## Catheter Guided Thrombolysis of Acute Mesenteric Embolism in Cases of Paroxysmal Atrial Fibrillation-Review Article

# Dr Rajeev Bagarhatta<sup>1</sup>, Dr Mayank Sarawag<sup>2</sup>

<sup>1</sup>Senior Professor, Department of Cardiology, SMS Medical College, Jaipur, Rajasthan. <sup>2</sup>Senior Resident, Department of Cardiology, SMS Medical College, Jaipur, Rajasthan. Corresponding Author- Dr Rajeev Bagarhatta

Date of Submission: 01-06-2019 Date of acceptance: 17-06-2019

<sup>1</sup>Mesenteric ischemia is caused by blood flow that is insufficient to meet the metabolic demands of the visceral organs. The severity of ischemia and the type of organ involved depend on the affected vessel and the extent of collateral-vessel blood flow.

Despite advances in the techniques used to treat problems in the mesenteric circulation, the most critical factor influencing outcomes in patients with this condition continues to be the speed of diagnosis and intervention. Although mesenteric ischemia is an uncommon cause of abdominal pain, accounting for less than 1 of every 1000 hospital admissions, an inaccurate or delayed diagnosis can result in catastrophic complications; mortality among patients in whom this condition is acute is 60 to 80%.

Arterial obstruction, the most common cause of mesenteric ischemia, has both acute and chronic forms. Acute mesenteric ischemia constitutes a surgical emergency. It is associated with embolic occlusion in 40 to 50% of cases, with thrombotic occlusion of a previously stenotic mesenteric vessel in 20 to 35% of cases, and with dissection or inflammation of the artery in less than 5% of cases.

More than 90% of cases of chronic mesenteric ischemia are related to progressive atherosclerotic disease that affects the origins of the visceral vessels; treatment in such cases is focused on elective revascularization to avert the risk of complications and death associated with the development of acute ischemia.

<sup>2</sup>Mesenteric venous thrombosis, which accounts for 5 to 15% of cases of mesenteric ischemia, results in impaired venous outflow, visceral edema, and abdominal pain. Its causes include primary or idiopathic thrombosis; however, 90% of cases are related to thrombophilia, trauma, or local inflammatory changes that may include pancreatitis, diverticulitis, or inflammation or infection in the biliary system. Patients typically have a response to anticoagulation in combination with treatment for the underlying local or systemic processes. Surgical intervention is reserved for patients who are critically ill or whose condition is deteriorating; it is rarely required.

<sup>3</sup>The mesenteric circulation is a high-resistance vascular bed in which impaired regional perfusion owing to vasospasm can develop. The resulting ischemia is referred to as nonocclusive mesenteric ischemia. Although the incidence of nonocclusive mesenteric ischemia may be decreasing as awareness of the condition increases and as supportive therapies improve, it accounts for 5 to 15% of all cases of mesenteric ischemia. It is most often associated with cardiac insufficiency or low-flow states that occur after cardiac surgery or because of hypovolemia or heart failure, and it is increasingly identified in patients undergoing hemodialysis. Knowledge of its causes is critical, since misinterpretation of this condition may lead to worsened visceral perfusion and worsened mesenteric ischemia.

The mesenteric circulation is extremely complex. Three primary vessels — the celiac artery, superior mesenteric artery, and inferior mesenteric artery — interconnect through collateral networks between the visceral and nonvisceral circulations. These interconnections ensure that the loss of a single vessel does not lead to catastrophic malperfusion of the viscera.

DOI: 10.9790/0853-1806104452 www.iosrjournals.org 44 | Page

### Table 1. Causes of Altered Mesenteric Circulation.

Atherosclerosis

Arterial embolus

Arterial dissection

Thrombosis

Vasculitis

Mesenteric venous thrombosis

Poor cardiac output leading to low mesenteric flow

Inflammatory or other conditions affecting mesenteric vessels (e.g., pancreatitis, perforated ulcer, tumor)

<sup>4</sup>Patients with acute mesenteric ischemia may initially present with classic "pain out of proportion to examination," with an epigastric bruit. Other patients may have tenderness with palpation on examination owing to peritoneal irritation caused by full thickness bowel injury. In a patient with abdominal pain of acute onset, it is critical to assess the possibility of atherosclerotic disease and potential sources of an embolus, including a history of atrial fibrillation and recent myocardial infarction.

Differentiation between arterial and venous obstruction is not always simple; however, patients with mesenteric venous thrombosis, as compared with those with acute arterial occlusion, tend to present with a less abrupt onset of abdominal pain. Risk factors for venous thrombosis that should be evaluated include a history of deep venous thrombosis, cancer, chronic liver disease or portal-vein thrombosis, recent abdominal surgery, inflammatory disease, and thrombophilia.

<sup>5</sup>Patients with chronic mesenteric ischemia can present with a variety of symptoms, including abdominal pain, postprandial pain, nausea or vomiting (or both), early satiety, diarrhea or constipation (or both), and weight loss. A detailed inquiry into the abdominal pain and its relationship to eating can be enlightening. Abdominal pain 30 to 60 minutes after eating is common and is often self-treated with food restriction, resulting in weight loss and, in extreme situations, fear of eating, or "food fear." Postprandial pain may, however, be associated with other intraabdominal processes, including biliary disease, peptic ulcer disease, pancreatitis, diverticular disease, gastric reflux, irritable bowel syndrome, and gastroparesis.

