A Study to Assess the Prevalance of Vitamin-D Deficiency in Patients with Left Ventricular Dysfunction and Its Correlation with Conventional Echocardiographic Parameter

Dr. Apurba Bikash Pramanik, ¹ Dr. Pulakesh Sinha,² Dr. Saroj Mandal, ² Dr. Amit Kumar Jha, ² Dr. Aditya Verma, ² Dr. Debarshi Jana ²

¹ Nil Ratan Sircar Medical College and Hospital ² Institute of Post-Graduate Medical Education and Research and SSKM Hospital Corresponding Author: Dr. Debarshi Jana

Abstract: Clinical studies have reported cross-sectional associations between lower vitamin D levels and blood pressure, coronary artery calcification, and prevalent cardiovascular disease like coronary artery disease, chronic left ventricular dysfunction other than musculo-skeletal disease.

Aim of our study is to assess the prevalence of vitamin D deficiency in patients with chronic left ventricular dysfunction (LVEF<50%).

50 patients attending at cardiology outdoor and admitted at cardiology ward of IPGME&R and SSKM Hospital were included in the study from one year (April 2016-March 2017).

Our study demonstrate that the prevalence of vitamin D deficiency (< 20ng/ml) in patients with chronic left ventricular dysfunction is significantly more (72%) than general population (40 to 50%) though the prevalence of hypovitaminosis D (30ng/ml) is similar in both groups. (84% vs 90%.

Low vitamin D level (<20 ng/ml) appears to be associated with worse systolic functions in terms of high end systolic volume (ESV) and left ventricular end systolic dimension(LVIDs) ,end diastolic volume (EDV), left ventricular end diastolic dimension (LVIDs), low left ventricular ejection fraction (LVEF), low fractional shortening (FS).

Key Words: Cardiovascular Disease, Vitamin-D Deficiency, Left Ventricular Dysfunction, Conventional Echocardiographic Parameter

Date of Submission: 05-04-2019

Date of acceptance: 20-04-2019

I. Introduction

Vitamin D is endogenously synthesized in human beings from photo conversion of 7-dehydrocholestrol in the skin to cholecalciferol on exposure to ultraviolet radiation of sun. In a tropical country like India, where sunlight exposure is abundant, vitamin D deficiency seems unlikely. However, as opposed to this, various studies have highlighted that 70-100% Indians in different age groups are vitamin D insufficient or deficient¹. Vitamin D deficiency is highly prevalent worldwide², and is also noted to be high in India^{3,4}. Approximately 90% of chronic HF patients have hypovitaminosis D⁵, even in sunny climates. Low levels of 25(OH)D, the principle circulating storage form of vitamin D, is present in as many as one third to one half of otherwise healthy middle aged to elderly population ^{2,6-8}. Limited cutaneous synthesis due to inadequate sun exposure or pigmented skin and inadequate dietary intake are the principle causes of low 25(OH)D levels. Although most consequences of vitamin D deficiency involve the musculoskeletal system, there is a growing body of evidence suggesting that low levels of vitamin D may adversely affect the cardiovascular system ⁹. A serum 25hydroxyvitamin D level below 75 nmol/l (30 ng/ml) is generally regarded as vitamin D insufficiency in both adults and children, while a level below 50 nmol/l (20 ng/ml) is considered deficiency in both populations ^{10,11,5}. Vitamin D deficiency, which is affected by multiple factors, appears to have an association with diverse cardiac diseases starting with its direct effect on the cardiac cell, its association with coronary artery disease (CAD), and its risk factors such as diabetes and hypertension (HTN); ending at last and probably not least in its relation with congestive heart failure (CHF). Similarly, there is some evidence that links vitamin D deficiency to increased risk of stroke. Myocardium is an important target tissue for vitamin D mediated effects on a genomic and nongenomic level. Cardiomyocytes express the vitamin D receptor, and studies in rodents have shown that vitamin D protects against cardiac hypertrophy and myocardial dysfunction.¹² The association between vitamin D and cardiovascular-disease events is widely debated and analyzed in the literature. In a cross-sectional study, Pilz et al. measured 2 5-hydroxy vitamin D (25 (OH) vitamin D) levels in 3299 Caucasian patients who were routinely referred for coronary angiography.¹³ They found that vitamin D deficiency is associated with prevalent myocardial dysfunction, heart failure, and sudden cardiac death. Although the link between vitamin D deficiency and cardiovascular disease may be, in part, mediated through elevated PTH and calcium-phosphate metabolism, recent scientific evidence showed that vitamin D has 3 major potential protective mechanisms. First, experimental studies indicate that 1.25-(OH) Vitamin D could directly suppress rennin gene expression. Second, is the presence in the cardiac muscle cells of vitamin D receptors, a calcitriol-dependent Ca2+ binding protein and a calcitriol-mediated rapid activation of voltage-dependent Ca2+ channels. Third, vitamin D deficiency triggers secondary hyperparathyroidism, which then directly promotes cardiac hypertrophy (the direct PTH toxicity hypothesis)¹⁴. Routine digital gray scale 2-D, tissue doppler cine loops and pulsed-wave doppler-derived transmitral flow profile, and digital color tissue doppler-derived mitral annular velocity were obtained from the apical 4-chamber view were obtained, to study the relation between serum 25-hydroxy vitamin D levels and echocardiographic parameters of cardiac systolic and diastolic functions in patients with Left Ventricular Dysfunction. Clinical studies have reported cross-sectional associations between lower vitamin D levels and blood pressure, coronary artery calcification, and prevalent cardiovascular disease like coronary artery disease, chronic left ventricular dysfunction other than musculo-skeletal disease.

