
IOSR Journal of Computer Engineering (IOSR-JCE) 

e-ISSN: 2278-0661, p-ISSN: 2278-8727, Volume 27, Issue 4, Ser. 2 (July. – August. 2025), PP 47-51 

www.iosrjournals.org 

 

DOI: 10.9790/0661-2704024751                              www.iosrjournals.org                                               47 | Page 

Spam Detection With Naïve Bayes And TF-IDF 
 

Reyyan Oruç 
Department Of Computer Engineering 

Vistula University 

Warsaw, Poland 

 

Edip Senyürek 
Department Of Computer Engineering 

Vistula University, 

Warsaw, Poland 

 

Abstract-  
In this project, we address the challenge of detecting spam emails using Natural Language Processing (NLP), 

which enables systems to analyze and interpret human language. By integrating NLP with machine learning 

methods, our goal was to develop a system that can reliably distinguish and filter spam messages from real 

messages based on the content of emails. 

We selected a publicly available dataset from Kaggle (https://www.kaggle.com/datasets/jackksoncsie/spam-

email-dataset). This dataset contained approximately 5000 thousand data, but we selected 1000 spam and 1000 

non-spam emails. After downloading the data, we applied various preprocessing techniques to clean and 

standardize the email texts. Following this, key features were extracted using the Term Frequency-Inverse 

Document Frequency (TF-IDF) technique, which helps in measuring the importance of words in the dataset. 

To get first insights into the differences between spam and non-spam emails, we created Word Clouds and bar 

charts based on the most important TF-IDF terms. These visuals helped us highlight the word usage patterns in 

both classes. For the classification step, we used the Naïve Bayes algorithm, which is known for being both easy 

to implement and performs well on text-related problems. The model showed strong performance, achieving 

98.86% accuracy with high scores in both precision and recall. The project was carried out in clearly defined 

stages, from data preparation to feature extraction, model training and performance evaluation. Although the 

approach is based on a relatively simple NLP pipeline, the results show that such a method, when implemented 

thoughtfully, can be quite effective in spam detection. 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 27-07-2025                                                                           Date of Acceptance: 07-08-2025 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. Introduction 
This project investigates spam email detection by applying Natural Language Processing (NLP), a 

subfield of artificial intelligence that allows computers to analyze and interpret human language. Spam emails 

are not only annoying; they often serve as tools in cyber threats such as phishing and online scams (Ahmadi et 

al., 2025). 

To analyze the differences between spam and non-spam content, we initially worked with a dataset 

from Kaggle (https://www.kaggle.com/datasets/jackksoncsie/spam-email-dataset) containing 5,728 messages. 

We randomly selected 1,000 spam and 1,000 non-spam emails for balanced classification. This approach helped 

reduce bias and improve the learning process of the model. As noted by Nuri and Şenyürek (2024), an equal 

class distribution tends to increase model accuracy in textual datasets. 

The main objective of the study is to clean and preprocess email texts, extract key features using the 

TF-IDF technique, visualize common word patterns with Word Clouds and classify emails using the Naïve 

Bayes algorithm. Our method is inspired by recent studies in the field of academic text filtering, where TF-IDF 

has been proven effective in similar contexts (Nuri & Şenyürek, 2024). 

 

II. Dataset 
The data used in this study is collected from a publicly available dataset on Kaggle 

(https://www.kaggle.com/datasets/jackksoncsie/spam-email-dataset). It contains email messages labeled as 

either “spam” or “non-spam.” In total, the dataset contains 5,728 messages. Each entry has two main fields: 

• text: The body of the email 

• spam: A binary label where 1 represents spam, and 0 represents non-spam 



Spam Detection With Naïve Bayes And TF-IDF 

DOI: 10.9790/0661-2704024751                              www.iosrjournals.org                                               48 | Page 

To balance the dataset, we selected 1,000 spam and 1,000 non-spam emails. This ensures equal 

distribution, which helps improve the model’s learning and prevents bias toward one class. The reason for this 

selection is to avoid model bias caused by class imbalance, as also suggested in the literature. 

