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Abstract: This paper investigates the application of Model Predictive Control (MPC) to fast systems such as 

Autonomous Ground Vehicles (AGV) or mobile robots. The control of Autonomous ground vehicles (AGV) is 

challenging because of nonholonomic constraints, uncertainties, speed, accuracy of controls and the vehicle's 

terrain of operation. Two nonlinear models: a car-like model and a bicycle model are considered. A Nonlinear 

MPC (NMPC) was developed. A trajectory tracking performance index for both models was studied. After 

thorough and extensive simulation, it is observed that both models are applicable in the context of NMPC and 

the constraints on model variables were adequately respected. The trajectories were successfully tracked and 

thus clearly indicate the efficiency and effectiveness of the MPC technique. In order to improve on speed and 

reduce the computational effort required for the optimization problem, a Linear MPC (LMPC) was implemented 

with both models. This is possible by successive linearization along the reference trajectory and formulating a 

quadratic optimization problem which is solved by implementing an interior-point quadratic programming 

algorithm. For both AGV models, analysis concerning the reduced computational efforts is presented in order to 

show the viability of LMPC technique developed. 

Keywords: Model predictive control, Autonomous Ground Vehicle, Optimization, Interior-point Quadratic 

Programming. 

 

I. Introduction 
The universe is facing an ever rapid increasing interest in the development and application of 

Autonomous Ground Vehicles (AGV). The areas of AGVs application are enormous and innovation in this 

direction is continuously revolving. In a general sense, an Autonomous Ground Vehicle is mechanical 

equipment that operates across the surface of the ground without any onboard human presence. Autonomous 

Ground Vehicles and their applications in scientific and planetary exploration, health technology, security, 

nuclear power industry, transportation and logistics, military operation like mine deactivation, surveillance, 

education, excavation, entertainment, agriculture (farm vehicles), housekeeping, mining and exploration, 

inspection and maintenance, completion of complex, dangerous and remote environment tasks, reduction of 

vehicle accident on highways, etc. These applications often involve limitations on communications that require 

AGVs to navigate autonomously for extended distances and extended periods of time. Under these 

circumstances, AGVs must be equipped with facilities like cameras and sensors for navigation and detection of 

obstacles in their path. The operational challenges of AGVs heavily depend on the terrain of operation of the 

vehicle. Accordingly, an AGV should manage to contain a range of uncertainties and external influences; should 

be able to perform reliable sensing and perceptions, adjust itself to terrain properties and external events (static 

or dynamic obstacles), move autonomously and intelligently to accomplish the intended tasks optimally, etc. To 

realize these, real-time and fast control strategies are of significant importance. Model Predictive Control (MPC) 

has gained tremendous attention in recent years for trajectory planning and tracking of AGV. Since AGVs are 

generally equipped with sensors that provide information about their current location, MPC provides a good 

framework for this problem. Considering the fact that the vehicles location should have to be continuously 

updated on-line in real-time, in order to follow a planned trajectory and avoid obstacles, Model Predictive 

Control can be considered appropriate in this scenario [1], [2]. 

Model Predictive Control performs an online optimization of the output of an optimal control problem 

over a finite horizon [3], [4]. The basic idea of MPC is the use of a model to predict the output of a process over 

a future time horizon by obtaining a control sequence which minimizes an objective function [5]. 

An analogy can be made between the MPC and the act of driving a car in [6]. The driver knows the desired 

reference trajectory for a finite horizon: his field of view of the road. Taking into account the characteristics of 

the car (a mental model of the car and speed limits, acceleration and maneuverability) and possible roadblocks 

(like holes, intersections and other cars), he will decide what action to take (increase or decrease speed, turning 

direction to one side or the other) so that the desired trajectory is traversed. This control action is then applied 

for a short time and the procedure is repeated for the next control action now with the field of view updated. It is 
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observed that, using the model of the car, predictions of behavior is used, based on what the driver is seeing 

ahead. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: MPC Architecture 

 

Fig.1 shows the basic illustrative architecture of Model Predictive Controller. It uses the model of the 

system to predict the future plant outputs based on past and current values and optimal future controls. The 

Model Predictive Controller block consists of a dynamic optimizer block, system model, and cost function and 

constraint block. The optimizer takes the optimal control input    and applies it to the plant in order to predict 

the future plant outputs. The optimizer task is performed in consideration of the cost function and the 

constraints. The choice of the system model would have a great consequence on the success of the entire 

process. The state estimator predicts unmeasured states  ̃ from the plant. 

