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Abstract: 
Agricultural products rich in nutrients satisfy human needs but also provide a good breeding ground for 

microbial growth. Every year microbial contamination of agricultural products causes serious economic losses 

and poses a serious threat to human and animal health. Due to the short timeframe of agricultural products it 

was particularly important to detect microbial contamination in a timely manner. Hyperspectral imaging (HSI) 

had become a current research hotspot in the field of non-destructive testing of agricultural products, as it can 

meet the needs for timely and high volume detection of microorganisms. This was because it combines the 

advantages of traditional imaging and spectroscopic techniques for non-destructive detection of the internal and 

external quality of agricultural products. This paper reviews the applications of HSI technology in the detection 

and analysis of microbial contamination of agricultural products in recent years, and demonstrates the 

feasibility of the technology in terms of spectral analysis, modelling methods, map fusion and detection 

accuracy for the qualitative, quantitative and spatial distribution detection of microorganisms. Based on the 

above summary, the challenges and prospects of the HSI technology-based detection technology for microbial 

contamination of agricultural products are presented. 
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I. Introduction 
According to the World Health Organisation (WHO) more than 2.2 million people die each year 

worldwide from microbial diseases of food and water origin[1]. Agricultural products in the production process 

provide the conditions for microbial growth. In addition, climatic conditions such as high temperatures, high 

humidity and rainfall during food production can accelerate microbial growth leading to the breakdown of 

organic matter in agricultural products leading to mould and spoilage[2, 3]. Some microorganisms produce 

biologically active and toxic secondary metabolites which are a major hazard to humans[4]. In everyday life 

mycotoxins accompany agricultural products into the human body posing a great threat to human life and health. 

These toxins include aflatoxins, ochratoxins and fusarium toxins (DON)[5]. Aflatoxins are mainly produced by 

Aspergillus flavus and Aspergillus parasiticus and other toxic metabolites. 

Aflatoxin B1 is the most toxic and has been designated as a major carcinogenic compound by the 

International Agency for Research on Cancer (IARC) of the World Health Organization (WHO) [6, 7]. 

Ochratoxin (OTA) causes damage to human organs it is still being studied for its carcinogenic effects on 

humans[8]. Fusarium ochratoxin (DON) is a tertiary carcinogen when consumed by people it can cause toxic 

reactions such as vomiting and diarrhea [2]. Every year the agricultural economy suffers huge losses due to 

microorganisms. 

The current methods for detecting microorganisms and their metabolites are mainly chemical analysis 

methods [9], commonly used detection methods include culture methods [10], immunological detection methods 

[11, 12], molecular biology determination methods etc[13]. Their disadvantages are the need to destroy 

agricultural products, time-consuming and laborious, high professional level of detectors, and introduction of 

dangerous chemical reagents, poor repeatability of test results [13, 14].These methods cannot meet the 

requirements of modern agricultural products scale fast detection, how to quickly, real-time, on-site detection of 
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microbial contamination in agricultural products has become an urgent technical problem. The non-destructive 

detection methods of agricultural products infected with microorganisms include machine vision technology, 

which imitates the principle of human vision, but it is difficult to detect early mold in agricultural 

products[15].NIR-spectroscopy can detect the degree of mold pollution in agricultural products[16],and monitor 

the overall quality of agricultural products, which causes misjudgment of individual agricultural products with 

better quality [17]. 

HSI technology combines machine vision technology and NIR-spectroscopy [18] to simultaneously 

acquire spatial information and spectral information of each image element of the inspected object [19]. HSI 

technology can adequately detect both the organic composition of agricultural products and their internal quality, 

as well as the corresponding spatial distribution. In recent years, HSI technology has a certain research base in 

the detection of mold in agricultural products, and this paper summarizes and introduces the progress of HSI 

technology in microbial detection. The challenges and prospects of HSI technology-based detection of mold 

contamination of agricultural products based on previous studies are presented to further provide insights for the 

exploration of HSI technology application development. 