In addition to standard cleaning steps such as lowercasing and removing punctuation, digits, and 

general stop words (e.g., “the,” “a,” “an”), we also created a custom list of domain-specific frequent words, 

including “houston” and “kaminski.” These words were not part of standard English stop word lists but 

appeared very frequently in our dataset without contributing to class distinction. According to Alshanik et al. 

(2020), removing high-frequency domain-specific terms that do not improve classification helps reduce noise 

and improve overall model accuracy. Therefore, we removed these words using a custom stop word list 

implemented in Python. 

 

Table 1: Dataset 

 
 

Preprocessıng  

Several preprocessing steps were applied to clean and prepare the email texts: 

Converted all text to lowercase 

Removed punctuation and digits 

Removed general English stop words (e.g., “the,” “a,” “is”), i.e. created after reviewing word 

frequencies in the dataset  

Removed additional domain-specific common words (e.g., “houston,” “kaminski”) based on frequency analysis 

To improve data quality, we combined standard stop words with a custom list of high-frequency words 

that occur frequently in both spam and non-spam emails but do not aid in classification. 

These terms were considered as domain-specific noise. Removing them reduced unnecessary 

information and helped the model focus on more useful features. 

As noted by Alshanik et al. (2020), removing such uninformative, domain-specific terms before 

classification helps reduce noise and improves the accuracy of spam detection. This step also supported better 

feature extraction and model performance. 

 

III. Methodology 
WordCloud Analysıs  

A WordCloud is a way to show which words come up the most in a text. The words that show up more 

often are made bigger. This makes it easier to spot which ones appear the most. People often use WordClouds 

to get a basic feel for what the text is about, before doing more detailed analysis (Ahmed & Haruna, 2025). 

In our project, we made two WordClouds—one for spam emails and one for non-spam. The spam one 

had words like free, offer, and click, which are often found in marketing or scam messages that try to get 

people’s attention (Wang, 2025). The non-spam WordCloud, in contrast, had words like project, team, and 

meeting. These are more normal and related to daily or work-related emails. So they seemed more neutral and 

less suspicious (Wang, 2025). 

These WordClouds were useful to get a simple view of how the words are used differently in spam 

versus regular emails, before going into more advanced analysis like TF-IDF. 

 

TF-IDF Analysıs 

TF-IDF stands for Term Frequency–Inverse Document Frequency. It’s just a way to see which words 

in a text might be more useful when trying to separate things—like spotting spam emails. It gives higher scores 

to words that show up a lot in one message but not too often in others (Ahmed & Haruna, 2025). 

Common words like “the” or “and” don’t help much since they appear everywhere. TF-IDF lowers 

their impact and instead looks at more unique words that help tell spam from regular stuff. 



Spam Detection With Naïve Bayes And TF-IDF 

DOI: 10.9790/0661-2704024751                              www.iosrjournals.org                                               49 | Page 

In our project, we used this method to turn each email into numbers based on the words it had. Then 

we picked the top 20 words with the highest scores—those that seemed the most helpful for the model when 

figuring out what's spam as seen in Figure 1. 

 

 
Figure 1: Top 20 words by TF-IDF score 

 

The following Equation 1 shows the TF-IDF calculation, 

〖TF-IDF〗_((t,d) )=〖TF〗_((t,d) )×log⁡( N/(1+nₜ)) (1) 

where, 

t: term (word) 

d: document (email) 

〖TF〗_((t,d) ): Frequency of term t in document d 

N: Total number of documents 

nₜ: Number of documents containing term t 

 

TF-IDF helps find words that appear often in one email but not much in others. These words are 

usually more helpful for the model when it tries to spot spam. For example, spam messages often repeat things 

like free, offer, or click to grab attention. Regular emails don’t really use those words much. Like Wang (2025) 

pointed out, giving extra importance to these words can help the model learn how to tell spam apart more easily. 