While MPC is not a new control technique, works dealing with MPC for trajectory tracking for fast 

systems are scarce. This research paper considers the application of MPC to path planning and trajectory 

tracking of autonomous ground vehicle. The followings will be critically and consciously examined in this 

research work: 

I. Present mathematical models of autonomous ground vehicles, 

II. Investigate fast model predictive strategies for the control of autonomous ground vehicles, 

III. Implement the Interior-Point Algorithm for Quadratic Programming for Linear model predictive 

control. 

IV. Perform PC-based implementation, simulation and evaluation of the MPC schemes 

 

II. Problem formulation 
In order to simulate and control AGV, there is need for proper modeling of the kinematic behavior of 

the AGV. There are various modeling strategies depending on the type of application of interest and need 

(required) depth of study. Generally speaking, vehicle models are available with different complexities. For 

accurate results, complex models could be more suitable. But this accuracy could be traded-off with more 

experimental efforts, availability of resources and longer simulation time. On the other hand, simpler models 

could be easy to use, faster, less resources usage but mostly lead to inaccuracy. Vehicle and tire models have 

been thoroughly studied over the past decades [7], [8],[9]. In general, a complete AGV model depends heavily 

on the type of application and its operational environment. Two widely used models are presented: car-like 

vehicle models and bicycle models. 

 

2.1 Car-like Vehicle Models 

A car-like vehicle resembles completely an automobile. It consists of four wheels for locomotion and is 

capable of being steered from one place to another. Car-like vehicles model can be classified as rear-wheel, 

front-wheel and four-wheel driving ground vehicles. 

For a rear wheel drive vehicle, the rear tires handle the engine dynamics while the front only needs to 

handle the steering forces. Figure 2, depicts the vehicle model schematic for a rear drive vehicle. The states of 

the model are x             , where        are the centre point coordinates of the rear axle,   is the heading 

angle of the car body with respect to the x-axis. In figure 2, the angle   is the steering angle of the front wheels, 

and can be referred as a control input. The distance between the front and the rear axles is represented by l. The 

following mathematical model describes the kinematic relationship of the rear-wheel drive ground vehicle [1]: 
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The steering angle   and line velocity   are used as a control input, i.e.              . 

2.2 Bicycle Model 

A bicycle model can be used to represent a four wheel vehicle; any vehicle model can be described as a 

bicycle model [10]. In a bicycle model, the two front wheels are lumped into one wheel and the two back wheels 

are also lumped into one. For the bicycle model, the complete form of the dynamic model of the vehicle is given 

by [11]: 
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the state vector is represented as        ̇    , 
  = Vehicle side slip angle, 

  = Vehicle yaw angle, 

 ̇ = Vehicle yaw rate, 

  ̇ = x-coordinate of the vehicle's centre of gravity in inertial frame, 

 ̇ = y-coordinate of the vehicle's centre of gravity in inertial frame.While the control vector is represented by 

        , where    is the front tyre steering angle. 