Objectives are to assess the prevalence of vitamin D deficiency in patients with chronic left ventricular dysfunction(LVEF<50%) and to evaluate the correlation between vitamin D level and conventional echocardiographic parameter of chronic left ventricular systolic as well as left ventricular diastolic function. Other objective is to determine the demographic profile of patients presenting with chronic left ventricular dysfunction & vitamin D deficiency and to evaluate the prevalence of risk factor of chronic left ventricular dysfunction.

II. Material And Methods

Patients attending at cardiology outdoor and admitted at cardiology ward of IPGME&R and SSKM Hospital were included in the study from one year (April 2016-March 2017). Total 50 patients suffering from chronic Left Ventricular Dysfunction (LVEF<50%) was included in this study.

Inclution critaria:

- (a) Age \geq 18 years.
- (b) Either Sex.
- (c) All cases of chronic left ventricular dysfunction (LVEF<50%) with NYHA Class2, 3,4.

Exclution criteria:

- (a) Age <18 years
- (b) Patients having congenital heart disease
- (c) Patients with chronic kidney disease.
- (d) Patients with previous vitamin D supplementations.
- (e) Patients with conditions known to cause Vit. D deficiency e.g.malignancies, Chronic liver disease, Bowel disease causing malabsorbtion , patient on Hemodyalysis.
- (f) Patients with poor echogenicity.

Parameter to be studied:

- (a) Trans-thoracic echocardiographic study was performed for all patients with commercially available echocardiography systems equipped with a 5- MHz multifrequency phased array transducer (GE, Vivid 6).
- (b) Age, sex, Body weight, Height, Body mass index, History of other disease, history of smoking, Alcohol intake, dyslipidemia, Diabetes Mellitus, Hypertension, NYHA Class of Heart failure, Dialated cardiomyopathy, Coronary artery disease, Rheumatic heart disease.
- (c) Venous blood sampling was taken and sent for laboratory quantitative measurements of serum levels of 25 (OH) vit. D (by using ELISA technique). The low vitamin D level (with more link to cardiovascular diseases) is considered <20 ng/ml as reported by the National Health and Nutritional Examination Surveys (NHANES) (1988–1994, 2000– 2004).4,6</p>

Transthorasic echocardiography:

