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Abstract: Data transmitted from sensors and actuators as part of the Internet of Things (IoT) infrastructure are 

stored either in database tables following relational schema and normalization forms or in schema less 

collections using JSON string or binary formulation.  As data content in such repositories radically increases, 

the selection and use of the appropriate storage types are essential in terms of performance and robustness. 

Furthermore, taking into account the amount of database capacity and processing needed, as well as the 

exponential increase and use of IoT devices, storage and retrieval of sensory data are the main bottlenecks and 

set the boundary requirements for IoT services functionalities. 

This paper tries to identify the performance characteristics that derive from data operations over IoT big 

datasets that are stored as records in relational schema tables or documents in tables containing JSON fields. 

Trying to pose an answer to the question which one performs better than the other the PostgreSQL open source 

relational database has been selected and examined for insert, select/find and aggregation function queries. The 

comparative study results are presented and thoroughly discussed. 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 20-12-2018                                                                           Date of acceptance: 06-01-2019 

------------------------------------------------------------------------------------------------------------------------ --------------- 

 

I. Introduction  
Databases are used in order to satisfy data storage requirements. After their inception in the 1960’s 

several types have been developed, each one using its own supported data representation. Initially performing as 

linked list  navigational databases followed by the relational databases schemas and supported fields with joins, 

triggers, views, functions and stored procedures and afterwards object-oriented capabilities and other specific 

type fields for the process of storing images, videos or coordinates and vector objects (GIS capabilities).  

In the late 2000s NoSQL schema less data stores appeared for the purpose of data storage of entities 

that their attributes timely change. The main representatives of these databases are MongoDB, Cassandra, Hyper 

table, HBase/Hadoop and CouchDB [15] emerged and became a popular trend [4]. Most commonly used 

database systems today use the relational model [7], which includes SQL as its query language. Nevertheless, 

over the last years NoSQL database solutions are becoming more prominent as massive amounts of rapidly 

growing data of non specific formulation or entities of non atomically fields and fields with partial and transitive 

dependencies are being collected today, in the form of super-entities called collections [11, 20]. This poses the 

question if the relational model reached their service limits.  

Relational databases use normality forms (1NF, 2NF, 3NF, BCNF, 4NF and 5NF) on the notion of 

entities containing fields and entity records filling up table datasets. Normalization processes include the 

analysis of functional dependencies between entity attributes [11]. Normalization tries to eliminate the 

redundancy but not at the cost of integrity so as to improve the performance of database queries. De-

normalization is the inverse process of normalization, where the normalized schema is converted into a schema 

which has redundant information. The performance is improved by using redundancy; however, in many cases 

keeping the data integrity intact may lead to redundant data inconsistencies [21]. 

De-normalization processes can also be defined as the methods of storing superior normal form joined 

relations as a base relation, which is kept normalizes only in a lower normal form. Such processes try to reduce 

the number of database tables, and table joins since joins can slow down the query process. There are various 

de-normalization techniques such as: Storing derivable values, pre-joining tables, hard-coded values and 

keeping details with master, etc. De-normalized schemas can greatly improve performance under extreme read-

loads but the updates and inserts become programmable complex, since they require data duplication and hence 

has to be updated/inserted in more than one place [16]. 

NoSQL databases started gaining popularity in the last decade, when companies began investing into 

distributed databases [20]. For this purpose the category of NoSQL databases grew and included many subtypes 
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each better suited to specific datasets than others. Using subtypes containing attributes and super types linked to 

subtypes, NoSQL databases provide a schema flexibility that can be useful for data records of arbitrary fields 

offering also easy programming discrepancies away from the precariousness of relational databases query 

preparations and strict type checks. The notion of "documents" is the central concept here with documents being 

the equivalent of records in relational databases and collections being similar to tables. 

