Utility of Platelet Indices (Pi) In Thrombocytopenia - An Institutional Based Two Years Clincopathological Study

Dr. Narasimhulu Kuna¹, Dr. D. Ranga Rao², Dr. L. Maadhurika³, Dr. M. Spandana³, Dr. SK. Salma³, Dr. G. Prathusha Chowdery³

¹(Assistant Professor, Department of Pathology, Dr. P.S.I. Medical College, Chinoutpalli, AP, India)
²(Professor & HOD, Department of Pathology, Dr. P.S.I. Medical College, Chinoutpalli, AP, India)
³(Post Graduate, Department of Pathology, Dr. P.S.I. Medical College, Chinoutpalli, AP, India)

Corresponding Author: Dr. Narasimhulu Kuna

Abstract

INTRODUCTION: Automated hematology analyzers that determine the Mean Platelet Volume (MPV), Platelet Distribution Width (PDW), Plateletcrit (PCT), Platelet Large Cell Ratio (P-LCR) which could be very helpful to facilitate the differential diagnosis of thrombocytopenia and to monitor thrombocytopenic conditions.

AIMS AND OBJECTIVES: Deriving the cause of the thrombocytopenia by clinical and also by measuring the platelet indices.

MATERIALS AND METHODS: Prospective observational study of 3,864 thrombocytopenic samples of hemogram analysis by automated haematology analyzers and Static analysis was done.

RESULTS: Among the 3,864 cases of thrombocytopenia who were classified into hypo productive (874 cases) and hyper destructive (2,990) group. Most common cause of hypoproductive and hyperdestructive was Megaloblastic anaemia(10.9%) and Dengue(30.2%) respectively.

CONCLUSION: Platelet Indices were easy to measure and give a clue to aetiology of thrombocytopenia and it is also very cost effective.

Key Words: Mean Platelet Volume (MPV), Platelet Distribution Width (PDW), Plateletcrit (PCT), Platelet large cell ratio (P-LCR).

Date of Submission: 26-12-2018

Date of acceptance: 11-01-2019

I. Introduction

Thrombocytopenia is a common clinical syndrome defined as platelet count below 1.5 lakh per microlitre of blood. During evaluation of thrombocytopenia, it is essential to identify the aetiology, whether it is due to hypo production or hyper destruction which will have major impact on the management. [1, 2, 3] Measuring various Platelet indices, such as Mean Platelet Volume (MPV), Platelet Distribution Width (PDW), Plateletcrit (PCT) and Platelet large cell ratio (P-LCR) along with a simple Complete blood count may provide some valuable information regarding the underlying mechanism and pathogenesis of thrombocytopenia. [4, 5] MPV measures the average size of platelets. PDW is a measure of variation platelet size. It is a coefficient of variation (CV) percentage. PCT is a measure of total platelet mass. P-LCR is the ratio of large platelets.

Table 1 Normal reference ranges of Platelet Indices (PI)				
MPV	9.4–12.3 fl			
PDW	10.0%-17.9%			
PCT	0.22-0.24%			
P-LCR	15-30%			

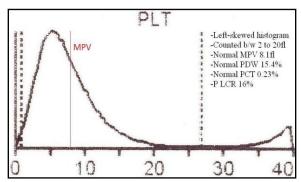


Figure 1 Normal platelet histogram

II. Materials And Methods

Total of 35,958 samples were received for hemogram analysis in two years duration and analyzed on Auto haematology analyzer. Among 35,958 samples 3,864 cases were presented with thrombocytopenia and Plateletcrit (PCT), Platelet Distribution Width (PDW) and Mean Platelet Volume (MPV) and relevant clinical details of these thrombocytopenic patients were collected and Static analysis was done.

III. Results

Among the 3,864 cases of thrombocytopenia who were classified into hypo productive (874 cases) and hyper destructive (2,990) group. Male to female ratio in hypo production and hyper destruction group was 1:1.2 and 1:1.1 respectively. Most common age group in hypo production and hyper destruction group was 50-60years and 20-30years respectively. The mean platelet count in the hypo production group is 67.4 ± 29.5 and in the hyper destruction group is 69.5 ± 28.4 .