 

Applying Euler's approximation to equations 1, the discrete-time model for the AGV motion is given 

below: 

                                 
                                 
                          (4)  

Where,    
    

 
,T is the sampling period and k a sampling instant. Represented in a compact form as,      

                     (5)  

 

III. Nonlinear Model Predictive Control (NMPC) 
NMPC is a class of MPC theories that are based on the use of nonlinear system models: 

 ̇               in the prediction. The cost function can be non-quadratic, and the optimization problem 

consists of nonlinear constraints on states and controls. Therefore, the optimization problem to be solved at each 

sampling instant is nonlinear leading to nonlinear model predictive control. Generally, linear MPC could handle 

problems with multivariable and constraints efficiently but in some special situations, nonlinear process 

behaviors and the choice of admissible operating region could hamper the performance and stability of the 

system process. Therefore, sometimes it is pertinent to choose NMPC. 

 

3.1 Formulation of Performance Index 

Consider an AGV nonlinear model of the following form; ̇    (         )  where   is the state 

vector,   represent the control inputs and t is the time. In discrete time, the above model can be represented by a 

difference equation of the following form: 

                           (6) 
where  is the sampling instant,    {          }  Typical performance index to be minimized is formulated 

as follows: 

 

   ̅  ̅  ∑                   
  
    

 ∑     
                     (7) 

 

where          is prediction horizon and   is control horizon,   and  are weighting matrices 

which are used to penalize the state error and control error,respectively, with      and    . The following 

constraint expression can beapplicable depending on individual cases: 

                                 

                                  
where  is the set of possible values for the system states and   is the set of possiblecontrol inputs. 
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Thus, the optimization problem to be solved at each sampling instant   can be put to find a control sequence    

and a sequence of states    such that minimize the cost function    ̅  ̅ and comply with the constraints as 

formulated below: 

 

m  
 ̅  ̅

   ̅  ̅  

subject to:    (8) 

            
   ̇              

                   
                   

Where  and   are the states and control vector respectively. The initial condition of the state is   , and 

  is a general system of differential algebraic equations (DAEs). The optimal performance index to be obtained 

is    ̅  ̅   while the optimal control sequence is as follows: 

                                                        
the optimal states sequence is as follows: 

                                                                 

 

During the next sampling instant     , the entire procedure is repeated while the statesare updated 

and the time window is shifted forward.  

 

3.2 Trajectory Tracking with NMPC 

The problem of trajectory tracking by autonomous ground vehicle (AGV) involves making the AGV 

follow a preplanned trajectory at varying time. 

For a trajectory tracking problem, we need to compute a control law such that: 

                   (9) 

where 

xref     [

       

       

       

] 

Is the reference trajectory. Normally, a virtual reference AGV with the same kinematic model could be 

associated with the actual AGV. The virtual AGV provide the reference trajectory which would be tracked. 

Figure 2 is a block diagram of the trajectory tracking system. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Block diagram of trajectory tracking system 

 

In Fig. 2,    is the AGV's reference point,      is the reference AGV's trajectory,  ̃represents the error 

with respect to the reference AGV,   is the Autonomous GroundVehicle’s trajectory,    represent the optimal 

control obtained after MPC and  ̃  is the optimal control applied on the actual AGV. The reference trajectory of 

the virtual AGV is given below: 

 ̇                       (10) 

 

 

For a NMPC trajectory tracking we define the following relationships: 

 ̅                    

 ̅                      (11) 

the following performance index to be minimized is formulated as follows: 
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where N is the prediction horizon,             and   are the weighing matrices. Weconsider that there is a 

constraint bound on the control variables: 

                         
where    represent the lower bound and     represent the upper bound. Similarly, constraint on the states can 

be generally expressed as               . 

Therefore, at each sampling instant k, for a NMPC trajectory tracking, the following problem is solved: 

m  
 ̅  ̅

   ̅  ̅  

subject to:    (13) 

            
   ̇              

                   
                  

 

As a case study, let us consider the car-like and bicycle models of AGV used for the implementation of 

trajectory tracking with NMPC. A reference trajectory in "C" form is depicted in Fig. 3. The following 

parameters were used in the objective function for the bicycle AGV case; 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: reference trajectory in “C” shape 

 

