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Abstract: In many applications, users specify target values for certain attributes, without requiring exact 

matches to these values in return. Instead, the result to such queries is typically a rank of the top-k tuples that 

best match the given attribute values. Focusing on the top-k items according to a ranking criterion constitutes 

an important functionality in many different query answering scenarios. The idea is to read only the necessary 

information mostly from secondary storage with the ultimate goal to achieve low latency. In this paper, we study 

the advantages and limitations of processing a top-k query by translating it into a single range query that 

traditional relational database management systems can process efficiently. In this work, we also consider 

processing such top-k queries under the constraint that the result items are members of a specific set, which is 

provided at query time it is also known as set-defined selection criterion.  

Keywords: top-k query processing, index partitioning, mapping strategy, index partitioning 

 

I. Introduction 
Internet Search engines rank the objects in the results of selection queries according to how well these 

objects match the original selection condition. For such engines, query results are not flat sets of objects that 

match a given condition. Instead, query results are ranked starting from the top object for the query at hand. 

Given a query consisting of a set of words, a search engine returns the matching documents sorted according to 

how well they match the query. For decades, the information retrieval field has studied how to rank text 

documents for a query both efficiently and effectively [1]. In contrast, much less attention has been devoted to 

supporting such top-k queries over relational databases. As the following example illustrates, top-k queries arise 

naturally in many applications where the data is exact, as in a traditional relational database, but where users are 

flexible and willing to accept non-exact matches that are close to their specification. The answer to such a query 

is a ranked set of the k tuples in the database that best match the selection condition. 

Example: Consider a real-estate database that maintains information like the Price and Number of Bedrooms of 

each house that is available for sale. Suppose that a potential customer is interested in houses with four 

bedrooms, and with a price tag of around 3000 Rs.  The database system should then rank the available houses 

according to how well they match the given user preference, and return the top houses for the user to inspect. If 

no houses match the query specification exactly, the system might return a house with, say, five bedrooms and a 

price tag close to 3000 Rs. as the top house for the query. 

Unfortunately, despite the conceptual simplicity of top-k queries and the expected performance payoff, 

they are not yet supported by today's relational database systems. This support would free applications and end-

users from having to add this functionality in their client code. To provide such support efficiently, we need 

processing techniques that do not involve full sequential scans of the underlying relations. The challenge in 

providing this functionality is that the database system needs to handle efficiently top-k queries for a wide 

variety of scoring functions. In effect, these scoring functions might change by user, and they might also vary by 

application, or by database.  

It is also important that we are able to process such top-k queries with as few extensions to existing 

query engines as possible, since today's relational systems are significantly complex and performance sensitive. 

As in the case of processing traditional selection queries, one must consider the problem of execution as well as 

optimization of top-k queries. We assume that the execution engine is a traditional relational engine that 

supports single as well as possibly multidimensional indexes. Therefore, the key challenge is to augment the 

optimization phase such that top-k selection queries may be compiled into an execution plan that can leverage 

the existing data structures (i.e., indexes) and statistics (e.g., histograms) that a database system maintains. 

Simply put, we need to develop new techniques that make it possible to map a top-k query into a traditional 

selection query. It is also important that any such technique preserves the following two properties: (1) it 

handles a variety of scoring functions for computing the top-k tuples for a query, and (2) it guarantees that there 

are no false dismissals. 
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In this paper, we undertake a comprehensive study of the problem of mapping top-k queries into 

execution plans that use traditional selection queries. In particular, we use the database histograms to map a top-

k query to a suitable range that encapsulates k best matches for the query. In particular, we study the sensitivity 

of the mapping algorithms to the following parameters: types of histograms available and their memory budgets, 

scoring functions, data distribution, and number of query attributes. 

In this work, we also consider set-defined selections, where the items of interest are by whatever means 

identified upfront and represented in the query as a set of item ids. In addition, the query specifies the ranking 

attribute of interest and the result set size referred to as parameter k. The size of the selection set drastically 

inuences the design of an ideal index: When the selection set contains a small number of ids, the query is 

efficiently answered using 

an index on the id attribute. In case the selection set contains most of the ids, the best performance is reached by 

reading the ids from the score-sorted lists.  

