
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 12, Issue 4 (Jul. - Aug. 2013), PP 18-26
www.iosrjournals.org

www.iosrjournals.org 18 | Page

A practical approach for model based slicing

Rupinder Singh
1
, Vinay Arora

2

1(CSED, Thapar University, Patiala, India)
2(CSED, Thapar University, Patiala, India)

Abstract : Software testing is an activity that will aim at evaluating an attribute or capability of system and

determine that whether it meets required expectations. Test cases can be designed at model level of software

development. But to visualize the software model or architecture is difficult due to its large and complex

structure. We have presented a novel methodology to extract the sub-model from model diagrams correspond to

point of interest to ease the software visualization. The proposed methodology use the concept of model based

slicing to slice the sequence diagram to extract the desired chunk.

Keywords – Software Testing, Sequence diagram, Model based slicing.

I. INTRODUCTION
 Software testing is an evaluation process to determine the presence of errors in code snippet.
Software testing cannot completely test software because exhaustive testing is not possible due to time and

resource constraints. According to ANSI/IEEE 1059 standard [1, 2], Testing can be defined as ―A process of

analyzing a software item to detect the differences between existing and required conditions (that is

defects/errors/bugs) and to evaluate the features of the software item‖. The prime objective of testing is to

discover faults that are preventing the software in meeting customer requirements. Moreover, testing requires

planning and designing of test cases. The testing process progresses from component level to system level in an

incremental way. The most intellectually challenging part of testing is the design of test cases. Test case

generation from design specifications has the added advantage of allowing test cases to be available early in the

software development cycle. Now days, UML has been widely used for object oriented modeling and design.

This is due to the fact that a UML metamodel extends support to describe structural and behavioral aspects of an

architecture. For instance, the structural models (e.g. class diagrams) are used to describe various relations
among classes, such as aggregation, association, composition, and generalization/specialization. On the other

hand, the behavioral models (e.g., communication and sequence diagrams) are used to depict a sequence of

actions in an interaction that describe how the objects are interacting to perform their respective action [3]. But

due to large and complex architecture of software products it‘s hard to visualize and test the software. To

overcome this problem of visualization large models, ‗Model based slicing‘ technique came into existence.

Model Based slicing is a decomposition technique to extract and identify relevant model parts (or fragments) or

related elements across diverse model views. Slicing can be referring as process or strategy to break body of

information into smaller parts to examine it from different viewpoints that can yield more precise information so

that one can understand it better [35]. The term is also used to mean the presentation of information in a variety

of different and useful ways to ease the visualization. But in term of automation of software testing, the direct

use of UML diagrams is not feasible. Conversion of UML into XML is one of the integral part of model based

slicing for automation of whole technique. The core principle of model based slicing technique is to decompose
the structure into submodels without affecting their core structure and functionality. It helps the developer to

gain the perfect view of software according to their requirement.

II. RELATED WORK
 In Model based slicing several types of model relations and dependency such as class-class, class-

operation, operation-operation, class-object, object-object, guard condition in sequence diagram , conditional

predicate, control flow , data flow etc., need to be taken into account as discussed in previous paper [34]. In this

work, sequence diagram has been taken into account and various approaches present till date for slicing UML

diagram have been listed. Zhao [4] introduced the concept of architectural slicing which operates on
architectural description of software system. As an extension of his previous work Zhao [5] introduced

Architectural Information Flow Graph with three types of information flow arcs: Component-connector,

Connector-component, internal flow arcs to apply the slicing technique on software architecture precisely. Wang

et.al [6] presented a method for slicing hierarchical automata. The importance of Wang‘s algorithm is its ability

Submitted date 17 June 2013 Accepted Date: 22 June 2013

A practical approach for model based slicing

www.iosrjournals.org 19 | Page

to remove the hierarchies and concurrent states, which are irrelevant to the properties of the hierarchical

automata. Kagdi et al. [7] proposed the concept of model slicing to support maintenance of software through the

understanding, querying and analyzing large UML models. Langehove [8] presents an algorithm for reducing

the number of interference dependencies in state charts by using the concept of slicing with concurrent states.

The proposed approach considers data dependencies from the definition and use of variables that are common to

parallel executing statements. Lallchandani et al. [9] propose a technique for constructing dynamic slices of

UML models using the integrated state-based information. In order to achieve this they proposed an algorithm
for Architectural Model Slicing through MDG Traversal (AMSMT). By using the same algorithm (AMSMT)

researchers had implemented a prototype architectural slicing tool called SSUAM [10] to generate static slices

for UML Architecture models. Later on, in another approach [11] they proposed a DSUAM algorithm which

uses the MDG representation to compute dynamic slices.