Table 1: Input data for the bicycle model Nonlinear MPC 
Input Data 

Horizon Length ( N ) 5 

Initial state (x0) [0.1 0.785 0 1 -1]T 

Sampling period ( T )  0:05s 

Weighting Matrix ( Q )  diag(0.1; 0.1; 0.1; 0.1; 0.1) 

Weighting Matrix ( R )  0.01 

Terminal State Penalty Matrix ( P )  20Q(N) 

Constraint on Control  0:35m/s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Bicycle Model AGV trajectory in XY plane 

 

As could be seen from Fig. 4, the bicycle model AGV trajectory tracking problem is solved. The other 

trajectories; vehicle side slip angle, yaw rate and yaw angle were seen to normalize after 16 seconds in Fig. 5.  
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Figure 5: Bicycle Model AGV Trajectories. 

 

The control input (front tire steering angle) is displayed to assume steady-state position after 16seconds 

presented in Fig. 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Bicycle Model AGV Control input. 

 

3.3 The Computational Cost of NMPC 

This section is an analysis on the computational effort required to solve the NMPC algorithms applied 

to the problem of trajectory tracking in order to verify the feasibility of these algorithms in a real-time 

application scenario. The computational effort is measured based on the CPU time of the computer system used 

for the implementation. 

The NMPC presented in this work was implemented in NLopt [12], C++ interface and Armadillo C++ 

library package. COBYLA (Constrained Optimization BY Linear Approximations) algorithm [13] is passed to 

the NLopt routines as the local derivative free optimization algorithm. 

A Linux-based operating system with the following hardware configuration was used for this work:  

Processor: Intel(R) Core(TM) i5 CPU M480 @2.67GHz 

System type: 64-bit Operating system 

Installed Memory (RAM): 4.00GB 

HDD: 500GB 

Applying the parameters presented earlier for the bicycle model, to the complete optimization problem 

presented in equation above, we have the following CPU time records: 

Table 2: Nonlinear MPC Bicycle Model 
Horizon CPU Time(s) 

5  1.5 

10 9.0 

15 21.1 
20 33.5 

25 42.9 
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As seen in Table 2, there is increase in computational time with increase in prediction horizon. Since the number 

of decision variables grows             in the Nonlinear MPC scenario, where   is the horizon length,   is 

the number of states and   number of control inputs, leading to increase in the CPU time. 

 

IV. Linear Model Predictive Control (LMPC) 
Basically, Linear Model Predictive Control is developed in order to reduce the computational effort 

arising from NMPC. In the case of NMPC, there is always a possible non-convex Non-Linear Programming 

problem to be solved. This problem has a larger number of decision variables compared to the Linear MPC, and 

a global minimum is mostly not possible to compute. In view of the above mentioned weaknesses of NMPC, 

and the possibility of reduced computational burden preferred by fast systems like the AGV, there is need to 

develop a LMPC algorithm. A consecutive linearization is applied to a nonlinear AGV model to obtain a linear 

model of the AGV. Since the main goal of MPC is to optimize predictions of a system behavior for a sequence 

of future control inputs, over a finite time interval (prediction horizon), the linearized AGV model is applied. An 

optimal control input is generated by solving a quadratic programming optimization problem. At each sampling 

time, the problem is solved again by applying the computed control input, updated states and a shifted horizon. 

Linearization is important for AGVs and fast systems generally, because the required control is needed 

online in real-time and must be computed as fast as possible. A linearized system uses less computer resources 

and is faster compared to a nonlinear system. A linearized system is easier to work with because of the lesser 

number of decision variables arising from the computation and the existence of numerous fast solvers.  

 

4.1 LMPC Problem Formulation 

The computational burden associated with the application of LMPC is mainly due to forming and 

solving a quadratic optimization problem. The general form of discrete time system is given by: 

                            
                  (14) 

where      represents the state of the system,      the control input,      is a vector of measured 

outputs which are to be controlled and       are constant matrices. 

 

4.2 Computational Aspects of LMPC 

LMPC takes a linear system model to predict the behavior of the system starting at a given discrete 

time k, over a future prediction horizon      . The predicted behaviordepends on the current state      and 

the assumed control input trajectory u(k) thatis to be applied over the prediction horizon.  