The most commonly used document store database is MongoDB [7, 14], used by many IoT services, 

since IoT services use sensors that acquire data objects of variable and time vary schema records. However, the 

programming conveniences offered, there is a processing effort tradeoff regarding the transactions performed in 

a non relational dataset [13]. This continuing battle between relational databases and NoSQL datasets lead to the 

incorporation of the NoSQL JSON formulation and corresponding documents query functionality into particular 

relational database fields called JSON, JSONP (JSON with padding)  and JSONB [9] accordingly. More 

particularly open source PostgreSQL database as a pioneer int the area of object oriented databases has already 

implemented the JSON and JSONB fields in its RDBMS engine, without the complexity of having two separate 

databases for SQL and NoSQL datasets [18]. 

In this paper the schema full and schema less representations of a big dataset containing IoT sensory 

measurements are put to test and examined in terms of performance over bulk data inserts, query data select 

aggregations and stored procedures internally implemented in the PostgreSQL database as aggregation 

functions. In section II an outline of the performance characteristics of relational PostgreSQL over NoSQL 

MongoDB are presented. In section III the authors present their performance evaluation scenarios and results 

followed by section IV, the evaluation summary conclusions.  

 

II. Related Work  
The main aspect of relational databases which guarantees the reliability of transactions is their 

adherence to the ACID properties: Atomicity, Consistency, Isolation, and Durability [2, 3]. That is, preserving 

data integrity, stability and availability. An important difference between relational databases and NoSQL 

databases is that NoSQL databases do not fully guarantee ACID properties. Their lack of ACID guarantees is 

due to their deployment architecture which typically involves having multiple nodes in order to achieve 

horizontal scalability and recovery in case of failover. This deployment, which is also referred to as replication, 

creates consistency issues to synchronization which can result in a secondary node becoming primary but not 

have an up-to-date content. NoSQL databases, apart from using an Application Programming Interface (API) or 

query language other than SQL to access and modify data may also use the Map reduce method which is 

important for performing a specific function on clustered dataset and retrieving only the queried result[8]. 

Relational databases mainly include only schema full tables and fields, with the exception of 

PostgreSQL. PostgreSQL supports two additional fields called JSON and JSONB [18]. These two data types 

JSON and JSONB, as defined by the PostgreSQL documentation, difference is that JSON field stores an exact 

copy of the JSON input text, whereas JSONB stores data in a decomposed byte-form. This form is slower for 

data input and storage size, since it requires more space than the JSON field for a specific record, but it is faster 

to process, it supports indexing and joins which in turn can lead to simpler designs by replacing the JSON 

fields’ necessity of an entity attribute value. 

In order to measure the databases performance and scalability, uniform metrics are required. The most 

important metric for the application layer protocol that performs database transactions, is the time required for 

completing a set of prepared queries, which translates to the time required for the database service to complete a 

transaction (series of prepared SQL queries). Then the average query execution time is derived from the average 

number of queries per transaction and the average transactions execution time [2, 3 19]. For the process of 

transaction consistency estimation authors propose the query jitter metric (Tj) which is calculated using 

Equation 1 and expresses database queries variation over time: 

 

𝑇𝑗 = 𝑇𝐷𝐵𝑖𝑛𝑖𝑡 +
 𝑑𝑇1−𝑑𝑇2 

𝛴𝑅1
𝑖𝑛𝑠𝑒𝑟𝑡  𝑢𝑝𝑑𝑎𝑡𝑒  ..

−𝛴𝑅2
𝑖𝑛𝑠𝑒𝑟𝑡  𝑢𝑝𝑑𝑎𝑡𝑒  .. ∨  (ms)     (1) 

 

where the sums ΣR1, ΣR2 are the number of records returned from queries 1 and 2 accordingly and 

dT1, dT2 is the time required completing the queries. TDB_init is the average initialization and setup time for 

each query which is assumed as a constant coefficient parameter for each query type accordingly and is 

calculated experimentally using a zero result query time estimate [6, 10].  The average metric values of all the 

benchmarks during a single run of the benchmarking harness are calculated in order to have a better overall idea 

of how the database behaves, as a single unity benchmark may deviate due to external factors such as an 

operating system utilization of the server CPU or performing burst I/O [1].  

