BODE Index Vs FEV1 in predicting outcome and number of exacerbations in COPD Patients

^[1]Dr Naga Lakshmi Katragadda ^[2] Dr K Venkata Ramana ^[3] Dr K V Vijaya Kumar ^[4] Dr G Samba Siva Rao

- [1] Dr Naga Lakshmi Katragadda: Assistant Professor Dept of Pulmonary Medicine m DR.Mallareddy Medical College Hyderabad India
 - ^[2] Dr K Venkata Ramana: Designated Associate Professor Dept of Pulmonary Medicine[TB&CD] Andhra Medical College Visakhapatnam AP India
- [3]Dr K V V Vijayakumar: Professor Dept of Pulmonary Medicine Andhra Medial College Visakhapatnam AP India
- ^[4]Dr G Samba Siva Rao : Professor Dept of Pulmonary Medicine Andhra Medical College Visakhapatnam AP India

Corresponding Author: Dr K Venkata Ramana

Date of Submission: 09-09-2019 Date of Acceptance: 25-09-2019

I. Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a common, preventable and treatable disease that is characterized by persistent respiratory symptoms and airflow limitation that is due to airway and/or alveolar abnormalities usually caused by significant exposure to noxious particles or gases. COPD will become the third most common cause of dearth and the fourth cause of disability in the world by the year 2020. COPD exacerbations are defined as an acute worsening of respiratory symptioms that result in additional therapy 3,4. As COPD progresses, patients develop more frequent and sereve exacerbations5,8 and have an increased rate of the disease because they accelerate the rate of decline of lung function7.8 are associated with significant mortality and have a high socioeconomic burdan9. It is a high priority to have a proper and simple tool that helps in predicting exacerbations.

The BODE index was developed in 2004 by Celli and colleagurs, for predicting morality risk of COPD patients which includes Body mass index (B). Degree of airflow obstruction (O). Dyspnea (D) and Exerc ise capacity (E).

II. Aims and Objectives

- 1. To assess BODE index and GOLD severity staging in stable COPD patients.
- 2. To assess predictor value of BODE index and GOLD severity staging in number of acute exacerbations and their outcome in the following one year.

III. Material and Methods

It is a ptospective study done at GHCCD Visakhapatnam, Andhra Pradesh, from September 2014 to November 2016 with follow up of 1 year at an interval of 4 monhs or until death whichever was earlier.

Inclusion criteria:

100 Stable COPD patients (whithout acute exacerbations for at least 8 weeks prior to enrolment into the study), Age >40 years and post bronchodilator FEV $_{1}$ /FVC < 0.7 were included in the study.

Exclusion criteria:

Patients with bronchial asthma , recent M1, AE COPD, other major life-threatening illness were excluded from study.

The study population was assessed for BMI, Air flow obstruction, MMRC dyspnea scale, exercise capacity (measured based on 6-minute walk test according to ATC guidelines). Baswd on these variables (BODE index score) patients were grouped into 4 subgroups 0-, 3-4, 5-6, 7-10. Also, patients were categoriszed on GOLD severity staging into stage 1, 2, 3 and 4. Comparison was done between these groups. During their follow up period, patients were assessed for number of exacerbations and exacerbation outcomes.

Data Aansysis:

Mea \pm SD was used for baseline characteristics. The chi-square test of contingency tables was used to compare proportions for discrete variables. The main outcome measure was exacerbation occurrences during 1 year. We evaluated the influence of GOLD staging (GOLD I, II, III, and IV) and BODE classes (classes 1,2,3, and 4) as continuous variables on exacerbation by logistic regression and by the area under the receiver-operator curve (ROC). P value<0.05 was considered statistically significant.

IV. Results

Out of 100 patients, 6 patients were lost to follow up; 70 were males and 24 were females. Smoking was the most common risk factor associated with COPD and was seen in 89.4% of the cases. The baseline characteristics of these patients are summarized in Table#1.

Table no 1: Mean values of various patient variables in the study population

Parameter	Mean	Standard Deviation
Age	61.30	8.71
BMI	24.08	6.00
FEV ₁	45.17%	18.96%
MMRC	1.19	1.01
6MWD	277.86	92.50
BODE	4.61	2.68

Table#2 shows classification of patients according to BODE index score and most of them are equally distributed between an index of 3-4 and 7-10.