<sup>6</sup>In the diagnosis of mesenteric vascular disease, duplex ultrasonography has a high degree of reliability and reproducibility, with both a sensitivity and a specificity of 85 to 90%. It is an effective, low-cost tool that is helpful in the assessment of the proximal visceral vessels, although the results can be limited more distally.

Given its 95 to 100% accuracy, computed tomographic angiography (CTA) has become the recommended method of imaging for the diagnosis of visceral ischemic syndromes. Images of the origins and length of the vessels can be obtained rapidly, characterize the extent of stenosis or occlusion and the relationship to branch vessels, and aid in the assessment of options for revascularization.

<sup>7</sup>Catheter angiography, which was previously considered to be the standard method of diagnosis of mesenteric ischemia, has become a component of initial therapy. Angiography with selective catheterization of mesenteric vessels is now used once a plan for revascularization has been chosen. Single or complementary endovascular therapies, including thrombolysis, angioplasty with or without stenting, and intraarterial vasodilation, are then combined to restore blood flow.

<sup>&</sup>lt;sup>1</sup>Reference: Clair DG, Beach JM. Mesenteric Ischemia. N Engl J Med 2016;374:959-68.

#### **Management and Outcome**

<sup>8</sup>Endovascular strategies can theoretically restore perfusion more rapidly than can open repair and may thus prevent progression of mesenteric ischemia to bowel necrosis. Although the use of endovascular techniques is becoming more common, the comparative data on the results with the two approaches in patients with acute mesenteric ischemia are insufficient to show a clear advantage of one approach over the other.

**Table 2:** Acute mesenteric arterial ischemia.

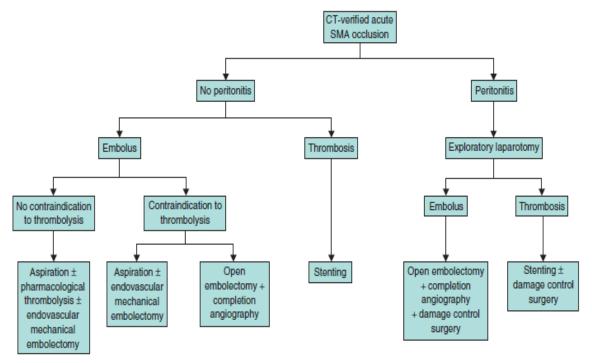
| Study                                   | N°<br>patients | Ca          | Cause occlusion |           | Symptoms                                                                                                                                                                                             | Arteries<br>involved                       | Primary treatment  |              |                             |
|-----------------------------------------|----------------|-------------|-----------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------|--------------|-----------------------------|
|                                         | 1              | Emboli      | Thrombosis      | Other     |                                                                                                                                                                                                      |                                            | Thrombolysis       | Thrombectomy | PTA/sten                    |
| Lim 2005 [2]                            | 3              | 0%          | 33%<br>(1)      | 66% (2)   | Acute abdominal pain<br>100%, Nausea 33%,<br>Vomiting 33%, Diarrhea<br>33%, Hematemesis 33%,<br>Melena 33%                                                                                           | SMA                                        | 33%<br>(1)         | 0%           | 66% (2)                     |
| Wyers 2007 [3]                          | 2              | 0%          | 100%            | 0%        | NS                                                                                                                                                                                                   | SMA                                        | NS                 | NS           | 100%                        |
| Acosta 2009 [4]                         | 21             | 48%<br>(10) | 52%<br>(11)     | 0%        | NS                                                                                                                                                                                                   | SMA                                        | 10%<br>(2)         | 38%<br>(8)   | 24%<br>(5)                  |
| Schermerhorn<br>(2000-2006)<br>2009 [5] | 1857           | NS          |                 |           | NS                                                                                                                                                                                                   | NS                                         | 0%                 | 0%           | 100%                        |
| Block 2010 [6]                          | 42             | 29%<br>(12) | 62%<br>(26)     | 9%<br>(4) | Abdominal pain, Vomiting,<br>Diarrhea, Hematochezia                                                                                                                                                  | SMA                                        | NS                 |              |                             |
| Bjornsson 2011 [7]                      | 34             | 82%<br>(28) | 18%<br>(6)      | 0%        | Acute abdominal pain 30% (10), Sudden abdominal pain 36% (12), Bloody stools 3% (1), Diarrhea 36% (12), Vomiting 62% (21), Atrial fibrillation 62% (21)                                              | SMA                                        | 100%               | 0%           | 0%                          |
| Arthurs 2011 [8]                        | 56             | 35%         | 65%             | 0%        | Abdominal pain 92%,<br>Nausea 69%, Emesis 51%,<br>Bloody diarrhea 31%                                                                                                                                | SMA 66%<br>SMA+<br>celiac artery<br>34%    | 48%                | 11%          | 32%                         |
| Ryer* 2012 [9]                          | 11             | 31%<br>(29) | 54%<br>(50)     | 0-6%      | Abdominal pain<br>(91-98%), Abdominal<br>tenderness (58-79%),<br>Diarrhea (38-23%),<br>Nausea (42-38%), Vomiting<br>(36-27%), LGIB (16-13%)                                                          | SMA +-<br>celiac artery                    | 67%<br>(2)-25% (2) | 0-13%        | 33%<br>(1)-<br>62.5%<br>(5) |
| Beaulieu 2014 [10]                      | 165            | NS          | NS              | NS        | Lactic acidosis 11.4%,<br>ARDS 7%, SIRS 5.9%,<br>Hypotension 4.9%                                                                                                                                    | NS                                         | NS                 |              |                             |
| Jia 2014 [11]                           | 21             | NS          | NS              | NS        | Abdominal pain and no evidence of advanced bowel ischemia sign                                                                                                                                       | SMA                                        | 0%                 | 100%         | 0%                          |
| Barrera 2015 [12]                       | 9              | 33%         | 45%             | 22%       | No peritoneal irritation                                                                                                                                                                             | Small<br>intestine                         | 18%                | NS           | NS                          |
| Karkkainen 2015 [13]                    | 50             | 36%<br>(18) | 64% (32)        | 0%        | Abdominal pain 94%,<br>Abdominal distension 26%,<br>Diarrhea 48%,<br>Vomiting 56%,<br>Paralytic ileus 20%,<br>GI bleeding 14%,<br>Acute kidney injury 6%,<br>Clinical features of<br>peritonitis 14% | SMA<br>SMA +<br>celiac artery<br>SMA + IMA | 0%                 | 40% (20)     | 60% (30)                    |
| Raupach 2016 [14]                       | 37             | 100%        | 0%              | 0%        | Abdominal pain Diarrhea,<br>Bloody diarrhea, Nausea,<br>Emesis                                                                                                                                       | SMA                                        | 0%                 | 100%         | 0%                          |