Samuel and Mall [12] presented a scheme to generate slice and test cases with the help of edge marking

dynamic slicing algorithm for activity diagrams. They used the flow dependency graph (FDG) which shows the

dependencies among activities that arise during run time. Noda et.al [13] proposed a sequence diagram slicing

method to visualize the object oriented program's behavior. In order to achieve this, a tool has been proposed

that named as ‗Reticella‘ which is implemented as eclipse plug-in. The proposed tool take java program as input

and after analyzing, fetch the static information and draw B-model tree.

Swain et.al [14] proposed an approach to generate test cases from UML interaction diagram by using
the condition slicing. In their approach they identify the message guard condition from interaction diagram and

use the condition slicing to generate test cases. J. Kim et.al [15] proposed an approach to address the hierarchy

and orthogonality problems while tracing the data dependency in slicing of UML State machine diagram.

Yatapanage et al. [16] focused their work on Model Checking as fully automated technique to reduce the size of

model with the help of slicing. They used Behavior Tree dependency graph (BTDG) to capture all functional

requirements and dependency between components and attributes.

Korel et.al [17] dedicated their work on slicing the state based models, such as EFSMs (Extended

Finite State Machines). As a result two types of slicing came to existence—deterministic and nondeterministic

slicing. Lano [18] defined that slicing can be carried out for UML state machines, using data and control flow

analysis by factoring the model on the basis of features. Archer et al. [19] proposed a novel slicing technique on

the feature model by taking cross-tree constraints into account with respect to set of features which are acting as

slicing criteria. Julliand et.al [20] proposed an approach based on domain abstraction for generating test cases
on the basis of syntactic abstraction and variable elimination with the help of model slicing.

Shaikh et.al [21] proposed a verification technique to check the correctness of model with the help of

slicing. The proposed technique increases the scalability of verification by partitioning the original model into

sub model. Kim [22][23] introduced the slicing technique called dynamic software architecture slicing (DSAS)

using ADL (Architecture description language). Kim's work is very efficient there because it‘s able to generate a

smaller number of components and connectors in each slice according to slicing criteria. Lano et al. [24] defined

the technique for slicing of UML model using Model Transformation, particular for restriction of model to those

parts which specifies the properties of subset within. Zoltán et.al [25][26] proposed dynamic backward slicing of

model transformations technique with respect to program slicing. The proposed technique take three inputs, the

model transformation program, the model on which the MT program operates and the slicing criterion and

generate the output as transformation slices and model slices. Blouin et.al [27] [28] proposed a DSML (Domain
Specific Model Language) 'Kompren' to model the model slicers for particular domain. Kompren refers to the

selection of the set of classes and relations from the input metamodel expressed using an object-oriented meta-

language. Table 1 depicts the list of model based slicing tools extracted from literature analysis. Table 2 shows

the comparison of different approaches of model based slicing.

Table 1: Tools for model based slicing

Year Tool Name Technique Used

2003 EFSM Slicing Tool Control and Data flow analysis.

2007 UTG Data Flow and Control Flow dependency, Communication Tree.

2008 SSUAM Model Dependency Graph.

2008 UML Slicer MetaModel Diagram, Key Elements.

2009 Reticella B-Model dependency Graph.

2011 Archlice Model Dependency Graph.

2011 Safe Slicer System Model Language, Traceability Links and Rules.

2012 UOST UML + OCL Constraints.

A practical approach for model based slicing

www.iosrjournals.org 20 | Page

Table 2: Approaches/Techniques/Tools for model based slicing

Approach/Technique Slicing Process Model Usage

Syntactic Semantic

Feature model slicing [19,
29]

  Feature model Separation of concerns

UML slicer [30]   UML metamodel Modularization

UML statechart [18, 31]   State charts Reactive system, Model
checking

Safe slicer [32]   System Models Safety

Domain specific model

language [27, 28]

  UML metamodel Dynamic model slicing

Context free UML slicing
[18]

  UML class diagram Sub model extraction

Dynamic software
architecture slicing [22, 23]

  Architecture description
language

Architectural slicing

EFSM slicing [17]   State based models Size reduction

DSUAM [11]   UML Separation of concerns

UML activity diagram [12]   Activity diagram Test case generation

UML/OCL slicing [21, 33]   UML/OCL Verification

Model transformation [24,
25, 26]

  Graph and UML diagram Program slicing

Behavior tree slicing [16]   Behavior tree Model checking

III. Preliminary Work
 We had proposed a method for extracting subpart from UML sequence diagram, based on

conditional predicate in our previous work titled ―Technique for extracting subpart from UML Sequence

diagram”. This paper provides the detailed view on the practical implementation of the already proposed

technique, for finding the chunk from a given sequence diagram.