Table no 2: Classification of patients according to BODE index score

2 (9.09%)	00 (00 100)
2 (7.07/0)	22 (23.40%)
7 (25.9%)	27 (28.72%)
11(57.8%)	19 (20.21%)
4 (15.3%)	26 (27.67%)
24	94
	7 (25.9%) 11(57.8%) 4 (15.3%)

Classification of GOLD severity staging is mentioned in Tables #3 and majority of patients were in GOLD stage-3 (37.23%)

Table no 3: Classification of patients according to GOLD severity

GOLD staging	Male	Female	Total
1 (≥80)	10 (83.3%)	2 (16.6%)	12 (12.76%)
2 (50-79)	12 (63.1%)	7 (36.8%)	19 (20.21%)
3 (30-49)	26 (74.2%)	9 (25.7%)	35 (37.23%)
4 (<30)	22 (78.5%)	6 (21.4%)	28 (29.80%)
Col. Total	70	24	94

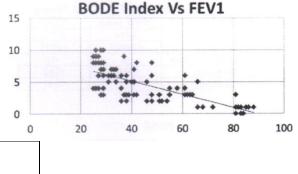

As BODE index increased, the stage (GOLD severity staging) of disease also increased statistically significant (p = 0.001). Please refer Table #4.

Table no 4: BODE index vs GOLD Severity staging

BODE Index	Stage 1	Stage 2	Stage 3	Stage 4	Total
0-2	11 (50%)	7 (31.8%)	4 (18.1%)	0 (0%)	22
3-4	1 (3.7%)	10 (37.03%)	8 (29.6%)	8 (29.6%)	27
5-6	0 (0%)	2 (10.5%)	15 (78.9%)	2 (10.5%)	19
7-10	0 (0%)	0 (0%)	8 (30.7%)	18 (69.2%)	26
Col. Total	12	19	35	28	94

P = 0.001

A significant negative correlation was found between BODE index and FEV 1 was shown in Figure 1.

Pearson Coefficient = -0.736 P value < 0.01

Figure 1 : BODE Index vs FEV 1

Out of 94 patients, 36 (38.29) patients experienced at least one exacerbation during one year follow up period. Out these 36 patients with exacerbations, 5(5.31%) were merged with OP- based treatment and the remaining 31 (31.97%) patients were hospitalized in which 12(12.76) patients died.

As the above BODE index increased, the percentage of exacerbations on follow up also increased. Patients with BODE index 0-2 never experienced any exacerbation, whereas 92.3% of patients having BODE index 7.10 experienced at least one exacerbation during follow up. Out of four GOLD stages, majority of patients (52.77%) whit GOLD stage 4 experienced exacerbations.

Patients with ahigher BODE index (7-10) experienced more no of (\geq 2) exacerbations when compared to patients with lower (3-4) BODE index. (p=0.007) whereas GOLD severity staging was not significantly associated with no. of exacerbations. (p=0.09)

Table no 5: BODE index Vs FEV ₁ in predicting exacerbations.

Exacerbations	BODE Index	FEV ₁
AUC	0.951	0.794
P Value	< 0.0001	< 0.0001
Associated Criterion	>5	≤48
Sensitivity	83.33	94.44
Specificity	91.38	50.00

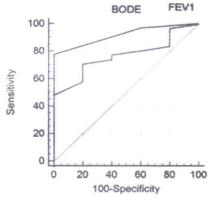
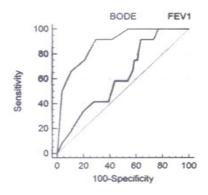



Figure 2: ROC curves of BODE index vs FEV₁ in predicting exacerbations.

BODE index was also able to predict the outcome of exacerbations better than FEV₁ alone. Outcomes were measured in terms OP based management, hospitalization and morality (Table # 6,7,8 and Figure # 3,4,5)

Table no 8: BODE Index vs FEV1 in predicting Mortality

Mortality	BODE Index	FEV ₁
AUC	0.884	0.619
P Value	< 0.0001	0.1379
Associated Criterion	>5	≤48
Sensitivity	91.67	91.67
Specificity	70.73	36.59

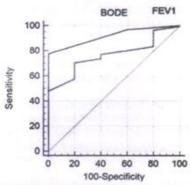


Figure 4: ROC curves of BODE Index vs FEV1 in predicting Hospitalization

Table no 8: BODE Index vs FEV1 in predicting Mortality

Mortality	BODE Index	FEV ₁
AUC	0.884	0.619
P Value	< 0.0001	0.1379
Associated Criterion	>5	≤48
Sensitivity	91.67	91.67
Specificity	70.73	36.59