Before comparing the performance of embedded PostgreSQL fields, authors bibliographically 

examined the performance of PostgreSQL in comparison to MySQL and then collate the results with the mostly 
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used NoSQL MongoDB database performance evaluation experiments [1, 5, 6, 8, 11, 12, 17]. Focusing on the 

cross comparison results of PostgreSQL and MongoDB only, MongoDB is faster than PostgreSQL for insert 

queries presents and presents similar performance for Select-find queries, which deteriorates when the number 

of records increases in favor of MongoDB. The records/documents update performance between PostgreSQL 

and MongoDB showed that MongoDB is also more efficient as the number of records increases. Table 1 below 

summarizes the overall performance of PostgreSQL and MongoDB in insert, select-find and update 

experiments. 

 

Table 1:  Performance summary between PostgreSQL and MongoDB 
Queries Small number of records (Less than 10.000) Big number of records (Less than 100.000) 

Insert MongoDB performs similarly to PostgreSQL MongoDB is 5-10% faster than PostgreSQL 

Select-find MongoDB is 5% slower than PostgreSQL.  MongoDB is 15% slower than PostgreSQL.  

Update MongoDB performs similarly to PostgreSQL MongoDB is 9% slower than PostgreSQL 

In the following section the authors’ performance evaluation scenarios performed in the PostgreSQL, using a 

big IoT data set are presented in detail. 

 

III. Performance Evaluation scenarios and results  
Author’s experimental scenarios include performance measurements of PostgreSQL relational database 

between relational schema and JSON fields using IoT data. For the purpose of this study, authors used the 10.5 

version of PostgreSQL, a server of Intel Core 2 CPU which runs at 2 GHz with 4GB RAM where 1.5GB of 

RAM are reserved by the PostgreSQL service and a SATA hard disk of 320GB that can sustain 78MB/s of 

buffered reads, 1Gb/s cached reads. The system which has been used is Ubuntu 18.04.To minimize network 

delays and most importantly to increase jitter time metric accuracy (as calculated from Equation 1), PostgreSQL 

queries have been performed locally (minimizing network jitter) in the experimental database server using 

Python scripts.  

The dataset used included IoT data in JSON format. Every JSON record is 168 bytes on average. The 

average insertion, selection, jitter and aggregation function time has been measured and averaged over the 

number of records. For the PostgreSQL database authors used a big IoT dataset of derived sensory data from a 

meteorological station that contains 1.5 year of measurements (up to 1.100.000 records). The database contains 

fields of sensory measurements of date time, temperature, humidity, pressure, dew point, rainfall, and wind 

speed and wind direction. Since PostgreSQL supports the JSON data type, authors migrated those data from a 

MongoDB database to a PostgreSQL table by storing the JSON sensory data to a PostgreSQL JSON field 

without any transformation.  

 

Scenario 1.a. Insert queries and insert queries jitter time on JSON field table 
For insert queries experimentation, PostgreSQL JSON field execution time varies according to the 

number of documents already inserted in the table. For small number of documents in the table, the average 

insertion time is 10.8ms. For medium number of documents in the table there is a slight time decrement and then 

increment of the query execution time, which remains almost constant for big number of existing table 

documents, close to 9.4ms. Jitter time, is constant as shown at Table 2, which means that there is consistency in 

respect to queries execution time. 