Trans-thoracic echocardiographic study was performed for all patients with commercially available echocardiography systems equipped with a 5 MHz multifrequency phased array transducer(GE,Vivid 6). Digital routine gray scale 2-dimensional and tissue Doppler cine loops from 3 consecutive beats were obtained at end-expiratory apnea from standard apical views at depths of 12–20 cm. Gain settings were adjusted for routine gray scale 2D imaging to optimize endocardial definitions. Routine digital gray scale 2-D and tissue Doppler cine loops were obtained, including mid-LV short axis views at the level of the papillary muscle and standard apical views (4-chamber, 2-chamber, and long-axis). Sector width was optimized to allow for complete

visualization while maximizing the frame rate. LV end-diastolic volume, end-systolic volume (ESV), and ejection fraction were obtained with the modified biplane Simpson's method from the apical 2- and 4-chamber images using the biplane Simpson's technique. All measurements were made in >3 consecutive cardiac cycles and in >5 cycles if the patient's rhythm was AF and average values were used for the final analyses. The pulsed-wave Doppler-derived transmitral flow profile, and digital color tissue Doppler-derived mitral annular velocity were obtained from the apical 4-chamber view. The mitral flow early diastolic wave velocity (E), late diastolic atrial contraction wave velocity (A), and the E-wave deceleration time (E-DcT) were measured; spectral pulsed-wave tissue Doppler-derived peak systolic velocity (s0), early diastolic velocity (el), late diastolic velocity (al), and the E/el ratio were calculated to estimate the LV filling pressure for all patients.

Analysis of data:

Data are presented as Mean± Standard deviation for continuously distributed variables, and in absolute numbers and percentages for the discrete variables. Student's t test was performed to compare parametric variables between two groups. Pearson's correlation coefficient was used to examine the relation between vitamin D level and several study variables including different echocardiographic variables. Linear regression analysis was performed with Echocardiographic parameter as dependent variables and vitamin D as independent variables. Level of p value< 0.05 were considered statistically significant. Data was stored by XLSTAT and MS EXCEL.

III. Result And Analysis

It was found that total chronic left ventricular dysfunction patients into two groups . Group 1 has vitamin D level ≥ 20 ng/ml. There is no statistically significant difference in age, height, body weight, BMI between two sub group of chronic left ventricular dysfunction patient. Two groups are matched are evenly matched with respect to baseline variable. We found that association between sex vs. vitamin-D in two groups was not statistically significant (p=0.1050) but prevalence is more in female than male. It was found that student s t test was performed to show statistical significance against the null hypothesis that there was no difference in laboratory parameter among the two groups other than urea as indicated by p value against each difference. We found that patient s with vitamin D < 20ng/ml has significantly Higher Urea level [28.92+-7.23 vs. 22.86+-8.15; p value<0.05] than patients with vitamin D >-20ng/ml.

It was found that student s t test was performed to show statistical significance against the null hypothesis that there was no difference in component of lipid among the two groups. We found that echocardiographic diastolic component of left ventricular function. Student s t test was performed to show statistical significance against the null hypothesis that there was no difference in echocardiographic diastolic component among the two groups. It was found that student's t-test was performed to show statistical significance against the null hypothesis that there was no difference in echocardiographic diastolic component among the two groups. It was found that student's t-test was performed to show statistical significance against the null hypothesis that there was no difference in echocardiographic diastolic component among the two groups. There is statistically significant difference between the two sub-groups regarding the LVIDD, EDV, LVIDS, ESV, LVEF and FS as indicated by p-value against each difference.

We found that patients with vitamin D <20ng/ml had significantly high ESV(118.3+-29.39 vs 84.35+-23.38), ESD(49.78+-5.43 vs 41.57+-4.38, p-value 0.0001), EDV(179.92+-38.99 vs 144.14+- 31.37, p-value 0.0036), EDD(60.08+-5.49 vs 53.28+-4.82,p value 0.0002) ,compared to patients with vitamin D \geq 20ng/ml. It was found that patients with vitamin D \geq 20ng/ml had significantly low ,FS(17.22+-3.48 vs 21.07+-3.05, p-value 0.007), LVEF(33.89+-6.07 vs 44.07+-3.34. p-value 0.0001) compared to patients with vitamin D <20ng/ml. We found that among chronic left ventricular dysfunction patient 56% are diabetic, 16% are alcoholic,42% hypertensive,46% smoker, family history of CAD 34%, CAD 68%,DCM 12%,RHD 12%.Other than this 38% present with NYHA class 2,44% present with NYHA class 3, 18% present with class 4. It was found that at the univariate analysis(table) the some echocardiographic parameter of systolic function correlate with vitamin D level .Vitamin D is negatively correlated with LVIDd(r = -0.531; p -value< 0.001), LVIDs (r= -0.616; p - value<0.001), EDV (r= -0.387; p value 0.005), ESV(R= - 0.45; p - value 0.001). This negative correlation is statistically significant. Vitamin D is positively correlated with LVEF(r= 0.654; p - value<0.001), FS(r= 0.421; p value 0.002).