 

II. Hyperspectral Imaging Technology 
The concept of HSI technology was first proposed by Goetz[20].The spectral resolution of HSI 

technology is at the nanometer level, and it provides two wavelength ranges: 380-780 nm for the visible region 

and 780-2500 nm for the near-infrared region [21].The HSI technique can generate images of samples in 

different adjacent wavelength bands (generally less than 10 nm), and the resulting images are stacked by 

wavelength to form a hypercube (X, Y, λ) image [22]. λ-axis represents the wavelength and shows the spectral 

dimensional information, while X-axis and Y-axis show the spatial dimensional information, which form a 

three-dimensional data set, as shown in Fig 1. 

A complete HSI system has a light source, imaging spectrometer, optical camera (surface array CDD 

detector), lens, mobile sample stage, computer image acquisition system and motion control system, etc. The 

system composition is shown inFig 2.  

There are three modes of hyperspectral image acquisition, as shown in Fig 3, point-by-point scanning 

type, line push scanning type, and area scanning method [23].  The line-push scanning type is the most 

commonly used method for acquiring hyperspectral images in the detection of contaminated microorganisms in 

agricultural products, which has the characteristics of one-way continuous information acquisition to ensure 

information integrity, and in the process of line-push scanning, a single wavelength sample image is acquired 

each time, and all wavelengths are repeatedly acquired to form a hyperspectral image, also known as a data cube. 

Can be used for large-scale real-time detection of agricultural products. 

Before acquiring a sample hyperspectral image, the camera dark current effect needs to be corrected to 

obtain a relative reflectance image I. The raw hyperspectral image needs to be calibrated as an absorbance image 

or reflectance image in order to analyze the image in the next step. The white reference image is acquired by 

using a 100% tetrafluoroethylene standard white plate (99% reflectance) for black and white calibration and the 

lens cap is placed over the lens (0 reflectance) to acquire the reference image in the dark.Equation (1) for 

calibrating the reflectance image of the original hyperspectral image is shown below. 

                              (1) 

where Iis a calibrated hyperspectral image, IRAW is an original hyperspectral image, IW is a white reference 

image; and ID is a dark reference image. 

 

III. Data Analysis 
Hyperspectral images have a large amount of redundant information in the spatial and spectral 

domains.If all the information is used in the detection of agricultural products, it only increases the workload of 

processing data and does not reflect the advantages of hyperspectral technology better.After acquiring the image, 

the image needs to be further processed to obtain a robust model with strong detection capability. 

 

3.1 Sensitive Region Spectral  

The purpose of spectral image preprocessing is to eliminate the influence of non-uniform illumination, 

suppress pixel noise, remove relevant areas, and remove redundant information as much as possible. Pure 

perceptual region images (ROI) are obtained to improve data processing efficiency. Hyperspectral images with 

spectral data consist of a cube, and materials with different chemical composition and physical structure often 

exhibit different spectral characteristics and become spectral fingerprints. So the spectral fingerprint features of 

each pixel in the image can be used to detect and identify different objects, so the choice of threshold 

segmentation using images of different wavelength bands enable ROI extraction of different targets [24]. 
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Principal component analysis (PCA) is one of the methods to extract perceptual region (ROI) by 

transforming variables through orthogonal transformation operation. Through orthogonal transformation, a set 

of multivariate data, matrix is transformed into a set of linearly uncorrelated variables in new coordinates, and 

the transformed variables are called principal components[25], and the score matrix of principal components is 

calculated by equation (2). 

𝑇 = 𝑋𝑃 + 𝐸                                  (2); 

Where 𝑇 is a score matrix, 𝑃is a load matrix, and 𝐸 is a spectral residual matrix. The combination of a 

principal component score map and a two-dimensional scatter plot allows the principal component score of each 

pixel to be associated with its position in the hyperspectral image, and a method for extracting regions of interest 

using interaction analysis of images and spectra. 