<sup>\*1990</sup>s-2000s

PTA, percutaneous transluminal angioplasty; LPT, laparotomy; LPS, laparoscopy; NS, not specified; SMA, superior mesenteric artery; ET, endovascular therapy; TIA, transient ischemic Attack; GI, gastrointestinal; ARDS, acute respiratory disease syndrome; SIRS, systemic inflammatory response syndrome

| Secondary treatment |                             | Technical<br>– succ                                  |                                                                          | Recurrence<br>rate | Complications | Mortality                                                                                                                                                                                                                            | Lpt/Lps and/or resection               |             |           |               |
|---------------------|-----------------------------|------------------------------------------------------|--------------------------------------------------------------------------|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------|-----------|---------------|
| Thrombolysis        | Thrombectomy                | PTA/Stent                                            | - succ                                                                   | succ               | idit          |                                                                                                                                                                                                                                      |                                        | LPT         | LPS       | Resection     |
| NS                  |                             |                                                      | 100% (3)                                                                 | 66% (2)            | 0%            | Ischemic hepatitis 33% (1)<br>Acute renal failure 33% (1)<br>Malnutrition 33% (1)                                                                                                                                                    | 0%                                     | 33% (1)     | 0%        | 33% (1)       |
| NS                  |                             |                                                      | 100%                                                                     | NS                 | NS            | NS                                                                                                                                                                                                                                   | 100%                                   | 0%          | 0%        | 100%          |
| 25%<br>(2)          | NS                          | NS                                                   | NS                                                                       | NS                 | NS            | SMA dissection<br>distal emboli in arterial branch                                                                                                                                                                                   | 14%<br>(3)                             | 67%<br>(14) | 8%<br>(1) | 43% (9)       |
| NS                  |                             |                                                      | NS                                                                       | NS                 | NS            | Acute renal failure 11.4%,<br>Acute myocardial infarction 5%,<br>Cardiac 2.1%<br>Stroke 1%,<br>Peripheral vascular 0.5%,<br>respiratory 1.1%<br>Hemorrhage 2.4%                                                                      | 16%                                    | NS          | NS        | 28%           |
| NS                  |                             |                                                      | 79%                                                                      | NS                 | NS            | Groin hematoma (2)<br>Renal embolization (1)<br>Femoral artery occlusion (1)                                                                                                                                                         | 27%                                    | 73% (27)    | 0%        | 40.5%<br>(15) |
| 0%                  | 35.2%<br>(12)               | 8.8%                                                 | 88%                                                                      | NS                 | NS            | Bleeding complication 15% (5)                                                                                                                                                                                                        | 26% (9)                                | 38% (13)    | 0%        | 24%(8)        |
| 0%                  | 12%<br>(of<br>thrombolysis) | 33%<br>(of thrombolysis)<br>22%<br>(of thrombectomy) | 87%                                                                      | NS                 | NS            | Acute renal failure 27%<br>pulmonary failure 27%<br>Myocardial infarction 2%<br>GI bleeding 7%                                                                                                                                       | 36% ET<br>success<br>50% ET<br>failure | 31%         | NS        | NS            |
| NS                  |                             |                                                      | NS                                                                       | NS                 | 1%            | Overall 73-63%<br>Pulmonary 16-32%<br>Renal 12%<br>Neurologic<br>(TIA/stroke) 5-2%<br>GI 7-26%                                                                                                                                       | 17%-27%                                | 63% (7)     | NS        | 45% (5)       |
| NS                  |                             |                                                      | NS                                                                       | Survival<br>39.9%  | NS            | NS                                                                                                                                                                                                                                   | 24.9%                                  | NS          | NS        | 14.4%         |
| 28.6% (6)           | NS                          | NS                                                   | Cerebral<br>infarction<br>5% (1)<br>short<br>bowel<br>syndrome<br>5% (1) | 9.5% (2)           | 29% (6)       | NS                                                                                                                                                                                                                                   | 24% (5)                                | -           | -         | -             |
| NS                  | 33.3% (3/9)                 | ET+Chir 67% (6)                                      | NS                                                                       | NS                 | NS            | NS                                                                                                                                                                                                                                   | 33.3% (3)                              | NS          | NS        | 33.3% (3)     |
| NS                  |                             |                                                      | 88% (44)                                                                 | NS                 | NS            | Access site bleeding 4% (2),<br>Intra abdominal bleeding 2% (1),<br>New GI bleeding<br>10% (5),<br>Stroke 2% (1),<br>Myocardial infarction 4% (2)<br>Heart failure 12% (6)<br>Acute kidney injury 8% (4)<br>Pulmonary failure 4% (2) | 30%                                    | 40%         | NS        | 34%           |
| 5% (2)              | 0%                          | 5% (2)                                               | 91.9%                                                                    | NS                 | NS            | Groin hematoma 5.4% (2)<br>Renal embolization 3% (1)<br>Femoral artery occlusion 3% (1)                                                                                                                                              | 27%                                    | 73% (27)    | NS        | 40.5% (15)    |