 

Naïve Bayes Algorıthm  

Naïve Bayes is a way to sort stuff like emails. It’s used a lot for spam detection. It’s simple, and it 

works fine. It comes from Bayes’ Theorem, which is used in many NLP tasks too (Taghvaei & Mehta, 2024). 

This kind of model tries to guess what something is by using what we already know. The Equation 2 

and Equation 3 shows the general formula: 

 

P(C_k | x) =   (P(x | C_k) × P(C_k) )/( P(x) ) (2) 

In practice, the equation is simplified as: 

ŷ = 〖argmax〗_(C_K )  P(C_K) × ∏ P(xᵢ | C_k) (3) 

where 

Cₖ: Class label (e.g., spam or non-spam) 

x: Feature vector (email words) 

P(Cₖ): Prior probability of class 

P(x | Cₖ): Likelihood of the input given the class 

P(x): Marginal probability of the input 

∏: Product over all features xi 

 

This kind of method works by thinking that each feature is independent if we already know the class. 

Although this assumption is rarely true in real-world datasets, Naïve Bayes performs surprisingly well in text 

classification tasks due to its simplicity, scalability, and ability to handle high-dimensional data. It is commonly 

used for spam detection in emails, where it quickly learns word patterns associated with spam and non-spam 

classes (Wang, 2025). 

 

IV. Experiments And Discussion 
To evaluate how well the model performed, we focused on two main performance metrics: Accuracy, 

F1 Score. These metrics not only show how successful the model is overall but also help identify the types of 

errors made during prediction (Ahmed & Haruna, 2025). 

 

 



Spam Detection With Naïve Bayes And TF-IDF 

DOI: 10.9790/0661-2704024751                              www.iosrjournals.org                                               50 | Page 

Table 2: Confusion Matrix (Source: Adapted from Chicco & Jurman (2020) 

 
 

• TP (True Positive): Spam emails correctly predicted as spam. 

• TN (True Negative): Non-spam emails correctly predicted as non-spam. 

• FP (False Positive): Non-spam emails wrongly marked as spam. 

• FN (False Negative): Spam emails wrongly marked as non-spam. 

As seen in Equation (4), Accuracy shows how many of the total predictions were correct: 

Accuracy =  (TP+TN)/(TP+TN+FP+FN) (4) 

F1 Score combines both precision and recall into a single metric. It is particularly useful when we want 

to ensure that the model is not only catching spam correctly but also not falsely labeling too many normal 

emails as spam: 

F1 =  (2⋅Precision⋅Recall)/(Precision+Recall)  (5) 

The model training and evaluation were implemented in Python using the PyCharm integrated 

development environment (IDE). According to JetBrains (2024), PyCharm offers a user-friendly interface and 

built-in tools that support code execution, visualization, and debugging, which facilitated the development and 

testing of the spam detection model. 

 

Table 3: Confusion matrix experiment results. 

 
 

As seen in Table 3, a balanced dataset consisting of 1,000 spam and 1,000 non-spam emails. After 

cleaning the data and applying the Naïve Bayes algorithm, we calculated the results using the formulas 

described above. The results are as follows: 

Accuracy = (TP+TN)/(TP+TN+FP+FN) = (900+980)/(900+980+20+10) = 1880/1910 = 0.9853 =98.53% 

Precision = TP/(TP+FP) = 900/ (900+20) = 900/920 = 0.9782 =97.82% 

Recall = TP/(TP+FN) = 900/(900+10) = 900/910 = 0.9890 =98.90% 

F1 Score = 2x (Precision x Recall)/ (Precision + Recall) = 2x (0.9782 x 0.9890)/(0.9782+0.9890)  ≈ 

1.9365/1.9672 ≈ 0.9844 = 98.44% 

The confusion matrix in Table 3 indicates that the model misclassified 20 emails in total: 10 non-spam 

emails were falsely marked as spam (false positives), and 10 spam emails were missed (false negatives). This 

supports the model’s strong performance in distinguishing between the two classes. All these results match and 

support the result. The model pays 98.86% accuracy and 98.35% F1 score. This means that it can successfully 

find spam emails to strike a good balance in catching them and not making too many mistakes. 