 

II. Related Work 
Our main focus is on exploring opportunities and limitations of efficiently mapping top-k queries into 

traditional relational queries. Carey and Kossman [2, 3] presented techniques to optimize queries that require 

only top-k matches. Their technique leverages the fact that when k is relatively small compared to the size of the 

relation, specialized sorting (or indexing) techniques that can produce the first few values efficiently should be 

used. Only after evaluating the score for each object are we able to use the techniques in [2, 4]. Hence, these 

strategies require a pre-processing step to compute the scoring function itself involving one sequential scan of 

all the data. In [5, 6], Fagin addresses the problem of finding top-k matches for a user query q involving several 

multimedia attributes. Each of these attributes is assumed to have a native sub-system that answers top-k queries 

involving only the corresponding attribute. The state-of-the-art algorithms (e.g., [7]) follow a multi-step 

approach. Their key step is identifying a set of points A such that p's k nearest neighbours are no further from p 

than a is, where a is the point in A that is furthest from p. References [8,9] study how to merge and reconcile 

top-k query results obtained from distributed databases when the databases use arbitrary, undisclosed scoring 

algorithms. There is a large body of existing work in the area of processing top-K queries, ranging from 

database systems [10,11]. Among the most prominent approaches are the so called threshold algorithms 

[5,12,13], which aggregate scores from score-sorted lists, while maintaining a threshold used for an early 

termination. Ranking join results based on aggregated scores obtained from multiple tables (i.e., top-K join 

processing) and embedding such ranking concepts in a query optimizer have 

been addressed in [14,15]. Using query logs (i.e., historic workloads) with the aim of tuning a system's 

performance is encountered frequently [16, 17, 18, 19]. Applications where the workload is used to improve 

performance vary from index defragmentation [16], over cache replacement [18] to range queries [17]. Query 

logs have been used in [19] with the aim to reduce the number of distributed partitions by allocating tuples that 

are frequently used together to the same partition.  

 

III. Query Model 
 In a traditional relational system, the answer to a selection query is a set of tuples. In contrast, the 

answer to a top-k query is an ordered set of tuples, where the ordering reflects how closely each tuple matches 

the given query. This section defines our query model precisely. Consider a relation R with attributes 

A1,….,An. A top-k query over R simply specifies target values for the attributes in R. Thus, a query is an 

assignment of values v1,….,vn to the attributes A1,……, An of R. In this paper, we will focus on top-k queries 

on continuous attributes (e.g., age, salary). Without loss of generality, we will also assume that the values of 

these attributes are normalized to be real numbers between 0 and 1. 

Given a top-k query q, the database system with relation R uses some scoring function Score to 

determine how closely each tuple in R matches the target values v1,…….,vn specified in query q. Given a tuple 

t and a query q, we assume that Score(q, t) is a real number that ranges between 0 and 1. In this paper, we focus 

on three important scoring functions, namely Min, Euclidean, and Sum. 

Definition: Consider a relation R = (A1,……, An).A1,…….,An are real-valued attributes ranging between 0 and 

1. Then, given a query q = (q1,……., qn) and a tuple t = (t1,…., tn) from R, we define the score of t for q using 

any of the following three scoring functions: 

                                                          Min(q, t) =  
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                                              Sum(q; t) = 1− ∑Iqi-tiI/n 

 

A simple variation of the definition of the scoring functions above results from letting the different 

attributes have different weights. In general, the Min,Euclidean, and Sum functions that we use in this paper are 

just a few of many possible scoring functions. Our strategy for processing top-k queries can be adapted to 

handle a wide variety of such functions, as we will discuss. The key property that we ask from scoring functions 

is as follows: 

Property 1: Monotonicity of Scoring Functions: Consider a relation R and a scoring function Score defined over 

it. Let q = (v1,….., vn) be a top-k query over R, and let t = (t1,….., tn) and t’ = (t’1,………., t’n) be two tuples in R 

such that It’i− qiI ≤ Iti− qiI for i = 1,….., n. (In other words, t’ is at least as close to q as t for all attributes.) Then, 

Score(q, t’) ≥ Score(q, t). 