IV. Discussion

Although most consequences of vitamin D deficiency involve the musculoskeletal system, there is a growing body of evidence suggesting that low levels of vitamin D may adversely affect the cardiovascular system 9. A serum 25-hydroxyvitamin D level below 75 nmol/l (30 ng/ml) is generally regarded as vitamin D insufficiency in both adults and children, while a level below 50 nmol/l (20 ng/ml) is considered deficiency in both populations ^{15,16}. So vitamin D level <30ng/ml is regarded as Hypovitaminosis D.¹⁰ Our study shows that the prevalence of vitamin D deficiency (< 20ng/ml) in patients with chronic left ventricular dysfunction is

significantly higher than general population though the prevalence of hypovitaminosis D (<30ng/ml) is similar in both groups. Our study demonstrated that the prevalence of hypovitaminosis in patients with left ventricular dysfunction is 88% & vitamin D deficiency is 72% which corroborate with the findings of study done by Kim DH, Sabour S, et al that shows hypovitaminosis D is present in 90% of chronic heart failure patients even in sunny climate ¹⁷. This is supported by the study conducted by Rudrajit Paul et al in Kolkata ¹⁸ that shows that vitamin D deficiency is present in 47.5 % of general population hypovitaminosis D is present 87.5% of general population. This is further supported by study conducted by Rachana Bachel et all from Amritsar¹⁹ shows that vitamin D deficiency is present in 40% of general people and hypovitaminosis D is present in 84% of general people. Our study also shows that vitamin D deficiency is more prevalent in female than male population (75% vs 70.4%) that is also supported by two previous study. Our study shows that vitamin D level is significantly correlated with some echocardiographic parameter of LV systolic function. This was proven when we found that ESV(118.3+-29.39 vs 84.35+-23.38), LVIDs(49.78+-5.43 vs 41.57+-4.38, p value 0.0001), EDV(179.92+-38.99 vs 144.14+- 31.37,p value 0.0036), LVIDd(60.08+-5.49 vs 53.28+-4.82,p value 0.0002), all are negatively correlated with serum vitamin D levels. Moreover, vitamin D level is also positively correlated with FS(17.22+-3.48 vs 21.07+-3.05, p-value 0.007), LVEF(33.89+-6.07 vs 44.07+-3.34.p value 0.0001) It seems that the deficiency of vitamin D (vitamin D <20 ng/ml) weakens its protective effects of vitamin D against fibrosis, myocardial fiber thickening and anti-apoptosis, resulting in wall thickening and eventually dilatation. Our findings are consistent with previous cross-sectional studies conducted by Shane E et al ²⁰ showing vitamin D deficiency associated with worse LV function. Another cross sectional study conducted by Jegger d et al²¹ also showed that patients with 25-OH D <25 nmol/L had larger end-systolic diameters and reduced fractional shortening, compared with heart failure patients with 25-OH D \geq 25 nmol/L, an observation that is also consistent with our cross-sectional analyses. Another study conducted by Mohammed Ahmed Abdel Rahman et al^{22} showed that low vitamin D level is associated with worse left ventricular systolic function that is high LVIDD, LVIDV & left ventricular wall thickness . Ameri P, Ronco D, Casu M, et al ²³ shoes high prevalence of vitamin D deficiency and its association with left ventricular dilation in elderly patients with chronic heart failure. This study also shows that higher vitamin D levels were associated with lower average myocardial early diastolic tissue velocity (el), higher E/el ratio, and longer IVRT, which are all linked to worse diastolic functions. Another study conducted by Anil Pandit et al showed that there is no correlation between vitamin D level & left ventricular diastolic function but our study does not show any such correlation of vitamin D level with Echocardiographic parameter of diastolic function. The speciality of our study is that we have shown that low vitamin D level is positively correlated with FS & LVEF. Vitamin D deficiency has been observed to induce myocardial hypertrophy and extracellular matrix production and deposition in myocardial tissue. Mediated by matrix metalloproteinase, extracellular matrix remodelling may be involved in progressive LV remodeling, dilatation, and heart failure. At the molecular level, vitamin D also has intriguing immunoregulatory and DNA protective properties. Other than these finding our study shows prevalence of coronary artery disease and its risk factor in heart failure patient is significantly higher than general population ie in chronic left ventricular dysfunction patient 56% are diabetic, 46% are smoker, 42% are hypertensive, 16% are alcoholic. Among chronic heart failure patients family history of CAD present in 34% cases , RHD present in 12% & DCM present in 12% patient. Prevalence of hypercholesterolemia is 26%. The study conducted by Gupta et al from Jaipur in 2002²⁴ shows prevalence of CAD was 6.2% in men and 10.8% in women, hypertension (36.9%), tobacco use (23.9%), obesity (63%) and Shashank R. Joshi shows Prevalence of hypercholesterolemia is ²⁵ (39.1%). Diabetes was prevalent in 12.2% of the cases in general population. Our study shows prevalence of risk factor of CHD is high than general population.