 

3.2 Spectral Preprocessing 

Hyperspectral technology in the process of agricultural products detection, the effect of spectral data 

from hyperspectral images does not meet the requirements of model building due to the influence of noise and 

light scattering. With the rapid development of computer technology, more and more spectral pre-processing 

methods have been generated.Spectral conversion is the conversion of a spectrum to absorbance 3 and 

Kubelka-Monk transform 4 is an effective way to reduce the nonlinearity of reflectance measurements, where 

the transmittance of a material sample is related to its absorbance according to the Beer-Lambert law [26].Thus 

reflectance measurements are similar to optical density readings and the differences can be amplified by spectral 

conversion. 

𝐴 = 𝑙𝑜𝑔10（1/𝑅）(3) 

𝐾𝑀 = (1 − 𝑅2)/2𝑅(4) 

Smoothing is a method of suppressing random noise caused by environmental differences, instrument 

stability, etc., and is used to obtain smooth and accurate spectral data.Smoothing methods include moving 

average method, Savvitzky-Golay, Gaussian and median filtering[27, 28].In the smoothing process, a window of 

a certain width is set, and "averaging" and "fitting" operations are performed for each point within this 

window.In the smoothing process, a window of a certain width is set, within which the "averaging" and "fitting" 

operations are performed for each point. Therefore, in order to obtain the best estimate of the points, it is 

necessary to set a suitable width of the smoothing window [29]. 

Standardization is a pre-processing method for a set of spectra based on a spectral array that can 

eliminate errors caused by light range differences, scattering, and sample dilution.The same preprocessing 

methods as the normalized attributes are variable normalization and multiple scattering correction [30].These 

two methods have similarities and have relatively high correction power compared to the multivariate scattering 

correction algorithm variable normalization. 

Detrending algorithm is an effective method to eliminate the baseline of a diffuse reflectance spectrum. 

The spectral curve will be baseline shifted during the spectral acquisition. The detrending algorithm  fit a trend 

line in the reference spectrum with a polynomial and then subtract this trend line from all the acquired spectral 

curves separately to obtain the detrended spectrum [31].This method removes the background information and 

amplifies the information of the sample itself  [30]. Generally detrending algorithms and variable 

normalization algorithms are used in combination, with the trending algorithm performed first, followed by the 

variable normalization algorithm. 

Derivative algorithm (Derivative) can better purify the spectrum information, effectively remove the 

background interference and baseline drift, play a role in splitting the peak, emphasize the small peak in the 

strong absorption, clear mechanism absorption wavelength [32].Sometimes, the noise is also emphasized and 

pseudo-harmonic peaks appear, so the need for differential processing needs to be determined according to the 

actual situation. In order to eliminate the noise brought by the spectral transformation and avoid emphasizing the 

noisy information, original spectrum is usually smoothed before derivation.Equations (5) and (6) represent the 

spectra of the discrete spectrum 𝑥 at wavelength𝑘 after performing the first-order and second-order derivatives 

of differential width 𝑔. 

𝑥𝑘 ,1𝑠1 =
𝑥𝑘+𝑔−𝑥𝑘−𝑔

𝑔
(5) 

𝑥𝑘 ,2𝑛𝑑 =
𝑥𝑘+𝑔−2𝑥𝑘+𝑥𝑘−𝑔

𝑔2
 (6) 

 

3.3 Feature Wavelength Selection 

Redundant information exists in the full wavelength, which also interferes with the information of the 

sample itself. Selecting the most effective spectral information from the whole wavelength can reduce the 

computational load and improve the computational efficiency [33]. Extraction of the optimal wavelength allows 

qualitative and quantitative studies with less error. Extraction of the characteristic wavelength requires the 

selection of a suitable method according to the actual situation including correlation coefficient method [33], 
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continuous projection algorithm [34], positive adaptive weighting method [35], genetic algorithm [36], 

regression coefficient method [37] and random frog algorithm [38]. Due to the complexity of hyperspectral data, 

several methods are usually used to select the characteristic wavelength for comparison, so as to provide the best 

characteristic wavelength for model establishment. 