<sup>2</sup>Reference: **Ierardi AM, Tsetis D, Sbaraini S, et al. The role of endovascular therapy in acute mesenteric ischemia.** *Ann Gastroenterol 2017; 30 (4): 526-533* 


In a recent paper <sup>2</sup>Ierardi AM et al analysed the role of endovascular therapy success for acute mesenteric arterial ischemia and found good technical and clinical success rates with fewer complications as mentioned above.

<sup>9</sup>Recent data show that Endovascular strategy may be most appropriate for patients with ischemia that is not severe and those who have severe coexisting conditions that place them at high risk for complications and

death associated with open surgery. Endovascular therapy is a very successful, minimally invasive approach that provides relief of symptoms in up to 95% of patients and has a lower rate of serious complications than open repair. In all cases of mesenteric ischemia, any evidence of peritonitis, stricture, or gastrointestinal bleeding should trigger an exploratory laparotomy to assess for the possibility of bowel necrosis and the need for operation.

<sup>10</sup>Boley et al first proposed an aggressive approach to SMA occlusion with rapid angiography and infusion of intraarterial vasodilators. Simonetti et al first described the use of intraarterial fibrinolysis in acute mesenteric ischemia. There are a limited number of studies evaluating the long-term efficacy of percutaneous interventions in acute mesenteric ischemia, with none reporting the clinical outcomes past 1 year. Moteki et al suggested that, in cases of occlusions at or proximal to the major branches of the SMA, success with thrombolytic therapy is seen with symptoms duration of 5 hours to as long as 60 hours. Mechanical thrombectomy can be helpful, but it carries an additional risk of distal emboli.

Based upon recent evidences <sup>3</sup>Acosta S et al suggested a simplifies algorithm for evaluation and management of acute mesenteric ischemia of SMA occlusion which has very good accuracy and precision.



**Figure 3 :** Algorithm for management of patients with acute superior mesenteric artery (SMA) occlusion. CT, computed tomography.

<sup>3</sup>Reference: Acosta S, Bjorck M. Modern treatment of acute mesenteric ischaemia. BJS 2014; 101: e100–e108.