IV. PROPOSED METHODOLOGY AND IMPLEMENTATION
 After reviewing the literature of software testing techniques, slicing techniques, software visualization

and unified modeling language, it has been analyzed that slicing UML diagrams is one of the major area in

which work can be extended for various constructs like sequence diagram, state transition diagram, activity

diagram, class diagram, etc. It has been thoroughly analyzed that for the process of slicing sequence diagram no

consolidate technique have been developed to extract the point of interest from architecture of software to ease

the software visualization that uses conditional predicate for finding out a relative slice.
Consider an example UML sequence diagram as shown in figure: 1. the purpose of selecting this

example is to demonstrate the concept of proposed methodology. In the example there are four objects which

are interacting with each other thorough message passing (using guard condition as true to interact with each
other). We illustrate our methodology by explaining the generation of chunk or refined model diagram with

respect to slicing criteria. Here in this example let the slicing criterion is variable ‗c‘. Given criteria is a variable

used in conditional predicate of message guard condition. True and false value of these guard conditions are

used by objects to interact with each other. According to user defined slicing criteria, proposed methodology

will slice the model diagram shown in figure 1 and generate the resultant small chunk or refined sequence

diagram.

A practical approach for model based slicing

www.iosrjournals.org 21 | Page

Fig 1: Example Sequence diagram

To extract subpart from UML Sequence diagram following technique has been proposed:

1. Generation of UML (Sequence) diagram of/from a particular requirement specification.

 1.1. Visual paradigm for UML, can be used to generate the UML diagram for specific requirement

specifications. Figure 2 shows the designing of UML sequence diagram using visual paradigm tool.

 Fig 2: Designing sequence diagram using visual paradigm

II. Create XML from the specified UML Sequence diagram.
2.1. Visual paradigm for UML 10.0 version provides the in-built functionality to export the diagrams into

XML format.

Object Y Object Z Object X

[a>20] message 1

[c-d>=0] message 4

[c>=20 & d<50] message 6

[f<400] message 7

[e>120] message 10

[c>40] message 13

[b>20] message 2

[e<50] message 5

[c<=120] message 8

[b<150] message 12

[a+e>20] message 14

Object W

[d=10] message 3

[c+f>50] message 9

[c+b>40] message 11

A practical approach for model based slicing

www.iosrjournals.org 22 | Page

Fig 3: XML file of Sequence diagram

III. Document Object Model (DOM) parser parse the XML code and generate an output file

(with .txt extension) having Object name, identifier, message name, message to & fro

information. Figure 4 shows the DOM parser and Figure 5 depicts the output file generated by

DOM parser after parsing the XML file.

Fig 4: DOM parser

Fig 5: Output-file generated by DOM parser

A practical approach for model based slicing

www.iosrjournals.org 23 | Page

IV. Passing file obtained from step 3 and slicing criteria to a .java program (which act as

slicer) for getting the relative/required chunk of information in a separate .txt file.
 4.1. Slicer will take .txt file generated in step 3 as input.

4.2. Slicer will ask user to define the slicing criteria at run time to generate the chunk/slice as per specified

requirements as shown in figure 6. In this example user define the ‗c‘ variable as slicing criteria.

4.3. Computed slices will be store in separate .txt file which holds the information of messages, their guard

 condition and objects id‘s among which messages are being passed as shown in figure 7.

Fig 6: Java program for finding out the specified chunk

Fig 7: output file generated after applying slicing

V. Changing object id with relative object name among which message is passing so that

information can be retrieved easily (this step will only deal with sliced part).
 5.1. To ease the retrieval of information, objects id‘s will be replaced with their corresponding object name

 (in the file retrieved from step 4.3) (as shown in figure 8.)

5.2. All the information will store in separate .txt file which holds the information of messages and the

objects name (among which they are communicating relative to user defined slicing criteria).