Intuitively, this property of scoring functions implies that if a tuple t’ is closer, along each attribute, to 

the query values than some other tuple t is, then, the score that t’ gets for the query cannot be worse than that of 

t. Fortunately, all interesting scoring functions that we could think of satisfy our monotonicity assumptions. In 

particular, the Euclidean, Min, and Sum scoring functions that we defined above satisfy this property. A 

possible SQL-like notation for expressing top-k queries is as follows [3]: 

SELECT * FROM R  

WHERE A1=v1 AND ... AND An=vn 

ORDER k BY Score 

The distinguishing feature of the query model is in the ORDER BY clause. This clause indicates that 

we are interested in only the k answers that best match the given WHERE clause, according to the Score 

function. 

 

IV. Mapping a Top-k Query into a Traditional Selection Query 
In this section we describe how to map a top-k query q into a relational selection query Cq that any 

traditional relational database management system can execute. Our goal is to obtain k tuples from relation R 

that are the best tuples for q according to a scoring function Score. Our query processing strategy consists of the 

following steps: 

1. Use statistics on relation R to find a search score Sq. 

2. Build a selection query Cq to retrieve all tuples in R with score Sq or higher for q. 

3. Evaluate Cq over R. 

4. Compute Score(q, t) for every tuple t in the answer for Cq. 

5. If there are at least k tuples t in the result for Cq with Score(q,t) ≥ Sq, then output k tuples  

with the highest scores. Otherwise, choose a lower value for Sq and restart the process. 

 

4.1 Choice of Search Score Sq: The key step for evaluating a top-k query q is determining score Sq: our 

algorithm retrieves all tuples t such that Score(q, t) ≥ Sq. If there are at least k such tuples, then our algorithm 

above succeeds in finding the top k matches for q. Otherwise, our choice of Sq is too high, and hence the query 

needs to be restarted with a lower value for Sq. Consequently, we should choose a value of Sq that is not too low, 

so that we do not retrieve too many candidate tuples from the database, but that is not too high either, so that we 

can obtain the top-k tuples without restarting the query. Our choice of Sq will be guided by the statistics that the 

query processor keeps about relation R.  

In particular, we will assume that we have an n-dimensional histogram H that describes the distribution 

of values of R. We assume that H consists of a series of nonoverlapping buckets. Each bucket has associated 

with it an n-rectangle [a1,b1]x….x[an, bn], and stores the number of tuples in R that lie within the n-rectangle, 

together with other information. For efficiency, our choice of Sq will be based on histogram H, and not on the 

underlying relation R itself. More specifically, we choose Sq as follows: 

a. Create (conceptually) a small, “synthetic" relation R’, consistent with histogram H. R’ has one distinct tuple 

for each bucket in H, with as many instances as the frequency of the corresponding bucket. 

b. Compute Score(q, t) for every tuple t in R’. 

c. Let T be the set of the top-k tuples in R’ for q. Output Sq =mint∈T Score(q, t). 

We can conceptually build synthetic relation R’ in many different ways. We will study two extreme 

query processing strategies that result from two possible definitions of R’. 

The first query processing strategy, NoRestarts, results in a search score Sq that is low enough to 

guarantee that no restarts are ever needed as long as histograms are kept up to date. In other words, Step (5) 

above always finishes successfully, without ever having to reduce Sq and restart the process. For this, the 

NoRestarts strategy defines R’ in a pessimistic way: 

n  
 

i=1 
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Given a histogram bucket b, the corresponding tuple tb that represents b in R’ will be as bad for query q as 

possible. More formally, tb is a tuple in b's n-rectangle with the following property: 

                                  Score(q,tb) = mint∈Tb Score(q, t) 

where Tb is the set of all potential tuples in the n-rectangle associated with bucket b. 

Lemma 1: Let q be a top-k query over a relation R. Let Sq be the search score computed by strategy NoRestarts 

for q. Then, there are at least k tuples t in R such that Score(q,t) ≥Sq. 