|                            |      |                |                        |                    | Duration of<br>Presentation |                  | An                          | ngiography     |
|----------------------------|------|----------------|------------------------|--------------------|-----------------------------|------------------|-----------------------------|----------------|
| Study                      | Year | Patient<br>No. | Sex—<br>Age<br>(years) | History            | (hours) Before Angiography  | Bloody<br>Stools | Site<br>(cm from<br>origin) | Occlusion      |
| amieson et al (41)         | 1979 | 1              | F—78                   | AF, MI, CAD        | 14                          | -                | P, 6 cm                     | T (-)          |
| Theiss et al (42)          | 1982 | 2              | F-77                   | AF, MI, EE+        | <1                          | NR               | Ď                           | T (+)          |
| lickinger et al (43)       | 1983 | 3              | M-60                   | AF, MI, CHF, CAD   | 3                           | NR               | P                           | ì              |
| illari et al (44)          | 1983 | 4              | M-60                   | CHF, AF            | 72                          | NR               | P, 6 cm                     | (+) (thrombu   |
| Jujic et al (45)           | 1984 | 5              | F-57                   | AMI, SMAE, DM      | <1                          | _                | P, 3 cm                     | T (-)          |
| Cohler et al (46)          | 1985 | 6              | M-56                   | AOD, EE+           | _                           | NR               | Ď                           | I (thrombus)   |
| ernandez <i>et al</i> (47) | 1990 | 7              | M-62                   | MI, AOD, CI, FVIII | 4                           | +                | _                           | NR             |
| Hillers et al (48)         | 1990 | 8              | M-80                   | AF, HT, PUD, CAD   | <24                         | +                | D                           | NR             |
| Ramirez et al (49)         | 1990 | 9              | M-50                   | HT, EE             | 8                           | +                | P                           | NR             |
| Rodde et al (50)           | 1991 | 10             | M - 70                 | MI, CAD, EE+       | _                           | NR               | D                           | I              |
| schoenbaum et al (62)      | 1992 | 11             | M-79                   | AF, MI, EE, AA     | 48                          | +                | P                           | I (thrombus)   |
| , ,                        |      | 12             | F-62                   | AF, HVD, RF, EE+   |                             | NR               | P                           | I (thrombus)   |
|                            |      | 13             | F-83                   | AF, MI, EE         | 24                          | NR               | D                           | T (-)          |
|                            |      | 14             | M-63                   | MI                 | _                           | NR               | P                           | T (-) (thromb) |
| Bonardelli et al (51)      | 1994 | 15             | M-84                   | CAD, EE            | <del>-</del> 1              | _                | D                           | NR             |
| Boyer et al (52)           | 1994 | 16             | M-66                   | AF, EE+            | 6                           | +                | P, 3 cm                     | I              |
| AcBride & Gaines (53)      | 1994 | 17             | F-80                   | AF, HT             | 6-144                       |                  | P, 5 cm                     | Ī              |
| Nathan et al (54)          | 1995 | 18             | F—73                   | MI, COPD           | 10                          | NR               | P, 6 cm                     | Ī              |
| Curegano et al (63)        | 1995 | 19             | M-62                   | AF, CM             | 5                           | +                | P                           | Í              |
| thegane er m ()            |      | 20             | M-68                   | AF, CI             | 4                           | _                | D                           | NR             |
| Gallego et al (64)         | 1996 | 21             | M—65                   | HT, EE             | 8                           | +                | P, 2–3 cm                   | NR             |
| sattego es as (01)         | 1000 | 22             | F—69                   | AF, HT             | 6                           | +                | D D                         | T              |
| (wauk et al (55)           | 1996 | 23             | M—66                   | AF, MI, HT         | 6                           | _                | D                           | I              |
| Regan et al (56)           | 1996 | 24             | M—76                   | MI, HT, HC         | 3                           | NR               | P                           | I (thrombus    |
| Badiola & Scopetta (57)    | 1997 | 25             | M—82                   | SMAE, AF, MI, CI   | 2                           | NR               | D                           | I              |
| Hirota et al (58)          | 1997 | 26             | M—41                   | AF                 | 24                          | NR               | P, 4 cm                     | I              |
| imo et al (65)             | 1997 | 27             | M-62                   | AF, CM             | 5                           | +                | P, 4 cm                     | Major (T/I)    |
| unio er ar (00)            | 1577 | 28             | M-68                   | AF, CM             | 18                          | _                | D                           | Minor (I)      |
|                            |      | 29<br>29       | M—77                   | AF                 | 18                          | +                | D                           | Minor (I)      |
|                            |      | 30             | M—77<br>M—72           | AF                 | 6                           | _                | D                           | Minor (I)      |
|                            |      | 31             | F—64                   | HVD                | 8                           |                  | D                           | 1,7            |
|                            |      | 31             | F—64<br>F—77           | AF                 | 8<br>14                     | +                | D                           | Minor (I)      |
|                            |      | 33             | P77<br>M82             |                    | 1 <del>4</del><br>8         | +                | D                           | Minor (I)      |
|                            |      |                |                        | AF, HVD            |                             | _                | D                           | Minor (I)      |
|                            |      | 34<br>35       | F—76<br>F—79           | HVD                | 6                           | +                | D<br>P                      | Minor (I)      |
|                            |      |                |                        | AF HVD             | 6<br>7                      | _                | D                           | Major (T/I)    |
| 11 4 4 (60                 | 1000 | 36             | M—76                   | AF, HVD            |                             | 2 /8             |                             | Minor (I)      |
| amaguchi et al (66)        | 1999 | 37             | M—44<br>F—91           | AF, CI             | 12                          | 2/8 pts          | D                           | T<br>T         |
|                            |      | 38<br>39       |                        | AF, MI, EE+        | 24                          | ,,               | D<br>D                      |                |
|                            |      |                | F—86                   | AF                 | 8                           | ,,               | _                           | T              |
|                            |      | 40             | M-67                   | AF, HT, EE         | 18                          | "                | D                           | T              |
|                            |      | 41             | M—59                   | AF, HT             | 17                          | "                | P                           | T              |
|                            |      | 42             | F—59                   | AF, HVD, CI        | 8                           |                  | D                           | I              |
|                            |      | 43             | M69                    | AF, MI, CI         | 60                          | "                | P                           | T              |
|                            |      | 44             | F—76                   | AF, AA             | 15                          | "                | P                           | T              |
| Dominquez et al (59)       | 2000 | 45             | M—NR                   |                    | 6                           | NR               | P, 6 cm                     | NR             |
| Mellander et al (67)       | 2001 | 46             | M-87                   | EE                 | 6                           | _                | P few cm                    | NR             |
|                            |      | 47             | F—78                   | EE, DM, CML        | 12                          | NR               | P, 5 cm                     | NR             |
| Bakarate et al (60)        | 2002 | 48             | M-84                   | AF                 | 12                          | NR               | P, 7 cm                     | T(+)           |