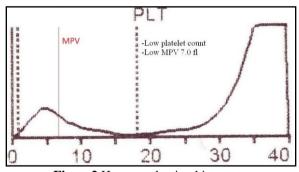


Figure 2 Hypo production histogram

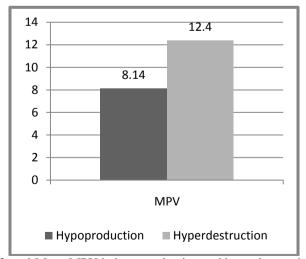


Chart1 Mean MPV in hypoproduction and hyperdestruction

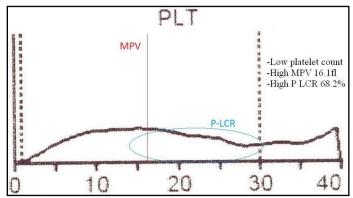


Figure3 Hyper destructive histogram

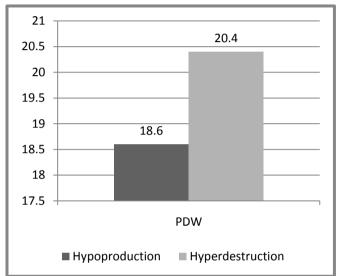


Chart2 Mean PDW in hypoproduction and hyperdestruction

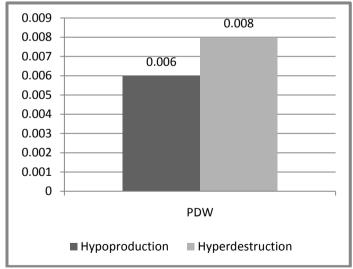


Chart3 Mean PDW in hypoproduction and hyperdestruction

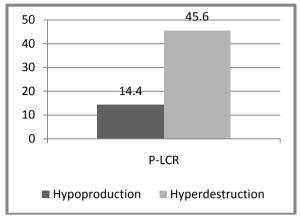
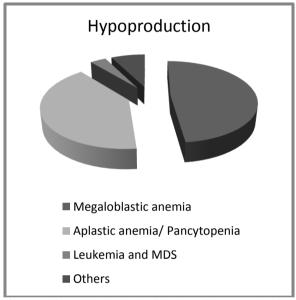
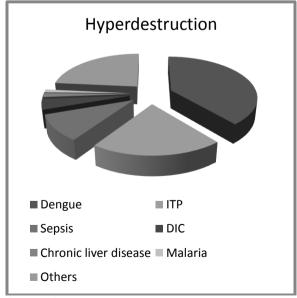




Chart4 Mean P-LCR in hypoproduction and hyperdestruction

Pie chart1 Aetiological distribution of hypoproduction

Pie chart2 Aetiological distribution of hyperdestruction

IV. Discussion

Automated hematology analyzers determine MPV, PDW, PCT and P - LCR which has been correlated with several disease states. [5, 6]

Table2 Distribution and comparison of Platelet indices in thrombocytopenia with similar studies								
Platelet indices	Negash et al.[12]	Baig MA et al ^[13]	Parveen et al ^[14]	Present study				
Hypo production								
MPV	9.7 ± 0.9	8.5 ± 1.27	10.17 ± 1.3	8.14 ± 1.2				
PDW	13.2 ± 2.3	14.10 ± 1.15	19.7 ± 5.4	18.6 ± 1.2				
PCT	-	0.08 ± 0.12	0.06 ± 0.03	0.06 ± 0.01				
P - LCR	25 ± 7	31.90 ± 3.46	-	14.4 ± 1.1				
Hyper destruction								
MPV	12.4 ± 3.6	11.6 ± 2.25	12.3 ± 0.9	12.4 ± 0.9				
PDW	15.5 ± 3.2	15.16 ± 1.36	19.3 ± 4.2	20.4 ± 5.6				
PCT	-	0.09 ± 0.14	0.08 ± 0.1	0.08 ± 0.01				
P - LCR	36.8 ± 13	34.30 ± 0.14	-	45.6 ± 13.4				

Table3 Aetic	ological distribution	of thrombocytopenia in each sub	group and comparison with si	milar studies
Aetiologies	Katti et al [16]	Numbenjapon et al ^[17]	Parveen et al ^[13]	Present study
		Hypo production Total case	es (%)	
Aplastic anemia / Pancytopenia	-	12 (11.8%)	-	356 (9.2%)
Megaloblastic anemia	08 (8%)	4 (3.9%)	11 (9.2%)	422 (10.9%)
Leukemia and MDS	06 (6%)	22 (21.6%)	2 (1.7%)	31 (0.8%)
Others	-	-	13 (10.8%)	65 (1.7%)
		Hyper destruction Total cas	es (%)	
ITP	4 (4%)	53 (52%)	3 (2.5%)	614 (15.9%)
Viral fevers / Dengue	29 (29%)	-	26 (21.7%)	1167 (30.2%)
Malaria	24 (24%)	-	8 (6.7%)	35 (0.9%)
Chronic liver disease	3 (3%)	-	20 (16.7%)	46 (1.2%)
Sepsis	4 (4%)	9 (8.8%)	6 (5%)	301 (7.9%)
DIC	2 (2%)	-	-	124 (3.2%)
Others	19 (19%)	2 (2%)	31 (25.8%)	703 (18.2%)
Total	100	102	120	3864

MPV has an inverse relationship with platelet number volumes in thrombocytopenic patients due to peripheral destruction (Hyper destruction group) as in hyperdestruction like ITP, dengue, sepsis and myeloproliferative disorders etc.^[6, 7, 8] Decreased MPV has been associated with megakaryocytic hypoplasia/hypo production.^[9] High PDW has been associated with hyper destructive thrombocytopenia because of the release of heterogenous population of platelets which vary in their size (anisocytosis).^[10,11]