A practical approach for model based slicing

www.iosrjournals.org 24 | Page

Fig 8: computed slice after the conversion of object-id to object-name

VI. Passing txt file as obtained from step 5, to b .java program so that it can be converted

into input file format
 for ‗Quick Sequence Diagram Editor‘ as shown in figure 9.

Fig 9: Input file for quick sequence diagram editor

VII. Tool will generate the final and relatively small sequence diagram.

7.1. Tool will take the input format defined at step 6 as input to convert into its equivalent diagram as shown in

figure 10.

7.2. Refined slice (small sequence diagram) will be generated as final output according to slicing criteria as per

requirement to ease the software visualization.

Fig 10: Computed sliced Sequence diagram

A practical approach for model based slicing

www.iosrjournals.org 25 | Page

VIII. CONCLUSION
Practical implementation of technique that will extract the sub-model from architecture of software to

ease the software visualization has been discussed. The key contribution of the technique is to generate the

refined model slices related to slicing criteria using conditional predicate in sequence diagram. The foundation
of the proposed technique is ‗UML‘ and ‗Slicing‘. With this, the problem of visualization of large and complex

software can be handled efficiently. The proposed technique has focused on the generation of chunk using

model based slicing but still there are the few points that can be explored further like model reduction in

concurrent and distributed programming

REFERENCES
[1] IEEE Standard 1059-1993, IEEE Guide for Software Verification and Validation Plans, IEEE, 1993.

[2] IEEE Standard 829-1998, IEEE Standard for Software Test Documentation, IEEE, 1998.

[3] Grady Booch, James Rumbaugh, Ivar Jacobson, The Unified Modeling Language User Guide, 2nd Edition, May 2005, Publisher.

Addison Wesley.

[4] Jianjun Zhao, Slicing Software Architecture, Technical Report 97-SE-117, pp.85-92, Information Processing Society of Japan, Nov

1997.

[5] Jianjun Zhao, Applying slicing technique to software architectures, In Fourth IEEE International Conference on Engineering of

Complex Computer Systems, ICECCS‘98, pp 87 –98, 1998.

[6] J. Wang, Wei Dong, and Zhichang Qi, Slicing Hierarchical Automata for Model Checking UML Statechart,Proc. Fourth Int‘l Conf.

Formal Eng. Methods: Formal Methods and Software Eng., pp. 435-446, Oct. 2002.

[7] H. Kagdi, J.I. Maletic, and A. Sutton, Context-Free Slicing of UML Class Models, Proc. 21st IEEE Int‘l Conf. Software

Maintenance, pp. 635-638, 2005.

[8] S. Van Langehove, Internal Broadcasting to Slice UML State Charts: As Rich as Needed, Proc. Abstracts of the FNRS Contact Day:

The Theory and Practice of Software Verification, Oct.2005.

[9] J. Lallchandani and R. Mall, Slicing UML Architectural Models, ACM SIGSOFT, vol.33, no.3, May 2008.

[10] Jaiprakash T. Lallchandani, R. Mall, Static Slicing of UML Architectural Models, Journal of Object Technology, vol. 8, no. 1, pp.

159-188, January-February 2009.

[11] J. Lallchandani and R. Mall, A Dynamic Slicing Technique for UML Architectural Models, IEEE Transaction on Software

Engineering, Vol. 37, No. 6, NOV/DEC 2011.

[12] Philip Samuel, Rajib Mall, Slicing-Based Test Case Generation from UML Activity Diagrams, ACM SIGSOFT Software Engineering

Notes, Vol. 34 No. 6, November 2009.

[13] Kunihiro Noda , Takashi Kobayashi, Kiyoshi Agusa, Shinichiro Yamamoto, Sequence Diagram Slicing, 16th Asia-Pacific Software

Engineering Conference, IEEE, 2009.

[14] Ranjita Kumari Swain , Vikas Panthi, Prafulla Kumar Behera, Test Case Design Using Slicing of UML Interaction Diagram, 2nd

International Conference on communication, computing and security, vol.6 , pp.136-144, ELSEVIR, 2012.

[15] Hyeon-Jeong Kim , Doo-Hwan Bae, Vidroha Debroy, W. Eric Wong, Deriving Data Dependence from UML State Machine

Diagrams, Fifth International Conference on Secure Software Integration and Reliability Improvement (IEEE), 2011.

[16] Nisansala Yatapanage, KirstenWinter, and Saad Zafar, Slicing behavior tree models for verification, In IFIP Advances in Information

and Communication Technology, Vol. 323, pp. 125–139, 2010.