Note.—AA = aortic aneurysm; AD = aortic dissection; AF = atrial fibrillation; AMI = acute mesenteric ischemia; AOD = peripheral arterial occlusive disease; CAD = coronary artery disease; CHF = chronic heart failure; CI = cerebral infarction; CM = cardiomyopathy; CML = chronic myeloid leukemia; COPD = chronic obstructive pulmonary disease; DM = diabetes mellitus; EE = embolic event in extremity; EE+ = embolic event concomitant with acute mesenteric ischemia; FVIII = factor VIII deficiency; HC = hypercholesterolemia; HT = hypertension; HVD = heart valve disease; MI = myocardial infarction; PTA = percutaneous transluminal angioplasty; PUD = peptic ulcer disease; RF = rheumatic fever; SMAE = superior mesenteric artery embolism; SVT = supraventricular tachyarrhythmia; P = SMA occlusion proximal to the middle colic artery; D = SMA occlusion (stal to the middle colic artery; T = total occlusion; T (-) = almost total occlusion; (+) = multiple occlusions; I = incomplete/partial occlusion; T/I = total or incomplete occlusion; Y = year; mo = month; d = day; + = bloody diarrhea present; - = bloody diarrhea absent; NR = not reported.

<sup>4</sup>Reference: Schoots IG, Levi MM, Reekers JA, et al. Thrombolytic Therapy for Acute Mesenteric Artery Occlusion. J Vasc Interv Radiol 2005; 16:317–329.

