Pattern of Refractive Errors in Teenage School Students Visiting A Tertiary Care Hospital In Manipur

Thangjam Amit Singh¹, Varsha Uday K², Tekcham Sangini Devi³, Lipokyanger⁴, Lalnuntluanga Ralte⁵

¹(Department of Ophthalmology / Regional Institute of Medical Sciences, India)

²(Department of Ophthalmology / Regional Institute of Medical Sciences, India)

³(Department of Ophthalmology / Regional Institute of Medical Sciences, India)

⁴(Department of Ophthalmology / Regional Institute of Medical Sciences, India) ⁵(Department of Ophthalmology / Regional Institute of Medical Sciences, India)

Corresponding Author: Thangjam Amit Singh

Abstract: Myopia is the commonest refractive error followedby hypermetropia. Many conservative and surgical modalities are available for correcting the refractive errors, each withvarying efficacy and safety. This study was planned to find outthe pattern of refractive errors and the extent of correctionpossible with conservative methods. A hospital based cross sectional studywas done in the months of March, April and May 2018, among teenagepatients attending the Out-Patient Department(OPD) of tertiary hospital in Imphal, Manipur, India. A total of 980 teenage patients attending the OphthalmologyOPD who were having refractive error were included in the study. Around 42.85% of the participants complained of decreasedvision while 35.71% had recurrent bouts of headache as the presenting problem. Most of the patients had an uncorrected far vision between 6/6 and 6/12. Around 98.97% of the participants had a corrected visual acuity of6/6 in both eyes, and around 1.02% had a corrected acuity between6/6 and 6/12 in both eyes. In ourstudy, sub-optimal correction of visual acuity has been reported only in less than 1% of the patients, and therefore the probability of progression of the problem is minimised in a vastmajority of the patients.

Key words: Myopia, hypermetropia, refraction, visual acuity, refractive errors.

Date of Submission: 04-01-2019

Date of acceptance: 19-01-2019

I. Introduction

A refractive error may be defined as a state in which the optical system of the nonaccommodatingeve fails to bring parallel rays of light to focus on the retina.[1] Especially, myopia has become a very common problem. Several studies described an increasing prevalence of myopia in the last two decades [2,3,4,5] whereas other studies concluded that the frequency of myopia had been nearly static for a century.[6,7,8] Furthermore, racial differences in myopia rates are well documented. Prevalence of myopia has been shown to be as low as 2% to 5% in Australian Aborigines[9] and Salomon Islanders.[10] Prevalence rates in Asiancountries vary from 50% in Chinese children [11] to 84% in Taiwanand Hong Kong[12,13]. In Europe, the prevalence of myopia seems to be lower than in Asian countries. Theprevalence rates vary from 30.3% in middle-aged adults and 35.0% in young adultsin Norway [14]to 53% in Norwegian medical students.[15] Guggenheim and colleagues (2003) reported a prevalence of myopia of 64% among British studentsbetween 18-40 years.[16] Although this prevalence is supposed to be typical of university students, [17] thestudy was likely to have been affected by response bias, with more myopes choosing to participate than non-myopes. A study by Mavracanas and colleagues (2000) have shown prevalence of myopia of 36.8% among Greek students(aged 15-18 years).[18]In children, the prevalence of myopia varies from 9.2% among American children aged 5-17 years[19] to 6% among 6-year-olds.[20] Villarealand colleagues (2000) found a prevalence of 49.7% in Swedishschool children aged 12-13 years.[21]The prevalence of hyperopia is not clear. The EyeDiseases Prevalence Research Group (2004) investigated persons older than 40 years and reported hyperopia rates of 9.9% in America, 11.6% in Western Europe and 5.8in Australia.[22]Kleinstein and colleagues (2003) have shown a prevalence of hyperopia of 12.8% in American childrenaged 5-17 years.[23] Midelfart and colleagues (2002) showed a prevalence of 13.2% among 20-25 year-olds and 17.4% among 40-45 year-olds.[24]Wensor and colleagues (1999)have shown that more than every third person older than40 years in Australia is hyperopic. [25] Kinge and colleagues(1998) reported a prevalence of hyperopia of 47% amongNorwegian adults.[26]The aim of this study was to determine the pattern of refractive error in teenagers in Manipur and the extent of correction with conservative methods.