PCT value is not altered much by severity of thrombocytopenia of either hypo productive or hyper destructive aetiology because in healthy subjects platelet mass is closely regulated to keep it constant.^[15]

P-LCR was increased in destructive thrombocytopenia patients compared with hypoproliferative thrombocytopenia and a good marker for aid in the differential diagnosis of conditions associated with abnormal platelet counts. ^[18]

References

- [1]. Strau B G, Vollert C, Von Stackelberg A, Weimann A, Gaedicke G, Schulze H. Immature platelet count: A simple parameter for distinguishing thrombocytopenia in pediatric acute lymphocytic leukemia from immune thrombocytopenia. Pediatr Blood Cancer 2011;57:641–7.
- [2]. Kaito K, Otsubo H, Usui N, Yoshida M, Tanno J, Kurihara E, et al. Platelet size deviation width, platelet large cell ratio, and mean platelet volume have sufficient sensitivity and specificity in the diagnosis of immune thrombocytopenia. Br J Haematol 2005;128:698–702.
- [3]. Park Y, Schoene N, Harris W. Mean platelet volume as an indicator of platelet activation: methodological issues. Platelets 2002;13:301-6
- [4]. Giovanetti TV, do Nascimento AJ, de Paula JP. Platelet indices: laboratory and clinical applications. Rev Bras Hematol E Hemoter 2011; 33:164–5.
- [5]. Borkataky S, Jain R, Gupta R, Singh S, Krishan G, Gupta K, et al. Role of platelet volume indices in the differential diagnosis of thrombocytopenia: a simple and inexpensive method. Hematology 2009;14:182–6.
- [6]. Amar S, Sanjay N. Role of platelet parameters in diagnosing various clinical conditions. Natl J Med Res 2005;3:162-5.
- [7]. Parashar Y, Kushwaha R, Kumar A, Kamal A, U.S Singh, M Jain, et al. Haemostatic Profile in Patients of Myeloproliferative Neoplasms-A Tertiary Care Centre Experience. JCDR 2016; 10:EC01-4.
- [8]. Dastjerdi MS, Emami T, Najafian A, Amini M. Mean platelet volume measurement, EDTA or citrate. Hematology 2006;11:317-9.
- [9]. Briggs C, Harrison P, Machin SJ. Continuing developments with the automated platelet count. Int J Lab Hematol 2007;29:77-91.
- [10]. Farias MG, Schunck EG, De Castro SM. Definition of reference ranges for the platelet distribution width (PDW): a local need. Clin Chem Lab Med 2010;48:255-7.
- [11]. Sewakdas K P, Ashish P Sarika M, Megha P. Platelet Distribution Width (PDW) A Rarely Studied Platelet Indice for Determining the Causes of Thrombocytopenia. Annals of International medical and Dental Research 2016;2:193-7.

- [12]. Negash M, Tsegaye A, G/Medhin A. Diagnostic predictive value of platelet indices for discriminating hypo productive versus immune thrombocytopenia purpura in patients attending a tertiary care teaching hospital in Addis Ababa, Ethiopia. BMC Hematology 2016;16:18.
- [13]. Baig MA. Platelet indices: evaluation of their diagnostic role in pediatric thrombocytopenias (one year study). Int J Res Med Sci 2015;3:2284-9.
- [14]. Parveen S, Vimal M. Role of platelet indices in differentiating hypoproductive and hyperdestructive thrombocytopenia. Annals of Pathology and Laboratory Medicine 2017;4:A288-91.
- [15]. Brummitt DR, Barker HF. The determination of a reference range for new platelet parameters produced by the Bayer ADVIA120 full blood count analyser. Clin Lab Haematol 2000;22:103-7.
- [16]. Katti TV, Mhetre SC, Annigeri C. How far are the platelet indices mirror image of mechanism of thrombocytopenia-mystery still remains? Int J Adv Med 2014;1:200-5.
- [17]. Numbenjapon T, Mahapo N, Pornvipavee R, Sriswasdi C, Mongkonsritragoon W, Leelasiri A, et al. A prospective evaluation of normal mean platelet volume in discriminating hyperdestructive thrombocytopenia from hypoproductive thrombocytopenia. Int J Lab Hematol 2008;30:408–14.
- [18]. Elsewefy D A, Farweez B A, Ibrahim R R. Platelet indices: consideration in thrombocytopenia. Egypt J Haematol 2014;39:134-8.

Narasimhulu K, Ranga Rao D, Maadhurika L, Spandana M, SK. Salma SK, Prathusha Chowdery G. Utility of platelet indices (pi) in thrombocytopenia - an institutional based two years clincopathological study. "IOSR Journal of Dental and Medical Sciences (IOSR-JDMS), vol. 18, no. 1, 2019, pp 21-26.

DOI: 10.9790/0853-1801052126 www.iosrjournals.org 26 | Page