The second query processing strategy, Restarts, results in a search score Sq that is highest among those 

search scores that might result in no restarts. This strategy defines R’ in an optimistic way: given a histogram 

bucket b, the corresponding tuple tb that represents tb in R’ will be as good for query q as possible. More 

formally, tb is a tuple in b's n-rectangle with the following property:  

                    Score(tb,q) = maxt∈Tb Score(q, t) 

where Tb is the set of all potential tuples in the n-rectangle associated with bucket b. The Sq score that Restarts 

computes is the highest score that might result in no restarts in Step (5) of the algorithm above. In other words, 

using a value for Sq that is higher than that of the Restarts strategy will always result in restarts.In practice the 

Restarts strategy results in virtually all cases, hence its name. 

Lemma 2: Let q be a top-k query over a relation R. Let Sq be the search score computed by strategy Restarts for 

q. Then, there are fewer than k tuples t in R such that Score(q, t) > Sq. 

 

4.2 Choice of Selection Query Cq: Once we have determined the search score Sq, the algorithm in Section 4 

uses a query Cq to retrieve all tuples t such that Score(q, t) ≥ Sq, where q is the original top-k query, and Score is 

the scoring function being used. In this section we describe how to define query Cq. 

Ideally, we would like to ask our database system to return exactly those tuples t such that Score(q, t) ≥Sq. 

Unfortunately, indexing structures in relational database management systems do not natively support this kind 

of predicates. Our approach is to build Cq as a simple selection condition defining an n-rectangle. In other 

words, we define Cq as a query of the form: 

SELECT * FROM R 

WHERE (a1<=A1<=b1) AND ... ..AND (an<=An<=bn) 

The n-rectangle [a1, b1] x ……x [an, bn] in Cq should tightly enclose all tuples t in R with Score(q; t) ≥ Sq. 

Given a search score Sq, the n-rectangle [a1, b1]x…..x[an,bn] that determines Cq follows directly from the 

scoring function used, the search score Sq, and the query q. 

 

4.3 An Alternative Mapping Strategy: 

This section adapts Fagin's A’ algorithm to produce a new technique for mapping a top-k query into a 

traditional relational query. Unlike the Section 4.2 strategies, the selection query resulting from this new 

mapping is a disjunction, not a conjunction. Our goal is, again, to build a “one-shot" relational query that avoids 

restarts whenever possible. We proceed as in strategy NoRestarts to build a databas" with one tuple representing 

each bucket in the available n-dimensional histogram. We find the top tuples as in the NoRestarts strategy. We 

then compute an n-rectangle F = [a1,b1] x……x [an, bn] that encloses these top tuples tightly, and that has been 

extended so that it is “symmetric" with respect to the given query q. The tuples matching range [ai,bi] are the 

top tuples for q along attribute Ai.The selection query consists of the disjunction of the ai≤ Ai ≤ bi conditions. 

By retrieving all tuples that match at least one of these conditions, we retrieve the top tuples for each of the 

individual attributes. Furthermore, from the way we constructed F, there will be at least k tuples matching all n 

conditions. As with the original A’ algorithm, we compute the score for all the one-dimensional matches. The k 

retrieved tuples having the highest score for q are the final answer to the original top-k query. The correctness of 

this algorithm follows from that of algorithm A’ [5].  

 

V. Top-k Queries with Set-Defined Selections 
Given a relation R over the attributes {id,A1,…..,AN}, in which id is the unique identifier of an item 

(e.g., real world entity, document, video, image). The attributes Ai describe properties of an item and are 

numeric. 

Definition: A top-K selection query is defined by the triple (K,Ai, S), that is, the size of the result ranking K,the 

attribute used for ranking Ai, and a set S ⊑ dom(id). The task is to efficiently compute those ids that have the K 

largest values for attribute Ai among all ids that appear in R and the query specific set S. The result is ordered 

by attribute Ai. 

That means, a top-K query with set-defined selection can be expressed as a traditional top-K query over 

the subset of relation R that is given by the selection σid∈SR. 

A SQL-like notation for this kind of query would look like 

SELECT id, Ai FROM R 

WHERE id IN S 
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ORDER BY Ai LIMIT K 

where Ai is any of the numerical attributes of R. In this work, the case of a query specifying exactly one 

numerical attribute is considered. 