II. Material and Methods

A hospital based cross sectional study was done in the monthof March, April and May 2018, among teenage patients attending theOphthalmology Out Patient Department (OPD) of tertiary hospital Manipur, India.A total of 980teenage patients attending the ophthalmology OPDwere included in the study, after obtaining written informed consent. All the participants who were included in the studyhad refractive errors and were candidates for correction using conservative methods. All the patients with history of RadialKeratotomy, Photorefractive Keratectomy or Laser-Assisted in Situ Keratomileusis (LASIK) were excluded from the study. Refractive error was assessed, with or without cycloplegia, in both eyes of all participants by objective and subjective refraction. Various qualitative variables were tallied, marked and tabulated.

III. Statistical Analysis

The data was digitised and analysed using SPSS 21. The quantitative variables were categorized and tabulated using descriptive statistics.

IV. Results

A total of 980 participants, aged 13 to 19 years, were included in the study. There were more females in the study group than males as seen in TABLE 1. Around 42.85% of the participants complained of decreased vision while 35.71% had recurrent bouts of headache.Sizeable proportion of people came with a Snellen's reading of 6/6 which indicated the presence of additional refractive issues as mentioned in the correction estimates. Most of the patients had an uncorrected far vision between 6/6 and 6/12 (TABLE-2). Both spherical and cylindrical deformities were corrected conservatively. In spherical deformity corrections, -0.5 to -3.0D were most commonly used, followed by more than +0.5 to +2.0D. In cylindrical deformity corrections, 0.25 to 0.50D were used most commonly, as observed in TABLE-3. The visual acuity achieved post correction was satisfactory in the case of most participants. Around 98.97% of the participants had a corrected visual acuity of 6/6 in both eyes, and around 1% had a corrected acuity between 6/6 and 6/12 in both eyes as seen in TABLE-4.

Table-1: Baseline demographic and clinical characteristics

Variable	Frequency	Percentage
Gender		
Male	321	32.76
Female	659	67.24
Symptoms		
Blurring of vision	420	42.85
Headache	350	35.71
Eyeache	150	15.34
Giddiness	34	3.5
Watering	26	2.6

Table-2: Far vision among the partici	pants
---------------------------------------	-------

Visual acuity	Right eye	Left eye
$\leq 6/6$	710(72.46%)	710 (72.46%)
≤6/12	150(15.30%)	150(15.30%)
≤6/24	70(7.14%)	70(7.14%)
≤6/60	50(5.10%)	50(5.10%)

Table-3: Spherical and cylindrical correction required by the participants

Correction (Spherical)	Right eye (%)	Left eye (%)
-0.5 to -3.0 D	294 (30.01%)	294 (30.01%)
-3.0 to -6.0D	60 (6.12%)	60(6.12%)
<-6.0D	7(0.71%)	7(0.71%)
+0.5 to +2.0D	252 (25.71%)	252(25.71%)
+2.0 to +5.0D	1(0.10%)	1(0.10%)
>+5.0D	-	-
Correction (Cylindrical)		
0.25 to 0.50 D	316 (32.22%)	316 (32.22%)
0.75 to 1.0 D	30 (3.08%)	30 (3.08%)
1.0 to 4.0 D	20 (2.04%)	20 (2.04%)
>4.0 D	-	-

Visual acuity	Right(%)	Left(%)
≤6/6	970(98.97%)	970(98.97%)
≤6/12	10(1.02%)	10(1.02%)
≤6/24	-	-
≤6/60	-	-

V. Conclusion

Our study presents the pattern of refractive error for the age groups 13–19 years in Manipur A group of teenager (aged 13 to 19 years), were studied in order to examine the frequency of refractiveerrors in the teenagers in Manipur The average prevalence approximately of myopia in this study was found to be 37% and that of hypermetropia was 26%. Most of the participants had a visual acuity of less than 6/12 on presentation to the hospital, and over 98% of them achieved a vision 6/6 only with conservative measures.Refractive errors in children may often pass undiagnosed for a long time, especially hyperopia. Thus, the prevalence of myopia and hyperopia is possibly underestimated in the present study. Although the prevalence rates found in this study maybe underestimated, and a comparison between all studiesconcerning the prevalence rates of myopia is not easy due to the variability in definition and selection of subjects, the prevalence rates found in this study are comparable withthose found in other European studies There are veryfew comparable studies concerning the prevalence rates of hyperopia. Thus, this study concludes that refractive error is quite common and correction of refractive error is possible by conservative methods alone. It is also important to have screening programmes in school to detect refractive errors in early stages.