[17] B. Korel, I. Singh, L. Tahat, and B. Vaysburg, Slicing of State Based Models, Proc. Int‘l Conf. Software Maintenance, pp. 34-43,

2003.

[18] Kevin Lano Crest, Slicing of UML State Machines, Proceedings of the 9th WSEAS International Conference on APPLIED

INFORMATICS AND COMMUNICATIONS (AIC '09), 2009.

[19] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert France, Slicing feature models, In 26th IEEE/ACM International

Conference On Automated Software Engineering (ASE‘11), IEEE/ACM, 2011.

[20] J. Julliand, N. Stouls, P-C. Bue, P-A. Masson, B model slicing and predicate abstraction to generate tests, Software Quality Journal,

vol. 21, pp.127-158, 2013.

[21] Asadullah Shaikh, Robert Clarisó, Uffe Kock Wiil, and Nasrullah Memon, Verification-driven slicing of UML/OCL models, In

Proceedings of the IEEE/ACM international conference on Automated software engineering, pp. 185–194, ACM, 2010.

[22] T. Kim, Y.-T. Song, L. Chung, and D.T. Huynh, Dynamic Software Architecture Slicing, Proc. 23rd Int‘l Computer Software and

Applications Conf., pp. 61-66, 1999.

[23] T. Kim, Y.-T. Song, L. Chung, and D.T. Huynh, Software Architecture Analysis: A Dynamic Slicing Approach, J. Computer and

Information Science, vol. 1, no. 2, pp. 91-103, 2000.

[24] Kevin Lano and Shekoufeh K. Rahimi, Slicing of UML Models Using Model Transformations, Model Driven Engineering

Languages and Systems, 13th International Conference, MODELS 2010, Oslo, Norway, October 3 -8, 2010, Lecture Notes of

Computer Science, Vol. 6395, pp. 228-242, Springer, 2010.

[25] Zoltán Ujhelyi, Ákos Horváth, and Dániel Varró, Towards dynamic backward slicing of model transformations, In 26th IEEE/ACM

International Conference on Automated Software Engineering (ASE 2011), pp.404–407, IEEE Computer Society, 2011.

[26] Zoltán Ujhelyi, Ákos Horváth, and Dániel Varró, Dynamic Backward Slicing of Model Transformations, IEEE Fifth International

Conference on Software Testing, Verification and Validation, 2012.

[27] A. Blouin, B. Combemale, B. Baudry, O. Beaudoux, Modeling model slicers, Proceedings of the 14th international conference on

Model driven engineering languages and systems, 2011.

[28] A. Blouin, B. Combemale, B. Baudry, O. Beaudoux, Kompren Modeling and Generating Model Slicers, Journal of Software and

System Modeling, Springer, 2012.

[29] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert France. Separation of Concerns in Feature Modeling: Support and

Applications. In Aspect-Oriented Software Development(AOSD‘12). ACM Press, 2012.

[30] Jung Ho Bae and Heung Seok Chae. UMLSlicer: A tool for modularizing the UML metamodel using slicing. In 8th IEEE

International Conference on Computer and Information Technology (CIT), pages 772 –777, 2008.

[31] Miao Chunyu and Zhao Jianmin. Dynamic slicing of statechart specifications for reactive systems. In Intelligent Computation

Technology and Automation (ICICTA),volume 1, pages 110–116, 2011.

A practical approach for model based slicing

www.iosrjournals.org 26 | Page

[32] Davide Falessi, Shiva Nejati, Mehrdad Sabetzadeh, Lionel Briand, and Antonio Messina. SafeSlice: a model slicing and design safety

inspection tool for SysML. In 19th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE-19) and

ESEC‘11: 13rd European Software Engineering Conference (ESEC-13). ACM, 2011.

[33] Asadullah Shaikh, Uffe Kock Wiil, and Nasrullah Memon, Evaluation of tools and slicing techniques for efficient verification of

UML/OCL class diagrams, Advances in Software Engineering, vol.18, pp 173-192, 2011.

[34] Rupinder Singh, Vinay Arora, Literature Analysis on Model based Slicing, International Journal of Computer Applications vol. 70,

issue 16, pp 45-51, May 2013.

[35] Vinay Arora, Rajesh Kumar Bhatia and Maninder Singh, Evaluation of Flow Graph and Dependence Graphs for Program

Representation, International Journal of Computer Applications Vol. 56, Issue 14, page 18-23, October 2012.