 

Table 2:Average insert query execution and jitter time for JSON table 
No. of existing 

documents in the Table  

Avg. Insertion Time (ms) Avg. Jitter Time(ms) 

50Κ 10.80475725 0.000147996 

100K 10.42759795 6.79E-06 

200K 9.805020907 4.0793E-06 

300K 9.561896896 1.50E-07 

400K 9.858754606 6.45661E-07 

500K 10.14608878 -0.000159567E-05 

600K 9.981811373 -8.5117E-05 

700K 9.232856781 -7.10482E-07 

800K 9.428665195 -1.7619E-06 

900K 9.667404556 8.32383E-05 

1M 9.597382772 -5.40857E-05 
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Scenario 1.b. Insert queries and insert queries jitter time on relational table 
Using the same IoT dataset of the scenario 1.a, authors migrated the data to a relational database table 

by transferring each JSON attribute to appropriate size fields. Then the average insertion time and jitter have 

been measured. The same PostgreSQL database has been used. For insert queries experimentation, PostgreSQL 

relational table maintains a smooth average execution time of 40ms, as presented at Table 3. Jitter time presents 

a non-significant variation, which is smaller than 0.002ms.  

The comparison between relational table and JSON table insertion time shows that the relational data 

insertion time is 4 times less than the JSON field table insertion time. This signifies that the JSON field table 

data insertion is much more efficient than the relational table. Regarding jitter time, both relational and JSON 

tables jitter footprints are small, which corresponds to no significant database in-consistencies over the number 

of existing database records or documents. 

 

Table 3: Average insert query execution and jitter time for the relational table 
No. of existing  

records in the 
table 

Avg. Insertion Time for relational schema (ms) Avg. jitter time for relational schema (ms) 

50K 40.00160742 0.002390102 

100K 40.22283722 0.001426959 

200K 41.01418487 -0.00013122 

300K 41.32908446 -5.66954E-06 

400K 40.68967547 7.51011E-07 

500K 41.16252482 -9.57956E-06 

600K 40.54067992 -0.000827602 

700K 39.84358471 -0.000470476 

800K 40.47535517 0.000650847 

900K 40.09842679 1.00135E-06 

1M 41.29881756 -5.40857E-05 

 

Scenario 2.a. Select queries and select queries jitter time on JSON table 
For select queries experimentation, PostgreSQL presents poor performance as the number of selected 

documents increases. For small number of documents JSON table did not perform also well. As the number of 

records increases, the average select query execution time increases dramatically from 6s for 10K returned 

documents up to 10s for 1M documents, as presented at Table 4. 

 

Table 4: Average Select query execution and jitter time for JSON table.  
No. of selected 
records 

Avg. Selection time for JSON table (ms) Avg. Selection jitter time for JSON table (ms) 

10K 6157.742023 -3837.219 

100K 9899.653912 2939.173937 

250K 6756.292105 -722.5949759 

400K 7375.653028 1083.530903 

500K 8019.70005 -701.3947967 

700K 8670.635939 -479.6288009 

800K 9075.858831 1003.731966 

900K 9473.566055 -529.6288009 

1M 10168.4258 -145.3735844 

 

Jitter varies significantly with respect to execution time. The average jitter time for all cases is 1270ms 

while the average select query execution time is 8300ms. This means that there is a high inconsistency, since 

average jitter time is close to the 15% of the average execution time. For low number of records average jitter is 

close to 50% of the select query execution time. For high number of records average jitter is close to 5% of the 

select query execution time. This signifies query possible query consistencies that are of high probability for low 

number of selected documents that gradually reduces as the number of returned documents increasses 

 

Scenario 2.b. Select queries and select queries jitter time on relational table 
For select queries on a relational table, for very small number of records, the average selection time is 

600ms. For big number of selected records, the average select query time is 2s. Jitter time has been measured for 

this scenario as well. For small number of records, jitter time is close to 1.5% of the total execution time. For big 

number of records, jitter time is close to 0.5% of the total execution time. This means that for the relational table 

there are no important inconsistencies in respect to the queries execution time.  

The comparison results between relational and JSON tables show that for small number of 

records/documents, relational table is 8 times faster than the JSON table. For big number of records relational 

table is 4 times faster than the JSON table. Authors notice that while the number of records increases, the 
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execution time difference between relational and JSON query execution time radically decreases, especially 

between small and big number of records as mentioned above (see Figures 4, 5). This indicates that the 

relational table outperforms JSON table. The selection of records in scenario 2.b has been performed up to 400K 

returned records, due to PostgreSQL ‘out of memory’ reached limit.  