References

- Jobke S, Kasten E, Vorwerk C, The prevalence rates of refractive errors among children, adolescents, and adults in Germany, [1]. Clinical ophthalmology (Auckland, NZ), 2(3), 2008, 601.
- [2]. Van Rens GH, Refractive error and axial length among Alaska Eskimos. Acta Ophthalmol (Copenh), 69, 1991, 27-32.
- [3]. Lin LLK, Shih YF, Hsiao CK, et al. 2004, Prevalence of myopia in Taiwanes schoolchildren: 1983 to 2000, Ann Acad Med Singapore,33, 2004, 27-33.
- [4]. Rose K, Smith W, Morgan I, et al, The increasing prevalence of myopia: Implications for Australia, Clin Exp Ophthalmol, 29, 2001, 116-20.
- Saw SM, Tong L, Chua WH, et al, Incidence and progression of myopia in Singaporean school children, IOVS, 46, 2005,51-7. [5].
- Midelfart A, Aamo B, Sjöhaug KA, et al, Myopia among medicalstudents in Norway, Acta Ophthalmol Scand, 70, 1992, 317-22. [6].
- Goldschmidt E, The mystery of myopia. Acta Ophthalmol Scand81,2003, 431-6. [7].
- Fledelius HC, Myopia profile in Copenhagen medical student1996-1998. Refractive stability over a century is suggested. [8]. ActOphthalmol Scand, 78, 2000, 501-5.
- [9]. Taylor HR, Racial variations in vision, Am J Epidemiol, 113, 1981, 62-80.
- [10]. Verlee DL, Ophthalmic survey in the Salomon Islands. Am Ophthalmol, 66, 1968, 304-19.
- [11]. Chung KM, Mohidin N, Yeow PT, et al, Prevalence of visual disorderin Chinese schoolchildren, Optom Vis Sci, 73, 1996, 695-700.
- [12]. Lin LLK, Shih YF, Lee YC, et al. Changes in ocular refraction anits components among medical students. A 5-year-longitudinal studyOptom Vis Sci, 73, 1996, 495-8.
- Lam CSY, Goldschmidt E, Edwards MH, Prevalence of myopia in local and international schools in Hong Kong, Optom Vis Sci, [13]. 81, 2004, 317-22.
- [14]. Midelfart A, Kinge B, Midelfart S, et al, Prevalence of refractiveerrors in young and middle-aged adults in Norway. ActaOphthalmolScand, 80, 2002, 501-5.
- [15]. Midelfart A, Aamo B, Sjöhaug KA, et al, Myopia among medicalstudents in Norway. Acta Ophthalmol Scand, 70, 1992, 317-22.
- Guggenheim JA, Hill C, Yam TF, Myopia, genetics, and ambientlighting at night in a UK sample. Br J Ophthalmol, 87, 2003, 580-[16].
- Loman J, Quinn GE, Kamoun L, et al. Darkness and near work. Myopia and its progression in third-year law [17]. students. Ophthalmol. 109. 2002. 1032-8.
- [18]. Mavracanas TA, Mandalos A, Peios D, et al, Prevalence of myopiain a sample of Greek students. 2000. Acta Ophthalmol Scand, 78, 2000, 656-9.
- [19]. Kleinstein RN, Jones LA, Hullett S, et al, Refractive error and ethnicity inchildren, Arch Ophthalmol, 121, 2003, 1141-7.
- Robinson B, Factors associated with the prevalence of myopia in6-year-olds. Optom Vis Sci, 76, 1999, 266-71. [20].
- [21]. Villarreal MG, Ohlsson J, Abrahamsson M, et al Myopisation: The refractive tendency in teenagers. Prevalence of myopia among young teenagers in Sweden. Acta Ophthalmol Scand, 78, 2000, 177-81.
- [22]. The Eye Diseases Prevalence Research Group, The prevalence of refractive errors among adults in the United States, Western Europe, and Australia, Arch Ophthalmol, 122, 2004, 495-505.
- [23]. Kleinstein RN, Jones LA, Hullett S, et al, Refractive error and ethnicity in children. Arch Ophthalmol, 121, 2003, 1141-7.
- [24]. Midelfart A, Kinge B, Midelfart S, et al, Prevalence of refractive errors in young and middle-aged adults in Norway. Acta OphthalmolScand, 80, 2002.501-5.
- [25]. Wensor M, McCarty CA, Taylor HR. Prevalence and risk factors of myopia in Victoria, Australia. Arch Ophthalmol, 117, 1999, 658-63.
- [26]. Kinge B, Midelfart A, Jacobsen G. 1998. Refractive errors among young and university students in Norway. Acta Ophthalmol Scand, 76, 1998, 692-5. _____
- Thangjam Amit Singh. "Pattern of refractive errors in teenage school students visiting a Tertiary Care Hospital in Manipur." IOSR Journal of Dental and Medical Sciences (IOSR-JDMS), vol. 18, no. 1, 2019, pp 06-08. -----<u>-----</u>_------