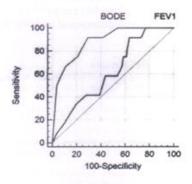


Figure 5: curves of BODE Index vs FEV 1 in predicting Mortality

Table no 9: Factors predicting exacerbation and mortality

	Exacerbation Prediction		Mortalit	y Prediction
	Odds Ratio	P value	Odds Ratio	P value
BMI	0.8200	< 0.001	0.9824338	0.735
FEV ₁	0.9208954	< 0.001	0.9679797	0.139
MMRC Dyspnea scale	4.20944	< 0.001	4.729377	< 0.001
Exercise Capacity	0.9825172	< 0.001	0.9747843	< 0.001
BODE Index	3.531692	< 0.001	2.08113	< 0.001
GOLD Staging	4.252382	< 0.001	1.985086	0.075

V. Discussion

Exacerbations:

Each component of the BODE index showed a significant relationship with the number of exacerbations. Our study showed that patients with a BODE index between 7-10 and GOLD stage 4 have experienced the highest number of exacerbations and therfore, are a potential hgh-risk population. BODE index was a better predictor of exacerbations (AUC=0.794), with higher specificity rate. Improved home based healthcare and frequent, regulat follow up vistis moght be a good strategy in the patients to reduce exacerbations to increase quality of life.

OP based management of exacerbations:

Majority of patients with low BODE index (\leq 6) and GOLD stage 3. Were managed by OP based treatment. BODE index predicts OP based management of exacerbations better than FEV₁ (AUC –0.916 vs 0.771).

Hospitalization:

Majority of patients with high BODE index (<6) and GOLD stage 4, were hospitalized. BODE index was also found to be a better predictor of hospitalozation rates when compared to FEV₁ (AUC – 0.916 vs 0.771).

Mortality:

Surprisingly, only two components – Dyspnea scale and Exercise capacity $_$ showed a significant ralationship with motality, while BMI did not. Contrary to general perception, airflow obsturction (FEV $_1$) i.e., GOLD severity staging did nog seem to a significant predictor of martality. BODE index as a whole, seemed to show a significant relationship with mortality. This finding assumes significance, in that. BODE index scores canbe used to risk stratify and priority manage patients with higher scores, as they are more prone to increased rato of martality.

A significant negative correlation exosts between FEV_1 and BODE index _ as FEV_1 decreases, BODE index increases.

Thus, BODE index seems to be a good predictor of exacerbations and its outcome in stable COPD patients and can be used to stratify patient population for effective treatment startegies and in effect, improved survival rates.

VI. Conclusion

Although the unidimentsional GOLD classification system and the multidimensional BODE index along with its individual components, seem to be predictors of exacerbation in stable COPD patients, BODE index seems to predict exacerbations more effectively. BODE index and two of its momponents – dyspnea scale and exercise capacity, seem to be better predictors of mortality when compared to GOLD severity staging. COPD, a complex airway disease and the importance of a multidimentsional tool like BODE index in stratification COPD patients is eviedent from our study.

References

- [1]. Global strategy for the diagnosis, management and prevention of Chronic Obstructiove Pulmonary Disease-2018 report.
- [2]. Murry CJL, Lopex AD. Mortality by cause for eight regions of the world: Global Burden of Disease Study. 1997;349:1269e76.
- [3]. Wedzicha JA, Seemungal TA. COPD exacerbations: defining their cause and prevention. Lancet 2007; 370(9589): 786-96.
- [4]. Seemungal TA Donaldson GC, Paul EA, Bastall HC, Jeffries DJ, Wedzicha HA. Effect of exacerbations on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998; 157(5Pt 1): 1418-22.
- [5]. Pauwels R, Buist SA, Calverley P, et al, Global Strategy for the diagnosis, management and prevention of chronic obstruction pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD). Workshop summery. Am J Crit Care Med 2001; 163: 125e76.
- [6]. Vesbo J. Epidemiology of exacerbations in COPD. In: Siafakas N, Anthonisen N, Georgopoulos D, editors. Acute exacerbatic chronic obstructive pulmonary disease. New York: Marcel Dekker Inc; 2003.

[7].

Dr K Venkata Ramana. "BODE Index Vs FEV1 in Predicting Outcome and Number of Exacerbations in COPD Patients." IOSR Journal of Dental and Medical Sciences (IOSR-JDMS), vol. 18, no. 9, 2019, pp 48-53.