V. Conclusion

Our study suggest that reduced vitamin D level (<20 ng/ml) appears to be associated with worse systolic functions in terms of high end systolic volume (ESV) and left ventricular end systolic dimension(LVIDs) ,end diastolic volume (EDV), left ventricular end diastolic dimension (LVIDs), low left ventricular ejection fraction (LVEF), low fractional shortening (FS). But there is no statistically significant differences in diastolic function between two groups of patients ie those with vitamin D level < 20ng/ml and those with vitamin D level >= 20ng/ml.

References

- [1]. GR, Gupta A (2014) Fortification of foods with vitamin D in India. Nutrients. 6:3601-23.
- [2]. Holick MF. Prevalence of vitamin D inadequacy and implication for health.Mayo Clin Proc 2006;81:355–73.
- [3]. Harinarayan CV, Ramalakshmi T, Venkataprasad u. High prevalence of low dietary calcium and low vitamin D status in healthy Indians. Asia Pac J Clin Nutr 2004;13(4):359–64.
- [4]. Goswami R, Gupta N, Goswami D, Marwaha RK, Tandon N, Kochupillai N, et al. Prevalence and significance of low 25(OH)D concentration in healthy subjects in Delhi. Am J Clin Nutr 2000;72:472–5.
- [5]. Kim DH, Sabour S, Sagar UN, Adams S, Whellan DJ. Prevalence of hypovitaminosis D in cardiovascular disease (from the National Health and Nutrition Examination Survey 2001-2004). Am J Cardiol 2008;102:1540–4.