| <pre></pre>                                                                               | Yes, 36-72h<br>Yes, <2h<br>Yes, 34-60h<br>Yes, 36h | No<br>Bleeding (cath.)<br>No                                       | No<br>Yes, resection necrosis, 25 cm              | Survived<br>Died of MI (3d), no<br>abdominal symptoms |
|-------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|
| <<br><<<br><2                                                                             | Yes, 36h                                           | No                                                                 | NI-                                               | abdominal symptoms                                    |
| <<                                                                                        |                                                    |                                                                    | No                                                | Died of CHF, SVT (7d) no                              |
| <<                                                                                        |                                                    | No                                                                 | No                                                | abdominal symptoms<br>Survived                        |
|                                                                                           | Yes, <30h                                          | Bloody diarrhea                                                    | Yes, exploratory, normal                          | Survived                                              |
| <18                                                                                       | Yes, <3h                                           | No                                                                 | No                                                | Survived                                              |
|                                                                                           | Yes, <18h                                          | No                                                                 | No                                                | Survived                                              |
| <60                                                                                       | Yes, 30-60h                                        | No                                                                 | No                                                | Survived                                              |
| <                                                                                         | Yes, <4h                                           | No                                                                 | No                                                | Survived                                              |
| <12                                                                                       | Yes, <1h                                           | No                                                                 | No                                                | Survived                                              |
| NR                                                                                        | Yes, 12-36h                                        | No                                                                 | No                                                | Survived                                              |
| <hours< td=""><td>Yes, 12-40h</td><td>No<br/>No</td><td>No</td><td>Survived</td></hours<> | Yes, 12-40h                                        | No<br>No                                                           | No                                                | Survived                                              |
| > >                                                                                       | Vec. <10b                                          |                                                                    |                                                   | Survived<br>Survived                                  |
|                                                                                           |                                                    |                                                                    |                                                   | Survived                                              |
| 1                                                                                         | raneu, sin                                         | in 2.1 > dedoninian pain                                           | necrosis 20 cm                                    | -ur-reu                                               |
| A NR                                                                                      | Yes, 20-48h                                        | No                                                                 | Yes, exploratory 72h, normal                      | Survived                                              |
| NR                                                                                        | Yes, 5-17h                                         | No                                                                 | No                                                | Survived                                              |
| =,>                                                                                       | Partial <1h                                        | Multiple emboli, abdominal pain,                                   | Yes, resection of 2 non-perforated                | Died of shock (5d) non-                               |
| A                                                                                         |                                                    | 24 h shock                                                         | ischemic bowel segments                           | perforated necrosis                                   |
|                                                                                           |                                                    |                                                                    |                                                   | Survived                                              |
|                                                                                           | Yes <15h                                           | No                                                                 | No                                                | Survived                                              |
|                                                                                           | Von 4 1/h                                          | No                                                                 | No                                                | Couriered                                             |
| <4-16                                                                                     | Yes, 4–12h                                         | Bloody diarrhea, cerebral<br>embolism                              | No<br>No                                          | Survived<br>Survived                                  |
| <<                                                                                        | Yes, <18h                                          | Renal embolism                                                     | No                                                | Survived, died of MI (2 m                             |
| <<                                                                                        | Yes, 20-48h                                        | No                                                                 | Yes, exploratory laparoscopy 24h                  | Survived                                              |
| <6                                                                                        | Yes + partial                                      | Hematuria, hematoma (catheter)                                     | No                                                | Survived                                              |
| NR                                                                                        |                                                    | No                                                                 |                                                   | Survived                                              |
|                                                                                           |                                                    |                                                                    |                                                   | Survived                                              |
|                                                                                           |                                                    |                                                                    |                                                   | Survived                                              |
|                                                                                           |                                                    |                                                                    |                                                   | Survived                                              |
|                                                                                           |                                                    | 140                                                                | 140                                               | Survived<br>Survived                                  |
|                                                                                           |                                                    |                                                                    |                                                   | Survived, abscess iliac fos                           |
|                                                                                           | 200, 22 201                                        |                                                                    | 72h                                               | (1 mo), fistula (6 mo)                                |
| <1                                                                                        | Yes                                                | No                                                                 |                                                   | Died of shock (20d), no                               |
|                                                                                           |                                                    |                                                                    |                                                   | abdominal symptoms                                    |
| >15                                                                                       | Partial                                            | Infusion was stopped at 15h,                                       | Yes, resection necrosis, second                   | Survived                                              |
|                                                                                           | Voc                                                | -abdominar pain                                                    |                                                   | Survived                                              |
|                                                                                           | 169                                                | >abdominal pain                                                    | look 24h                                          | Sarvived                                              |
| <1                                                                                        | Yes, 12-20h                                        | No                                                                 | No                                                | Survived                                              |
| NR                                                                                        | Yes                                                | No                                                                 | No                                                | Survived                                              |
| NR                                                                                        | Yes                                                | No                                                                 | No                                                | Survived                                              |
| NR NR                                                                                     | Failed                                             | Shower emboli                                                      | No                                                | Died of shock (1d)                                    |
| NR NR                                                                                     | Yes                                                | No                                                                 | Yes, atheroma                                     | Survived, SMA bypass (1                               |
| , MD                                                                                      | Von                                                | No                                                                 | Voc normal                                        | mo)                                                   |
|                                                                                           |                                                    |                                                                    |                                                   | Survived les embeli                                   |
|                                                                                           |                                                    |                                                                    |                                                   | Survived, leg emboli                                  |
|                                                                                           |                                                    |                                                                    |                                                   | Survived, died of MI (1 m                             |
|                                                                                           | Vec 5-10b                                          |                                                                    |                                                   | Survived, died of CI (1 m<br>Survived                 |
|                                                                                           | Yes, 3–8h                                          |                                                                    |                                                   | Survived                                              |
| √hours                                                                                    | Yes,<br>reocclusion                                | Reocclusion after 8h, successful<br>thrombolysis, + thrombosis leg | No                                                | Survived                                              |
| <1                                                                                        | Yes, 6–18h                                         | (32h)<br>No                                                        | Yes, exploratory 48h, normal,<br>shock developed, | Survived                                              |
|                                                                                           | NR                                                 |                                                                    | Yes, <10h                                         | 42   Yes, <10h                                        |

<sup>4</sup>Reference : Schoots IG, Levi MM, Reekers JA, et al. Thrombolytic Therapy for Acute Mesenteric Artery Occlusion. J Vasc Interv Radiol 2005; 16: 317-329.

<sup>4</sup>Schoots IG et al reviewed in this paper small case series of different endovascular and surgical therapies for acute arterial mesenteric ischemia and concluded that those presenting early without complications of bowel ischemia have good endovascular outcome comparable to surgical therapy.

| Table 5 Published series of acute mesenteric ischemia |                  |                 |                |  |  |  |  |
|-------------------------------------------------------|------------------|-----------------|----------------|--|--|--|--|
| First author                                          | Publication year | No. of patients | Mortality rate |  |  |  |  |
| Foley                                                 | 2000             | 21              | 24%            |  |  |  |  |
| Mamode                                                | 1999             | 57              | 81%            |  |  |  |  |
| Newman                                                | 1998             | 98              | 60%            |  |  |  |  |
| Urayama                                               | 1998             | 34              | 35%            |  |  |  |  |
| Klempnauer                                            | 1997             | 90              | 66%            |  |  |  |  |
| Voltolini                                             | 1996             | 47              | 72%            |  |  |  |  |
| Konturek                                              | 1996             | 28              | 96%            |  |  |  |  |
| Ward                                                  | 1995             | 34              | 45%            |  |  |  |  |
| Deehan                                                | 1995             | 43              | 70%            |  |  |  |  |
| Levy                                                  | 1990             | 62              | 40%            |  |  |  |  |
| Batellier                                             | 1990             | 65              | 51%            |  |  |  |  |
| Bapat                                                 | 1990             | 20              | 40%            |  |  |  |  |
| Finucane                                              | 1989             | 32              | 69%            |  |  |  |  |
| Sitges-Serra                                          | 1988             | 83              | 71%            |  |  |  |  |
| Wilson                                                | 1987             | 102             | 92%            |  |  |  |  |
| Lazaro                                                | 1986             | 23              | 27%            |  |  |  |  |
| Andersson                                             | 1984             | 60              | 82%            |  |  |  |  |
| Sachs                                                 | 1982             | 30              | 77%            |  |  |  |  |
| Krausz                                                | 1978             | 40              | 78%            |  |  |  |  |
| Kairaluoma                                            | 1977             | 44              | 70%            |  |  |  |  |
| Boley                                                 | 1977             | 30              | 46%            |  |  |  |  |
| Smith                                                 | 1976             | 23              | 91%            |  |  |  |  |
| Singh                                                 | 1975             | 32              | 81%            |  |  |  |  |
| Ottinger                                              | 1967             | 136             | 92%            |  |  |  |  |
| Total                                                 |                  | 1234            | 69%            |  |  |  |  |
|                                                       |                  |                 |                |  |  |  |  |