 

5.1 Indices and cost Models: Considering a relation R with attributes {id,A1,…..,AN}, for each pair of 

attributes (id, Ai) two basic indices can be created: 

- an index on the id attribute (called id-ordered index) 

- an index on the numerical attribute Ai (called scoreordered index) 

The id attribute are assumed to be densely populated in sequential order, such that the position of a score on the 

disk can be calculated directly from the id value. Hence, only scores need to be stored not the ids themselves. If 

the ids are not sequential, existing techniques based on B+ trees an be used for indexing. We adapt a column 

store data layout where the relation R is stored on disk in a per-attribute fashion (not row-by-row).  

Both index organizations come with advantages and disadvantages: The id-ordered index is ideal if the 

size of the query set is rather small, resulting in a small number of index lookups. In contrast, the scored-ordered 

index is ideal if the size of the query set is large, such that K items out of the query set are found very early 

when scanning the sorted list on disk. To benefit from both sweet spots at the same time, a cost model is 

required to decide at query time which index to use. We optimize for low query response time, which is 

modelled as 

                                             t = c1 + c2 x Db 

where Db is the size of the data read from disk and c1 and c2 are constants which minimize the squared error on 

realworld measurements. The intuition is that c2 represents the data transfer time, while c1 approximates the 

time needed for a random access to disk. To keep the analysis tractable, we ignore inuences of distributions of 

ids and scores, and, hence, treat the size of the selection set and the value of K (specified in the query) as the 

main ingredients for the amount of data read from disk. The latter is represented in number of disk blocks, as the 

access to disk is naturally done in a block-based manner. 

Once the query is submitted to the system, the execution time estimates are calculated and the index 

with the smaller execution time is used to answer the query. This procedure is totally hidden from the 

application layer: it appears as one index that combines the best of two index organizations. We call this index 

combined index. 

 

5.2 Partitioned Index Organization: The above model provides a solid mechanism to identify the best index to 

use. The main idea of a partitioned index is to organize the original index into multiple chunks, such that a large 

fraction of queries is answered by reading only from one of them. This has a high potential: partitioning the 

score-ordered index into m parts lowers the query answering time by a factor of m (the number of blocks read 

from the disk would be m times smaller). The large score-ordered index is chopped up in a set of non-

overlapping partitions. Each partition is organized as a score-ordered index. The decision which tuples to put 

together in a partition is done using a graph-based clustering approach. To fully harness such a partitioning, we 

check at query time whether the selection set is 

i) entirely contained in one partition, 

ii) mostly contained in one partition, 

iii) distributed between many partitions. 

Answering a query in the first case is done using only the selected partition, while the second case 

requires a lookup of missing tuples using the id-ordered index. In the third case 

the query is answered using the combined index.To determine if the partitioned index should be used for query 

answering, we employ the cost models introduced in Section 5.1. If one partition captures the entire selection 

set, only the model for the partitioned index is used, which essentially is the model for a score-ordered index, 

where the index size is adjusted accordingly. In case not all of the ids from the selection set are found in one 

partition, the intersection size is used to estimate the query response time of the partitioned index. The number 

of the remaining ids is used to estimate the lookup cost of the scores in the idordered 

index. The sum of the two estimates is used as a final response time estimate in case of this mixed access to the 

partitioned and the id-ordered index. 

 

5.2.1 The Partition Selection Phase: To determine the partition which contains the largest subset of the 

selection set, data structures for computing set intersections are required. A bit-set structure is created for each 

partition, where each id is represented by one bit. The bit indicates whether or not the id is contained in the 

partition.This representation is exact (no false positives, no false negatives). 

Bits Sets in Main Memory: Bit sets in main memory allow a fast calculation of the intersection between the 

query selection set and each of the partitions in the index. Only the partition with the largest intersection is used, 

in case the time estimate using this partition is less than the time estimate for the combined index. Otherwise the 
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query is answered using the combined index. This cost assessment is easy to achieve as the available bit sets 

give precise (exact) numbers of the contained and missing ids in a partition. 