- [6]. Malabanan A, veronikis IE, Holick MF. Redefining vit D insufficiency. Lancet 1998;351:805-6.
- [7]. Chapuy MC, Preziosi P, Maamer M, Arnald S, Galan P, Herebergs S, Mernier PJ. Prevalence of vit D insufficiency in an adult normal population. Osteoporas Int 1997;7:439–43.
- [8]. Merke J, HoffmanW, Goldsmidt D, Ritz E. Demonstration of 1,25(OH)2 vit D3 receptors and actions in vascular smooth mussel cells in vitro. Calcif Tissue Int 1987;41:112–4
- [9]. Rajasree S, Rajpal K, Kartha CC, Sarma PS, Kutty VR, Iyer CS, et al. Serum 25-hydroxyvitamin D3 levels are elevated in South Indian patients with ischemic heart disease. Eur J Epidemiol 2001;17(6):567–71.
- [10]. Holick MF. Vitamin D deficiency. N Engl J Med 2007;357(3):266-81.
- [11]. Contreras JJ, Hiestand B, O'Neill JC, Schwartz R, Nadkarni M. Vitamin D deficiency in children with fractures. Pediatr Emerg Care 2014;30(11):777–81.
- [12]. Mosekilde L. Vitamin D and elderly. Clin Endocrine (Oxf) 2005;62(3):265–81.
- [13]. Pilz S, Dobnig H, Fischer JE, et al. Low vitamin D levels predict stroke in patients referred to coronary angiography. Stroke 2008;39:2611–3.
- [14]. Nibbelink KA, Tishkoff DX, Hershey SD, et al. 1,25(OH)2- vitamin D3 actions on cell proliferation, size, gene expression, and receptor localization, in the HL-1 cardiac myocyte. J Steroid Biochem Mol Biol 2007;103:533–7.
- [15]. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011;96:1911–1930
- [16]. Contreras JJ, Hiestand B, O'Neill JC, Schwartz R, Nadkarni M. Vitamin D deficiency in children with fractures. Pediatr Emerg Care 2014;30(11):777–81.
- [17]. Kim DH, Sabour S, Sagar UN, Adams S, Whellan DJ. Prevalence of hypovitaminosis D in cardiovascular disease (from the National Health and Nutrition Examination Survey 2001-2004). Am J Cardiol 2008;102:1540–4.
- [18]. Rudrajit Paul, Jayanti Ray, Ranita Saha, Babulal Daulagajao and Amit K Banerjee; Blood vitamin D levels in a sample population from Eastern India: A pilot study; IJBR, 2014; 05; 08.
- [19]. Rachna Bachhel, Navyug Raj Singh et al; Prevalence of vitamin D deficiency in North west Punjab population: A cross- sectional study; International Journal of Applied and Basic Medical Research, 2015; 5(1); 7-11.
- [20]. Shane E, Mancini D, Aaronson K, et al. Bone mass, vitamin D deficiency, and hyperpara-thyroidism in congestive heart failure. Am J Med 1997;103:197-
- [21]. Jegger D, da Silva RF, Lartaud I, et al. Effects of an aging vascular model on healthy and diseased hearts. Am J Physiol Heart Circ Physiol 2007;293:H1334–
- [22]. Mohammed Ahmed Abdel Rahman a, Haitham Galal a, Alaa Mabrouk Salem Omar Correlation between serum vitamin D level and cardiac function: Echocardiographic assessment. The Egyptian Heart Journal 2015; 67: 299–305.
- [23]. Ameri P, Ronco D, Casu M, et al. High prevalence of vitamin D deficiency and its association with left ventricular dilation: an echocardiography study in elderly patients with chronic heart failure. Nutr Metab Cardiovasc Dis 2010;20:633–40.
- [24]. Gupta R., Gupta V.P., Sarna M. Prevalence of coronary heart disease and risk factors in an urban Indian population: Jaipur Heart Watch-2. Indian Heart J. 2002;54:23–30.
- [25]. Shashank R. Joshi, Prevalence of Dyslipidemia in Urban and Rural India: The ICMR-INDIAB Study : May 9, 2014 PLoS ONE 9(5).

SD Number Mean Minimum Maximum Median p- value Age (Yrs) $<\!20$ 36 58.8611 10.2933 35.0000 85.0000 57.5000 0.4703 ≥20 61.0714 7.6205 43.0000 72.0000 62.0000 14 Height (cm) <20 36 164.6667 5.5857 153.0000 174.0000 164.5000 0.3447 ≥20 14 166.4286 6.5482 156.0000 174.0000 168.0000 **Body Weight** <20 60.2778 36 5.8437 49.0000 72.0000 61.0000 0.3851 ≥20 61.9286 (Kg) 14 6.3302 53.0000 77.0000 60.5000 <20 BMI 2.1080 0.8010 22.1956 17.4000 28.0400 21.8500 36 ≥20 14 22.3607 1.9602 19.2000 25.7500 21.6000 Hb <20 12.5333 12.5000 36 1.6699 9.2000 16,0000 0.9488 ≥20 14 12.5000 1.5566 10.0000 16.0000 12.0000 5.1235 ESR <20 36 23.2500 24,0000 15,0000 34,0000 0.3761 ≥20 14 24.9286 7.7902 12.0000 36.0000 28.0000 UREA <20 36 28.9167 7.2284 12.0000 48,0000 27.5000 0.0134 ≥20 14 22.8571 8.1510 14.0000 36.0000 20.5000 <20 CREAT 36 1.1528 .2261 0.7000 1.6000 1.2000 0.8089 >2014 1.1357 .2134 0.7000 1.4000 1.2000 FBS 13.0541 99.5000 1 36 99.6389 69.0000 122.0000 0.8910 99.0714 2 14 13.1586 82.0000 122.0000 97.0000 PPBS <20 36 139.6389 18.2211 102.0000 178.0000 138.0000 0.9595 15.4303 122.0000 >20 14 139.3571 184.0000 136.5000 1.6171 HbA1C <20 36 5.5000 0.1371 6.8556 11.4000 6.0000 5.5000 ≥20 14 6.1571 .9493 9.2000 5.8500 T/Ch 36 184.5000 30.9769 121.0000 253.0000 187.5000 0.4006 <20 ≥20 14 194.9286 55.1731 114.0000 363.0000 183.5000 LDL <20 36 121.3611 23.8485 67.0000 158.0000 128.0000 0.4215 ≥ 20 14 130.0000 51.9141 53.0000 291.0000 122.0000 HDL < 2036 31.6667 10.0029 17.0000 71.0000 30.5000 0.3262 ≥20 14 34.7857 9.9319 20.0000 49.0000 39.0000 VLDL 0.8573 $<\!\!20$ 36 31.0556 7.4141 19.0000 56.0000 29.5000 29.0000 ≥20 14 30.6429 6.7779 19.0000 43.0000