<sup>&</sup>lt;sup>5</sup>Reference: Park WM, Gloviczki P, Cherry KJ, et al. **Contemporary management of acute mesenteric ischemia, Factors associated with survival.** J Vasc Surg 2002; 35: 445-52.

<sup>&</sup>lt;sup>5</sup>Park WM et al in their paper looked into prognostic factors after endovascular or surgical therapies for acute mesenteric ischemia and concluded that older age, nonocclusive mesenteric ischemia, late presentations all have adverse outcomes.

| Table 6 : Case series mortality - Asia |                    |               |  |  |  |  |
|----------------------------------------|--------------------|---------------|--|--|--|--|
| Author                                 | Number of patients | Mortality (%) |  |  |  |  |
| Li X et.al                             | 40                 | 50            |  |  |  |  |
| Zhang Z et.al                          | 42                 | 15.3          |  |  |  |  |
| Haghighi PH et.al                      | 105                | 50.4          |  |  |  |  |
| Alhan E et.al                          | 107                | 55.1          |  |  |  |  |
| Aliosmanoglu et.al                     | 98                 | 42.1          |  |  |  |  |
| Eris C et.al                           | 52                 | 67            |  |  |  |  |

<sup>&</sup>lt;sup>6</sup>Reference: *Stephen E, Sarfaraz ZK, Abdelhedy I, et al.* **Acute Mesenteric Ischemia: The What, Why, and When?.** Indian J Vasc Endovasc Surg 2016;3:24-8.

Only few papers have come about Asian population on mesenteric ischemia. <sup>6</sup>Stephen E et al reviewed Asian population small case series related articles and found similar characteristics and presentations of acute mesenteric ischemia compared to their western counterparts except that outcomes are slightly poorer due to lack of awareness and late presentations with most of the people land into chronic form of mesenteric ischemia.

### References

- [1]. Clair DG, Beach JM. Mesenteric Ischemia. N Engl J Med 2016;374:959-68.
- [2]. Ierardi AM, Tsetis D, Sbaraini S, et al. The role of endovascular therapy in acute mesenteric ischemia. Ann Gastroenterol 2017; 30 (4): 526-533.
- [3]. Acosta S, Bjorck M. Modern treatment of acute mesenteric ischaemia. BJS 2014; 101: e100–e108.
- [4]. Schoots IG, Levi MM, Reekers JA, et al. Thrombolytic Therapy for Acute Mesenteric Artery Occlusion. J Vasc Interv Radiol 2005; 16:317–329.
- [5]. Park WM, Gloviczki P, Cherry KJ, et al. Contemporary management of acute mesenteric ischemia, Factors associated with survival. J Vasc Surg 2002; 35: 445-52.
- [6]. Stephen E, Sarfaraz ZK, Abdelhedy I, et al. Acute Mesenteric Ischemia: The What, Why, and When?. Indian J Vasc Endovasc Surg 2016;3:24-8.
- [7]. Quiroga B, Verde E, Abad S, et al. Detection of patients at high risk for nonocclusive mesenteric ischemia in hemodialysis. J Surg Res 2013; 180: 51-5.
- [8]. Corcos O, Nuzzo A. Gastro-intestinal vascular emergencies. Best Pract Res Clin Gastroenterol 2013; 27: 709-25.
- [9]. Boley SJ, Brandt LJ, Sammartano RJ. History of mesenteric ischemia: the evolution of a diagnosis and management. Surg Clin North Am 1997; 77: 275-88.
- [10]. Boley SJ, Sprayregan S, Siegelman SS, Veith FJ. Initial results from an aggressive roentgenological and surgical approach to acute mesenteric ischemia. Surgery 1977; 82: 848-55.

Dr Rajeev Bagarhatta. "Catheter Guided Thrombolysis of Acute Mesenteric Embolism in Cases of Paroxysmal Atrial Fibrillation.." IOSR Journal of Dental and Medical Sciences (IOSR-JDMS), vol. 18, no. 6, 2019, pp 44-52.

\_\_\_\_\_