Apocrine Carcinoma of Breast: A Case Report and Literature Review

Dr. D.P.Kavitha*, Dr. V. Soundarya¹
(*Assistant Professor, 1 Post Graduate Department of General Surgery, Coimbatore medical college hospital, Coimbatore, Tamil Nadu, India)

*Corresponding Author: Dr. V. Soundarya

Abstract:
Apocrine carcinoma is a very rare subtype of breast carcinoma, accounting to less than 1% of the affected population. It is characterized by Cells which have typical apocrine features, namely, abundant eosinophilic granular cytoplasm and prominent/multiple nucleoli. Apocrine carcinomas tend to show estrogen and progesterone receptor negativity and androgen receptor positivity (ER (-)/PR (-)/AR (+)); and expression of Gross cystic disease protein fluid 15 (GCDPF-15). We report a case of invasive apocrine carcinoma of breast as it is a very rare morphological entity.

Key word: Apocrine carcinoma, carcinoma breast, Androgen receptor, gross cystic disease protein fluid 15

I. Introduction
Breast cancer is the most common malignancy in women worldwide. Breast cancer can be classified into various subtypes based on their morphology, histological appearance and immunohistochemistry profile. Each histological subtype has a relevant prognostic implication. According to the World health organization classification, there are 21 histological subtypes. Invasive ductal carcinoma – no specific type (NST) is the most common subtype. Among the rare subtypes, there is a varied prognosis ranging from tubular carcinoma which has an indolent course to metaplastic carcinoma which has an unfavorable prognosis. A clear recommendation about the clinical management of rare subtypes is lacking. Apocrine proliferations most often are metaplasia as a component of fibrocystic change. However, the appearance of apocrine metaplasia within various breast lesions, such as papillomas, ductal adenomas, and sclerosing adenosis, may complicate their diagnosis. Distinguishing benign from malignant apocrine proliferations can be problematic owing to the nuclear characteristics of apocrine cells. This is a case report of a rare case of apocrine carcinoma of breast with literature review, presented for a better understanding of this rare entity.

II. Case Report
A 90 year old female patient presented with chief complaint of lump in her right breast that she had noted 3 months prior. It was a painless lump which gradually progressed to increase in size. There was an associated history of nipple retraction. She had no family history of cancer. On physical examination, a hard and well defined lump was felt in the upper outer quadrant of right breast, with ulceration of the skin over the lump. Two hard and mobile nodes were palpable in the right axilla. Ultrasound of the breast showed a BIRADS - V hypo echoic lesion measuring 8 x 4 cm in the right breast from 2’o clock to 3’o clock position. Fine needle aspiration cytology was positive for malignant cells. Her metastatic work-up was clear. Owing to her age, significant co-morbidities and the fungating nature of the lump, she underwent a simple mastectomy and the specimen was sent for histopathological examination. Grossly the tumor was found to be multicentric, with the largest one measuring 7.5 x 3.8 cm and tumor involved the nipple areola complex and the overlying skin. Microscopically the tumor had typical apocrine features, namely, abundant eosinophilic granular cytoplasm and prominent nucleoli. The tumor was negative for estrogen receptor, progesterone receptor and Her 2-nu – triple negative. The tumor was positive for androgen receptor. Final diagnosis was given as Apocrine carcinoma of right breast – Grade II with all cut margins free from tumor.

DOI: 10.9790/0853-1908093033
Apocrine Carcinoma of Breast: A Case Report and Literature Review

Figure 1: Histopathology report

Figure 2: Histopathology slide of apocrine carcinoma breast
III. Discussion

Apocrine metaplasia often is seen in association with fibrocystic change. The incidence of infiltrating apocrine carcinoma is unclear, due to lack of clear consensus in pathological reporting and the consequent difficulty in diagnosis. Gayatri et al. included this entity under the group of “relatively rare carcinomas” [1]. Azzopardi reported an incidence of apocrine carcinoma between 0.3 and 0.4% of all breast carcinomas, Frable and Key reported 1%, Bonser et al. reported 14.5%, and Haagensen reported 62% [2].

The origin of the apocrine cells is from the terminal duct–lobular unit [3] and not from axillary apocrine sweat glands, as Haagensen originally thought [4]. A variety of benign breast lesions may develop apocrine metaplasia, including sclerosing adenosis, ductal adenomas, nipple adenomas, intraduct papillomas, microglandular adenosis, and radial scars. Approximately 14% of fibroadenomas demonstrate apocrine metaplasia with the same appearance as apocrine metaplasia in fibrocystic change [5].

Apocrine proliferation in breast can be classified as atypical apocrine hyperplasia, apocrine DCIS and infiltrating apocrine carcinoma. For the diagnosis of apocrine DCIS, guideline was given by Tavassoli and Norris. It required only a single duct or ductule lined by markedly atypical apocrine epithelium with necrotic debris. If there is no necrosis and the tumor has a solid or irregular cribriform or micropapillary pattern, the lesion must exceed the 2-mm quantitative criterion for DCIS [6].

Apocrine carcinoma was first noted in 1916 by Krompecher. [7] Japaze et al., in 2005, proposed that criteria for diagnosis of apocrine carcinoma as follows:

- Apocrine features consisting of 75% of cells
- Large cells with eosinophilic granular cytoplasm
- Nucleus to cytoplasmic ratio of 1:2 or more
- Nucleus large, round, and vesicular may be pleomorphic
- Sharply defined borders.

Minor and nonmandatory criteria include prominent nucleoli in >50% of fields and apical cytoplasmic snouts into luminal spaces [1]. Most apocrine carcinomas are a modified Scarff-Bloom-Richardson grade 2 or 3. Whether this grade specifically correlates with behavior is not known. However, stage for stage, apocrine carcinomas have not been found to behave differently from usual ductal carcinomas [8].

According to emerging evidence, apocrine carcinomas tend to show estrogen and progesterone receptor negativity and androgen receptor positivity [1]. Gross cystic disease fluid protein (GCDFP)-15, is associated with apocrine carcinoma. GCDFPs are a group of proteins ranging in size from 15,000 to 44,000kd. [9] GCDFP-15 has been detected by immunohistochemical analysis in apocrine glands in other regions of the body, as well as in apocrine glands in the breast. Metaplastic apocrine cells and apocrine carcinoma cells have strong immunoreactivity for GCDFP-15. [9] Tumors with immunoreactivity for GCDFP-15 have not shown a different outcome, stage for stage, than tumors lacking immunoreactivity. [10]

Apocrine carcinoma may exhibit a unique response to androgen administration. An androgen, fluoxymesterone, was studied by Dilley et al. [11] Miller et al examined 120 breast cancers and found that the degree of apocrine differentiation correlated with the amount of GCDFP-15 released by the tumors with high GCDFP-15 levels in high-grade apocrine tumors. The presence of androgen receptors and also correlated with the amount of tumoral GCDFP-15 released. [12]

IV. Conclusion

Most apocrine proliferations are benign and often are a component of fibrocystic change. As apocrine epithelium develops atypia, the differentiation between atypical apocrine hyperplasia and intraductal carcinoma is a concern. Although prognostically same as Intra ductal carcinoma – not otherwise specified, apocrine carcinoma should be diagnosed as separate entity, as there are growing bodies of evidence that apocrine carcinoma may have different hormonal profile and may show different clinical behavior with a unique response to androgens.

Reference

DOI: 10.9790/0853-1908093033 www.iosrjournal.org 32 | Page