Table 1: Distribution of mean Age (Yrs), Height (cm), Body Weight (Kg), BMI, Hb, ESR, UREA, CREAT,
FBS, PPBS, HbA1C, T/Ch, LDL, HDL, VLDL, TG in two groups.

TG	<20	36	155.3333	36.9788	95.0000	280.0000	147.5000	0.9025
	≥20	14	153.9286	34.0350	95.0000	215.0000	145.0000	

Table 2: Distribution of mean E, A, E/A, DT, E (cm/s), A(cm/s), E/E, IVRT, IVRT, IVSd, LVIDd, LVPWd,
IVSs, LVEF, FS, SV, LVdMass, EDV, ESV in two groups

	1V55, LVEF, F5, 5V, LVUMASS, EDV, E5V in two gloups							
-	20	Number	Mean	SD	Minimum	Maximum	Median	p- value
E	<20	36	.0897	.1220	0.0500	0.8000	0.0700	
	≥20	14	.0686	.0110	0.0600	0.1000	0.0700	0.5230
Α	<20	36	.0819	.0086	0.0600	0.0900	0.0800	
	≥20	14	.0800	.0068	0.0700	0.0900	0.0800	0.4507
E/A	<20	36	1.2594	.4655	0.5500	1.9700	1.3900	
	≥20	14	1.3036	.4322	0.5700	1.8200	1.3100	0.7604
DT	<20	36	182.0556	20.3343	143.0000	215.0000	179.5000	
	≥20	14	179.5714	20.0680	154.0000	214.0000	174.5000	0.6988
E(cm/s)	<20	36	64.9444	20.1096	34.0000	93.0000	66.5000	
	≥20	14	72.5000	19.1462	39.0000	94.0000	78.0000	0.2329
A(cm/s)	<20	36	53.7222	11.2443	31.0000	74.0000	55.0000	0.2898
	≥20	14	57.3571	9.4267	42.0000	72.0000	56.5000	
E/E	<20	36	9.2022	2.3883	5.4200	12.8300	9.7250	0.0776
	≥20	14	10.6057	2.6792	6.5000	13.5000	11.0050	
IVRT	<20	36	94.2222	11.9645	74.0000	119.0000	91.5000	0.2528
	≥20	14	90.0000	10.4808	78.0000	112.0000	89.0000	
IVSd	<20	36	8.5278	1.1585	6.0000	11.0000	9.0000	0.0168
	≥20	14	9.3571	.7449	8.0000	10.0000	9.5000	
LVIDd	<20	36	60.0833	5.4948	51.0000	77.0000	58.5000	0.0002
	≥20	14	53.2857	4.8267	48.0000	67.0000	53.0000	
LVPWd	<20	36	8.5000	1.4442	6.0000	12.0000	9.0000	0.0179
	≥20	14	9.5000	.7596	8.0000	11.0000	9.5000	
IVSs	<20	36	9.3056	6.4090	6.0000	46.0000	8.0000	0.8290
	≥20	14	8.9286	1.2688	6.0000	11.0000	9.0000	
LVIDs	<20	36	49.7778	5.4254	38.0000	63.0000	50.0000	< 0.0001
	≥ 20	14	41.5714	4.3803	37.0000	53.0000	41.0000	
LVPWs	<20	36	8.5833	1.2277	6.0000	11.0000	8.5000	0.0083
	≥20	14	9.7143	1.4899	6.0000	12.0000	10.0000	
LVEF	<20	36	33.8889	6.0653	16.0000	48.0000	33.0000	< 0.0001
	≥ 20	14	44.0714	3.3389	37.0000	49.0000	44.0000	
FS	<20	36	17.2222	3.4815	12.0000	26.0000	17.0000	0.0007
	≥ 20	14	21.0714	3.0500	14.0000	25.0000	22.0000	
SV	<20	36	61.8056	13.1297	41.0000	89.0000	59.5000	0.4422
	≥20	14	58.7143	11.3166	47.0000	90.0000	57.0000	
LVdMass	<20	36	240.7753	40.5479	137.6000	321.1800	240.4300	0.6088
	≥20	14	234.2507	39.3038	170.6500	309.2800	234.5400	1
EDV	<20	36	179.9167	38.9875	123.0000	316.0000	167.0000	0.0036
	≥20	14	144.1429	31.3733	108.0000	228.0000	142.0000	1
ESV	<20	36	118.3056	29.3976	69.0000	202.0000	114.5000	0.0003
	≥20	14	84.3571	23.3752	59.0000	138.0000	79.0000	