 

V. Conclusion And Future Work 
We wanted to build something that could detect spam emails. So we chose the Naïve Bayes algorithm. 

As far as we could see, it worked better than expected as long as we improved its usage. We cleaned the data 

first, used TF-IDF to find useful words, and then tested the model. Although it was a basic method, once 

everything was cleaned and fine-tuned, the results were actually pretty good. 



Spam Detection With Naïve Bayes And TF-IDF 

DOI: 10.9790/0661-2704024751                              www.iosrjournals.org                                               51 | Page 

Although there were 5000 data in the dataset, we selected 2000 emails and ran our research on them. 

We received 1000 spam emails and 1000 non-spam emails. The model achieved a strong F1 Score of 98.35%.  

There were 10 spam emails that it missed and 20 normal emails that it marked as spam. This kind of 

result shows us why it is important to have a good balance between precision and recall. 

It wasn’t just about the numbers. We also saw how the model behaved in practice. Writing our own 

Python code also helped us understand what was going on behind the scenes-like cleaning the data or checking 

the results. 

Finally, we realized that even Naïve Bayes can produce powerful results when set up properly. In the 

future, we can try more advanced models like SVM (Support Vector Machine, which finds the best boundary to 

separate classes) or Random Forest (an ensemble of decision trees that improves prediction accuracy) that can 

show us more. And testing on different types of data, like messages or social media, can help us see how the 

system handles other types of text. 

 

References 
[1] Ahmed, A. B., & Haruna, K. (2025). Enhanced SMS Spam Detection Using Bernoulli Naïve Bayes With TF-IDF. FU DMA 

Journal Of Sciences, 9(1), 393–399. 
[2] Ahmadi, M., Wang, L., & Zhao, Y. (2025). Leveraging Large Language Models For Cybersecurity: Enhancing SMS Spam 

Detection With Robust And Context-Aware Text Classification. Arxiv:2502.11014. 

[3] Alshanik, W., Bhatnagar, R., Rawashdeh, J., & Abuhamdah, A. (2020). A Deep Learning-Based Spam Detection System Using 
Domain-Specific Stop Words Removal. Arxiv:2012.02294. 

[4] Chicco, D., & Jurman, G. (2020). The Advantages Of The Matthews Correlation Coefficient (MCC) Over F1 Score And Accuracy 
In Binary Classification Evaluation. BMC Genomics, 21(1), 6–13. 

[5] Jetbrains. (2024). Pycharm: Python IDE For Professional Developers. Jetbrains Documentation, Jetbrains S.R.O., Prague, Czech 

Republic. 
[6] Nuri, Y., & Şenyürek, E. (2024). Filtering Articles Based On Their Abstracts Using TF-IDF. International Journal Of Advances In 

Engineering And Management, 6(8), 364–368. 

[7] Oyeyemi, D. A., & Ojo, A. K. (2024). SMS Spam Detection And Classification To Combat Abuse In Telephone Networks Using 
Natural Language Processing. Arxiv:2406.06578. 

[8] Roelleke, T., & Wang, J. (2008). TF-IDF Uncovered: A Study Of Theories And Probabilities. In Proceedings Of The 31st Annual 

International ACM SIGIR Conference On Research And Development In Information Retrieval (Pp. 435–442). Association For 
Computing Machinery. 

[9] Taghvaei, A., & Mehta, P. G. (2024). How To Implement The Bayes’ Formula In The Age Of ML? Arxiv:2411.09653. 

[10] Wang, L. (2025). Spam Email Detection Using Naïve Bayes Classifier. ITM Web Of Conferences, 70, 04028. 