Consider a general discretized system given below: 

                           (15) 
where  is the coefficient matrix for the states and   is the matrix of the control inputs. 

According to [14], one can predict the system for the following sampling instants: 
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The cost function is represented below: 
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Consider the following vectors: 
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       [

      
        

⋮
          

] 

the cost function can be rewritten as; 

   ̅  ̅    ̅         ̅ ̅         ̅        ̅      
making 

 ̅             ̅ ̅         ̅ ̅      
therefore, 

   ̅  ̅           ̅   ̅       ̅   ̅          ̅ ̅       ̅       ̅ ̅        (18) 

 

The quadratic terms for  ̅      are as follows: 

 ̅       ̅  ̅ ̅ ̅       ̅       ̅ ̅       ̅         ̅  ̅ ̅   ̅) ̅      
 

 
 ̅       ̅ ̅      (19) 

 

The linear terms for  ̅      are as follows: 

        ̅  ̅ ̅ ̅       ̅       ̅  ̅       = 2        ̅  ̅ ̅ ̅          ̅        (20) 

 

The independent term in         is:           ̅  ̅ ̅          (21) 
 

Thus, the cost function can be written in a quadratic form: 

   ̅  ̅   
 

 
 ̅       ̅ ̅        ̅  ̅              (22) 

             ̅  ̅ ̅+ ̅  

The optimal control problem to be solved at each sampling time  , is now given by: 

m  
 ̅  ̅

   ̅  ̅  

subject to:      (23) 

                        
          

 

It is important to note that the control input u, is the only existing constraint applied to this optimization 

problem this is in contrast to NMPC. Kuhne in [14] opined that the linear dynamic system and the initial 

condition             are embedded in thequadratic cost function. This fact simplifies the minimization 

process, thereby significantly reducing the computational effort. 

 

4.3 Trajectory Tracking with LMPC 

If the system is linear, the constraints are linear and the cost function is quadratic, the optimization 

problem of an MPC can be transformed into a quadratic programming problem which can be solved by existing 

robust algorithms. Since most of the time the problem is convex, it is possible to calculate the global minimum 

[15]. Now, if nonlinear restrictions exist, the problem of optimization becomes significantly more 

computationally expensive and harder to solve, because now it may have large number of decision variables and 

the problem may not be convex, which usually leads to sub-optimal solutions. 

Thus, this section develops a Linear MPC algorithm for solving the problem of trajectory tracking. 

Since the reference is known for any future sampling instant, it is possible through successive linearization 

along the reference trajectory, to obtain a linearized system model [16]. Then, considering the control inputs as 

the decision variables, one can transform the problem of minimization of the cost function to a QP problem 

[17].Consider the car-like AGV model for this task: 

According to [18] we can obtain a linearized model by considering a model error between the AGV 

and a virtual AGV reference. Defining a virtual reference AGV as below: 
 ̇                         (24) 

Applying Taylor series about the reference point (            and expanding the right hand side of expression 

(24) and ignoring higher order terms, it follows that: 

  ̇    (         )        (      )                  (25) 

where       and        are the Jacobians of   with respect to   and  , respectively, evaluated at the reference 

point as below: 
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Therefore, substituting the expression 25 in 1, and setting A =       and        ; it follows that: 

 ̇̅     ̅      ̅ 
where 

 ̅             ̅            

In order to obtain a linearized model in discrete time, we employ the Euler method to discretize 

equation 1, the result is given below: 

 ̅           ̅         ̅    
 

A virtual trajectory in "U" form depicted in Fig. 7 is used as the path to be followed. The following 

parameters were applied for the car-like AGV case; 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: reference trajectory in “U” shape 

 

Table 3: Input data for the car-like model LMPC 
Input Data 

Horizon Length ( N ) 5 

Initial state (x0) [-1 0 0]T 

Sampling period ( T )  0:05s 

Weighting Matrix ( Q )  diag(1;1; 0.5) 