Table 3: Distribution of DM, ALCOHOL, SMOKING, FAMILY HIST, HTN, DCM, NYHA, CAD, RHD.

		Frequency	Percent
DM	Absent	22	44.0%
DIVI	Present	28	56.0%
ALCOHOL	Absent	42	84.0%
ALCOHOL	Present	8	16.0%
SMOKING	Absent	27	54.0%
SWICKING	Present	23	46.0%
FAMILY HIST	Absent	33	66.0%
FAMILY HIST	Present	17	34.0%
HTN	Absent	29	58.0%
ПIN	Present	21	42.0%
DCM	Absent	44	88.0%
DCM	Present	6	12.0%
	2	19	38.0%
NYHA	3	22	44.0%
	4	9	18.0%
CAD	Absent	16	32.0%
CAD	Present	34	68.0%
DUD	Absent	44	88.0%
RHD	Present	6	12.0%

Table 4: Correlation of IVSd, LVIDd, LVPWd, IVSs, LVIDs, L	VPWs, LVE	EF, FS, SV, LVd Mas	s, EDV and
ESV with VIT-D			
CORRELATION COFFICIENT	VIT D		

	CORRELATION COEFICIENT	VIT-D	
IVSd	Pearson Correlation Coefficient (r)	124	Negative Correlation
	p-value	.390	Not Significant
	Number	50	
LVIDd	Pearson Correlation Coefficient (r)	531**	Negative Correlation
	p-value	< 0.001	Significant
	Number	50	
LVPWd	Pearson Correlation Coefficient (r)	007	Negative Correlation
	p-value	.962	Not Significant
	Number	50	
IVSs	Pearson Correlation Coefficient (r)	007	Negative Correlation
	p-value	.963	Not Significant
	Number	50	
LVIDs	Pearson Correlation Coefficient (r)	616**	Negative Correlation
	p-value	< 0.001	Significant
	Number	50	
LVPWs	Pearson Correlation Coefficient (r)	.066	Positive Correlation
	p-value	.649	Not Significant
	Number	50	
LVEF	Pearson Correlation Coefficient (r)	.654**	Positive Correlation
	p-value	< 0.001	Significant
	Number	50	
FS	Pearson Correlation Coefficient (r)	.421**	Positive Correlation
	p-value	.002	Significant
	Number	50	
SV	Pearson Correlation Coefficient (r)	145	Negative Correlation
	p-value	.314	Not Significant
	Number	50	
LVd Mass	Pearson Correlation Coefficient (r)	142	Negative Correlation
	p-value	.325	Not Significant
	Number	50	
EDV	Pearson Correlation Coefficient (r)	387**	Negative Correlation
	p-value	.005	Significant
	Number	50	
ESV	Pearson Correlation Coefficient (r)	450**	Negative Correlation
	p-value	.001	Significant
	Number	50	

Dr. Apurba Bikash Pramanik. "A Study to Assess the Prevalance of Vitamin-D Deficiency in Patients with Left Ventricular Dysfunction and Its Correlation with Conventional Echocardiographic Parameter." IOSR Journal of Dental and Medical Sciences (IOSR-JDMS), vol. 18, no. 4, 2019, pp 52-58.