 

Table 5:Average select query execution and jitter time for relational table 
No. of selected 
records 

Average Selection time for relational table(ms) Average Selection jitter time for relational table(ms) 

10K 968.3041573 2.483129505 

100K 397.4092007 -19.48785782 

200K 1638.284922 -11.76905575 

400K 2348.677874 -76.88879967 

 
Scenario 3.a Aggregation function query time and jitter time on JSON table 

For JSON table aggregation queries, authors used the average (AVG) aggregation function and 

measured its execution time over the number of selected documents. For small number of documents there is a 

constant execution time of 3350ms. For big number of records the average execution time increases up to 

6000ms. Results are presented at Table 6. 

Jitter time is close to 150 milliseconds for small number of aggregated documents. For big number of 

documents, jitter time is close to182ms. This means that jitter time is almost constant over the number of 

aggregated documents. This means that there are minimum inconsistencies close to 3.5% of the average 

aggregation execution time.  

 

Table 6: Average Aggregation function time and jitter time for JSON table 
No. of 

aggregate 
function records 

Average Aggregation function time for JSON 

table(ms) 

Average Jitter Aggregation function time for JSON 

table(ms) 

10K 3306.502104 145.2691555 

100K 3350.203037 128.3073425 

200K 3386.135101 158.2260132 

300K 3659.034967 112.8232479 

400K 4022.873878 161.7748737 

500K 4420.567989 153.7988186 

700K 4824.729919 192.7640438 

800K 5104.82502 147.9272842 

900K 5309.696913 261.1157894 

1M 5788.780928 156.0409069 

 

Scenario 3.b Aggregation function query time and jitter on relational table 
For the relational table aggregation queries, authors used the average(AVG) aggregation function and 

measured its execution time over the number of selected records. It should be mentioned that whilst 

implementing a select query over big number of records, the PostgreSQL required memory and crashed out. 

Whereas, while calling an aggregated function over a big number of records, the PostgreSQL successfully 

returned the results. 

As presented at Table 7, for small number of records the aggregation function execution time is on 

average 175ms, while for big number of records execution time is 225ms on average. Jitter time presents 

variations around 2.75ms on average, which corresponds to the 1.3% of the average aggregation function 

execution time. This means that there are no important inconsistencies regarding the aggregation functions 

execution time for the relational table. The comparison between relational and JSON tables in aggregation 

function query time has shown that relational table is 20 times faster than JSON table. This signifies that 

relational table in aggregation function query time is much more efficient than JSON table.  

 

Table 7: Average Aggregation function query time on relational table 
No. of aggregate 

function records 

Average aggregation function time for relational 

table(ms) 

Average Jitter time for aggregation function for 

relational table(ms) 

10K 173.3779907 0.271558762 

100K 176.5909195 1.517009735 

300K 185.8799458 1.37758255 

400K 196.336031 0.472784042 

600K 206.0739994 1.980781555 

700K 216.812849 0.169754028 

800K 225.0239849 1.870632172 

900K 233.2780361 8.156061172 

1M 245.1839447 9.302377701 
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Scenario 4.a Selection query and jitter time for JSONB table 
In this scenario, authors examined the JSONB data fields using the same IoT dataset and performing 

select queries. The results are presented in Table 8. The average selection query time for the JSONB table is 

proportional to the number of selected documents. For small number of documents, the average selection query 

time is 1450ms. For big number of records is 6700ms on average. Results are presented in Table 8. 

Jitter time for JSONB table for small number of documents is approximately to 0.4% of the average 

selection query execution time. For big number of records jitter is close to 50ms that corresponds to the 0.7% of 

the average selection query execution time. This means that the JSONB table select queries are consistent in 

respect to their execution time  

The comparison amongst relational, JSON and JSONB tables has shown that JSONB table selection 

query time is 1.5 faster than the JSON table. Furthermore, the relational table selection queries time are 3 times 

faster than the JSONB table queries. Jitter time is almost constant for JSONB and relational tables which 

signifies data consistency over queries. However, there have been query inconsistencies spotted on the JSON 

table for data selection queries, mainly due to its spurious variations over the number of selected documents. 