 

3.4 Modeling and Evaluation 

Hyperspectral image information has the characteristics of high dimension and multi-collinearity, so it 

is necessary to use multivariate analysis method to establish the relationship between spectral information and 

sample reference value [39]. Generally, multivariate analysis includes quantitative analysis and qualitative 

classification. 

In the process of qualitative analysis, classification methods are divided into unsupervised 

classification and supervised classification. Unsupervised classification divides data sets in samples that are not 

known in advance into different clusters, and conclusions can be drawn only after unsupervised classification is 

performed. However, supervised classification is based on an existing dataset and is trained to find associations 

between features and labels. Common supervised classification methods for spectral data include linear 

regression [40], k-nearest neighbor (KNN) [41], plain Bayes [42], support vector machines [43], decision trees 

[44], artificial neural networks [45] and partial least squares discriminant analysis [46]. Unsupervised 

classification has K-mean algorithm, self-encoder, and principal component analysis methods. Researchers 

usually evaluate the accuracy of qualitative classification models in the same way as overall accuracy, specificity, 

and sensitivity [47]. 

Quantitative analysis is performed to establish a link between the mapping data and the sample 

attributes, using both linear and nonlinear approaches to build models for detecting and predicting the sample 

attributes. The linear analysis methods are partial least squares regression analysis, principal component 

regression analysis, and multiple linear regression analysis. The nonlinear analysis methods are artificial neural 

networks and support vector machines. Quantitative analysis evaluates the model with the following metrics: 

coefficient of determination (R
2
), root mean square error (RMSE) and residual prediction deviation (RPD) [48]. 

 

4. Application of HSI Technology in Microbiological Detection 

With the development of HIS technology, the requirements for microbial detection in agricultural 

products have increased, and rapid and accurate detection of microbial contamination can reduce economic 

losses and unnecessary transition inputs of hazardous chemicals, which are of great significance in the quality 

testing of agricultural products. Table 1 shows the application of HIS technology to the detection of fungi, 

mycotoxins, bacteria and viruses. The development of HSI technology applied to microbial detection can be 

seen, and the following is the application of HIS technology in various microbial detection. 

 

4.1 Application of HSI technology in fungal detection 

Fungi can be found everywhere in our life, and there are many kinds of fungi, some of which are 

pathogenic and opportunistic fungi, invade human body and cause diseases. At the same time, the metabolites of 

some fungi, when consumed by humans, can produce some toxicity, such as carcinogenic, teratogenic, 

immunosuppressive, etc., which endanger human health and cause economic losses. The following are the HSI 

techniques used to detect major fungi and their metabolites in agricultural products. 

 

4.1.1 Fusarium detection analysis 

Crop infection with Fusarium(FHB) is also known as tombstone disease is a common disease of small 

grains such as wheat, oats and barley.The main causal agent of FHB is Fusarium graminearum Schwabe.Grain 

crops infected during the growing season may contain Fusarium secretions such as deoxynivalenol (DON), also 

known as vomitoxin.DON affects the quality of food and feed and endangers human health [49]. Therefore, HIS 

technology has been used to detect Fusarium graminearum Schwabe and DON. 

The use of hyperspectral techniques for the detection of Fusarium has beendemonstrated in recent years. 

Williams et al[25]inoculated three Fusarium species into potato dextrose agar for 55 h, 72 h, and 96 h of 

growth.Data acquisition was performed in the 1100-2498 nm range using HSI technology.PLS-DA and PCA 

methods were used for modeling. Although RMSEP best this results were only 0.39, 0.25 and 0.45 with R
2 
of 

0.999, 0.867 and 0.44. the results of the pixel analysis by PCA can be seen to have good results and clearly 

determine the three Fusarium properties.They also studied the growth characteristics of the three Fusarium 

species and constructed the growth characteristics of the most infantile, juvenile, young and old always classes 

of mycelium in colonies of the three Fusarium species in different time periods[25, 50][25, 50][25, 50][25, 