Weighting Matrix ( R )  diag(0.1;0.1) 

Constraint on Control  0.47m/s; -3.77rad/s 

 

The simulation results are shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: car-like model AGV trajectory in XY plane 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Car-like model AGV controls input. 
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From Fig. 8 it can be seen that the trajectory could be tracked appropriately. The control inputs were 

shown to assume steady-state position in Fig. 6. The performance index in Fig. 10 shows the faster convergence 

time of 3seconds. Fig. 11 shows the errors of the states converging to zero. Since the trajectory error converges 

to zero, the objective function value should also converge to zero.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: car-like Model AGV performance index. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: car-like Model AGV error convergence 

 

4.4 The Computational Cost of LMPC 

We developed an algorithm for quadratic programming, QP, for the solution of the problem of 

trajectory tracking via a linear MPC. As noted earlier, the solution of nonlinear optimization algorithms usually 

involves a high computational effort. However, this problem is significantly reduced if the MPC is linear, 

because the optimization problem is convex and there are now a smaller number of decision variables. For the 

nonlinear case, the number of decision variables is            where N is the horizon, n is the numberof 

states and m is the number of control inputs. The number of decision variables forthe linear case is only     

due to the transformation of the problem to a QP problem, the decision variables are the only control inputs, 

because the dynamics of the system isincluded in the cost function. The computational effort is measured based 

on the CPU time of the computer system used for the implementation.  

 

Applying the parameters presented in table 3 for the car-like model, we have the following CPU time records: 

 

Table 4: Linear MPC car-like Model 
Horizon CPU Time (ms) 

5  0.03 
10 0.05 

15 0.10 

20 0.14 
25 0.24 

 

As seen in Table 4, there is significant reduction in the computational effort of the Linearized MPC 

algorithm compared to the nonlinear case presented in Table 2. Obviously, with the LMPC, the performance 

will not be the same because, as already noted, the linearized model of the robot is valid only in regions close to 
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the reference trajectory, which ends up limiting their applicability. However, for fast systems, the speed of 

control computation is of paramount importance and should be apriority in this case. 

 

V. Conclusion 
This research work is indeed an eye opener for future hardware implementation of MPC for the control 

of fast systems like the autonomous ground vehicles, autonomous aerial vehicles, and autonomous underwater 

vehicles. A car-like and bicycle models of autonomous ground vehicles were implemented for Nonlinear and 

Linear MPC. An interior-point linear quadratic solver was implemented for the Linear Model Predictive Control 

algorithm. Trajectory tracking problem of AGV was solved by both nonlinear and linear model predictive 

control. In order to prove the efficacy of the implemented techniques, different reference trajectories were used 

for the study. Several considerations about the computational effort were analyzed. One major drawback of 

model predictive control is the computational effort required for calculation of the control law, as an 

optimization problem needs to be solved online at each sampling instant. Nevertheless, it was obvious from this 

work that given the development of efficient computational algorithms and faster processors, model predictive 

control can be implemented in practice for the control of autonomous ground vehicles (AGV). Thus, by 

comparing the computational time for the implementation, it was shown that the MPC can be implemented in a 

real-time and on hardware. 

Through successive linearization of the kinematic model of the AGV along the reference trajectory, a 

linear time-variant system was obtained, which was used for the solution of a quadratic programming algorithm. 

It was possible to considerably reduce the computational effort. Thus, generally speaking, model predictive 

control appears as a good approach, since it presents several advantages when compared to classical approach: 

the existence of a performance criterion, the generation of trajectories that are optimal with respect to this 

criterion. The ability of the MPC to consider constraints in an explicit manner and the choice of tuning 

parameters can be done fairly and intuitively, since they relate directly to the system variables. All the 

algorithms presented in this work were implemented in C/C++ environment and Armadillo, [19] the open-

source linear algebra library package. 
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