architecture are bundled together. Here the statuses of the data busses are indicated by 4 phase-

dual rail hand shake signals. The clock power reduction at the architectural level is mainly due to pipeline 
technique. The dynamic logic of completion detection unit ensures precise internal operation, because of its 4-

phase dual logic. It is also carrying the timing information because it uses common timing characteristics.  
 

Table 1. Functions available for the proposed ALU 

Logic Function 
Basic 

Operation 
a-input b-input 

and AND True True 

add AND True True 

add with carry AND True True 

subtract AND True complement 

reverse subtract AND complement True 

subtract with carry AND True Complement 

reverse subtract with carry AND complement True 

test bits AND True True 

compare AND True Complement 

compare negative AND True True 

bit clear AND True Complement 

xor XOR True True 

test equal XOR True True 

or OR True True 

move OR Zero True 

move NOT OR Zero complement 
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Figure 4. A CMOS level Asynchronous ALU circuit for 1-bit operation 

 
IV. Analysis 

Addition is one of fundamental functions of the ALU. We start by analyzing the number of transistors 

used in the addition. About 80% of the operations require some form of addition [11]. If we improve the 

processing time of addition operation, the performance of complete ALU can also be improved. The latency 

required by our design is depended upon the operation, the input data at that incident and the carry flow across 

the whole word length, i.e. it needs to propagate carry until it has predicted by the completion detection stage. 

The average length of the mean carry propagation distance is varying according to input data. In this 32-bit 

operation, a sum of 140 transistors has used for precharging (domino logic) and buffer purposes to meet the 

specifications at the layout.  

The simulated output waveform for the addition operation performed by this ALU presented in Figure. 
5. It is performed with VDD=1.8V, input sequence c1in=1111, c0in=0000, a=0011, b=0101 and the simulated 

output sequence is output=1001, c0out=1000, c1out=0111 which coincides the expected specification. This 

simulation has done by HSPICE with 10ns local clock period at room temperature. The simulation results for 

the power consumption of typical addition operation with different supply voltages are shown in the Figure. 5. 

The simulation results of HSPICE 0.18um technology shows, the average power consumption for typical 

addition operation is 1.02x10-4W under 1.8V supply with 1000 sample inputs at room temperature and average 

time delay is 2.5ns. A comparison of the simulated time performance and transistor count of this design with 

other published alternatives as shown in Table 2 and Table 3. They clearly indicate a significant reduction in 

transistors count. Our design has much reduction in silicon area. In addition, this architecture enables to have 

reduced switching capacitance because of missing master clock in the transistors of the ALU circuit design. It 

gives reduced switching actions for every arithmetic operation and reduction in silicon area. 

 

Data and control path for a data dependent transistor level 

section 
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Figure 5. Simulated waveforms for the 1 bit addition operation 

 

Table 2. Simulated Results for Time Performance 
Time (ns) Best Case Worst Case Average 

Our Design 3 4 3.5 

Synchronous - - 4 

Ref [12] 3 6 4.5 

Ref [13] 2.5 7.5 5 

 

Table 3. Comparison of Reported Design 

Comparison 

Discussed Design and Existing Designs 

Synchronous ARM 

ALU [12] 

Asynchronous ARM 

ALU [12] 
Our Design 

Technology 1.2 um CMOS 1.2 um CMOS 0.18 um CMOS 

Supply Voltage ~5V (CO/SS) ~5V (CO/SS) ~1.8V (CO/MS) 

Data Width 32 bit 32 bit 32 bit 

Timing Purpose - 140 (Transistors) 140 (Transistors) 

Self Time Unit 3000 (Transistors) 2300 (Transistors) 1696 (Transistors) 

 

V. Conclusion 
The proposed design can reduce silicon area and improve the performance on average. This is mainly 

due to the use of the asynchronous design concepts with CMOS dynamic domino logic. They result in reduction 
in the transistor count & parasitic capacitances. Subsequently, power consumption can be reduced. Furthermore, 

this architecture provides glitch free operation, which is an important key factor to better reliability and 

performance. Effective reduction in area, power consumption and reasonable performance improvement are the 

special features of our designed architecture. 
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