Bits Sets on Disk: If the bit sets do not fit in main memory, reading them from disk would in most cases 

consume more time than answering a query using the combined index. Our solution to this problem keeps only 

compact sketches [21,22,20] of partitions in main memory and the full sketch information on disk in the header 

of the corresponding partition. At query time, these sketches are used to determine the most promising partition 

to access by estimating the intersection size between partitions and the query selection sets.  

Having only rough sketches of the partition contents in main memory requires changes to the querying 

algorithm. First, the most promising partition is identified using sketches. Then, the bit set for this partition is 

read and used to calculate the exact intersection size between the partition and the selection set. This 

information is then used to estimate if the selected partition is beneficial for answering the query. It is important 

to avoid accessing a partition on disk that turns out to be of little use once the bit set is inspected. To limit these 

wrong decisions, made by the estimation inaccuracy of the sketches, a partition is identified as promising only if 

we are highly confident that it will be useful for the query optimization later on.  

 

5.2.2 Index Partitioning: The problem of data partitioning is formulated as follows: given selection sets from a 

query log, create m disjoint data partitions such that the probability of finding a randomly selected pair of ids 

from a randomly selected selection set in a single partition is maximized. The partitions should further be 

approximately equal in size. Determining the optimal number of partitions is not trivial: A large number of ideal 

partitions (i.e., each selection set is completely found in one partition) would decrease the runtime. However, 

increasing the number of partitions would increase the error introduced by the partitioning, that means, less and 

less queries could be answered by a single partition. For partitioning, we employ a technique used in recent 

work on data partitioning in distributed database systems, by Curino et al. [19]. The basic idea of their approach, 

coined Schism, is to create a graph based on a database workload (query logs). The vertices of the graph are 

tuples with edges connecting frequently co-occurring tuples in the transactions. The edge weight is given by the 

number of transactions in which two connected tuples occur together. Once the graph is constructed, the actual 

partitioning is done using constrained k-way graph partitioning. The basic assumption behind index partitioning 

is that selection sets are clustered in a meaningful way. Although this might not hold in general, selection sets 

are usually coherent in a semantic way. Constrained k-way graph partitioning is NP-complete, but there exist 

efficient and accurate approximation techniques. 

 

VI. Approximate Query Answering 
Given the partitioned index organization, even higher performance gains can be achieved by returning 

approximate top-k results instead of the exact ones. By approximate top-k results, we refer to the case when the 

selected partition does not cover all of the ids from the selection set. The missing ones could be retrieved based 

on the id-ordered index, but this is not done now. Hence, there is a risk that some of the missing ids would 

contribute to the actual top-k result, in which case the returned result is not exact. Although such approximations 

bring performance gains, without a quantification of the expected error, such approximate results are in most 

cases not acceptable, as the result quality can arbitrarily vary. 

Approximate results are often very acceptable, but only up to a point where the precision is still above 

a certain level, for instance, above 80%. With precision we refer to the fraction of the returned top-k results 

which are also in the hypothetically exact result. 

 

VII. Conclusions 
 In this paper, we studied the problem of mapping a top-k query on a relational database to a traditional 

selection query such that the mapping is “tight," i.e., we retrieve as few tuples as possible. Our mapping 

algorithms exploit the histogram structures and are able to cope with a wide variety of scoring functions. Our 

focus in this paper has been primarily on queries over continuous attributes.  

In this work, we also addressed the problem of finding the top-k items out of a global index, where the 

choice of result items is restricted to a query-dependent subset. This problem is very fundamental: it appears in 

cases of distributed services on the Web or at the source layer of rank-aware query processing in databases, etc. 

To our knowledge, we are the first to consider this problem, which is completely different from common top-k 

aggregation queries in the literature. Our approach is based on a careful analysis of the pros and cons of an id- 

vs. a scoreordered index. We derived a cost model to choose the most suitable of these indices at runtime. We 

describe a way to benefit from a partitioned data organization and an approximate query answering. The 

conducted performance evaluation, based on real-world as well as synthetically generated data, revealed that the 

cost model is (almost) perfect in deciding which index to choose. 
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