 

Table 8: Average select query time and jitter time for JSONB table 
No. of selected records Average JSONB Selection time (ms) Average Jitter time for Selection time for JSONB table (ms) 

10K 1364.244938 -4.009246929 

100K 1467.782974 -9.11569571 

200K 2437.329054 -6.512642028 

400K 3509.732008 31.91089628 

500K 4704.421997 -20.36929124 

700K 5936.168909 -59.06295769 

800K 6692.276001 30.12999151 

900K 7408.374071 -77.4040221 

1M 8818.401098 -197.371721 

 

Scenario 4.b Aggregation function query time on JSONB table 
Authors also tested the average (AVG) aggregation function on the JSONB table. As presented in 

Table 9, for small number of documents, average aggregation function query time on JSONB table remains 

constant around 405ms. For big number of documents, query time is at 550ms on average. 

Jitter time for JSONB table on aggregation function for small number of documents is approximately to 

0.1% of the average selection query execution time. For big number of records jitter is close to 225ms that 

corresponds to the 0.3% of the average aggregation function query execution time. This means that the JSONB 

table select queries are consistent in respect to their execution time. 

 

Table 9: Average aggregation function query time on JSONB table 
No. of aggregate 

function records 

Average aggregation function query time for 

JSONB table(ms) 

Average aggregation function jitter time JSONB 

table(ms) 

10K 405.796051 -6.53076 

100K 404.6578407 -9.71961 

300K 405.4729939 3.271341 

400K 447.701931 -5.25808 

600K 513.0839348 -2.50816 

700K 555.0577641 -0.22125 

800K 580.655098 -1.71018 

900K 606.5020561 19.15026 

1M 646.1930275 38.83266 

 

The comparison amongst relational, JSON and JSONB tables has shown that JSONB table aggregation 

function query time is 10 times faster than the JSON table. Furthermore, the relational table selection query time 

is 3 times faster than the JSONB table. Jitter time is consistent between JSONB and relational tables. Jitter time 

is close to 6.5 ms for small number of records and 20ms for big number of records. Jitter time corresponds to 

1.28% of the average aggregation function query time on average for the JSONB table. This means that there 

are no important inconsistencies regarding the aggregation functions execution time for the JSONB table. 

 

IV. Conclusion  
In this paper, authors examined the performance of relational and non-relational PostgreSQL fields 

using IoT data, through a series of experimental scenarios. From the authors’ experimentation it has been 

noticed that on insert queries JSON table is much more efficient than relational table. Specifically, relational 

table insert query execution time is 3 times faster than the JSON table.  However, on the select query 

experiments, the relational table performed 6 times better than the JSON table and 3 times faster than the 
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JSONB table. On aggregation function experiments, the relational table performs 2 times faster than JSONB 

table, and in turn the JSONB table performs 7-10 times faster than the JSON table.  

Authors noticed that there is guaranteed data consistency as spotted by jitter time metric amongst 

relational, JSON and JSONB tables, with the exception of high probability of query variations for the JSON 

table, close to 7% of the average selection query execution time and minimum inconsistencies for aggregation 

function queries for the JSON table, close to the 3% of the average aggregation function execution time.  

Concluding, the main IoT data requirements are fast database inserts and schema less records. Fast 

database inserts contribute positively on the IoT devices energy conservation, while schema less is essential for 

the IoT industry due to the IoT devices and embedded to the devices sensors escalation. Based on the 

aforementioned information requirements, the authors forward the JSONB data type for IoT application use, 

since its improvements over the relational table bring it closer to the relational table performance while fully 

adopting the IoT primary requirements. 
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