50][25, 50][24, 49][23, 48][22, 47][21, 46][20, 45][19, 44][18, 43][17, 42]
17, 4217, 42

.M. Nadimi et al used the 

NIR HSI technique to detect the presence of Fusarium and DON in wheat seeds using a K-nearest neighbor 

(KNN) classifier in the 960-1700 nm wavelength range [51].The results showed that the accuracy of Fusarium 
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infection in wheat seeds was 85% and the sensitivity was 92%, and the accuracy of fungal toxin deoxynivalenol 

(DON), a secondary metabolite of Fusarium contained in wheat seeds, was 80% and the sensitivity was 77% for 

the discrimination.The above study established that hyperspectral techniques can discriminate Fusarium. 

As hyperspectral techniques allow for easy and rapid detection of Fusarium moreand more relevant studies are 

being developed. Muhammad A. Shahin used HSI technique in the range of 400-1,000 nm to qualitatively 

discriminate the degree of infestation in Fusarium oxysporum-infested seeds of red spring wheat in western 

Canada [52].A linear discriminant analysis (LDA) model was established by compressing the hyperspectral 

image data into 10 PCA scored images using the principal component analysis (PCA) method.The nuclei were 

classified into two stages: normal nuclei and damaged nuclei, and then the damaged nuclei were classified into 

mild nuclei and severe nuclei. Using LDA, intact and damaged nuclei could be classified with an overall 

accuracy of up to 92% and a prediction accuracy of up to 86% for the degree of Fusarium damage.The 

realization of hyperspectral techniques to discriminate the degree of Fusarium infestation of wheat seeds further 

provides HSI technology to provide a method for wheat screening.Data on wheat seeds and flour in the range of 

400 - 1000 nm and 1,000-2,500 nm were investigated by Kun Liang et al [53].The preprocessing was 

performed by using two different methods of multiple scattering correction (MSC) and standard normal 

variables (SNV), effective wavelengths extracted by genetic algorithm (GA), support vector machine (SVM), 

sparse self-encoder (SAE) network for modeling quantitative classification. For the range of 400 – 1,000 nm 

MSC-GA-SAE model has the highest prediction accuracy (100% for both training and test sets). 1,000-2,500 

nm range SNV-GA-SAE model has higher classification accuracy for shortwave infrared imaging data (100% 

for training set and 96% for test set). Rrpdc hyperspectral data acquisition of Fusarium yellows and Fusarium 

graminearum infected maize kernels was performed in the range of 1,000-2,500 nm [54]. The pre-processed 

data method used standard normal variation (SNV), first order derivative and SNV+ first order derivative to 

perform dimensionality reduction of the data using principal component analysis (PCA), and pixel-based 

PLS-DA model to classify Fusarium samples in the test set with 99.7% classification accuracy.Guang hui Shen 

classified wheat seeds infected with DON into three classes (severely damaged, moderately damaged, and 

asymptomatically damaged) [49]. Support vector machine (SVM) and local PLS (LPLS-S) algorithm based on 

global PLS score were developed, and a quantitative model of DON was established by using HSI technology 

and HIGH performance liquid chromatography to analyze and verify DON content. LPLS-S method had the 

best simulation effect on seeds, with RMSEP of 40.25 mg/kg and RPD of 2.24. The degree of fusarium infection 

in wheat seeds was determined by detecting DON content. 

The above illustrates that the discrimination of Fusarium by HSI technique can be achieved and provides a new 

method for further study of Fusarium. It provides a basis for future large-scale batch screening of wheat. 

 

4.1.2 Analysis of aflatoxin detection 

As one of the most harmful mold species in life, there are few studies on the detection of aflatoxin 

using HSI technology, including the detection of its metabolite aflatoxin. There are also many articles on the use 

of HSI to detect Aspergillus flavus and its metabolites.It can be seen that with the development of information 

technology, HSI detection of aflatoxin is slowly moving towards industrial grade applications. 

Jin et al [55]explored the feasibility of using the V-NIR (400-1000 nm) HSI system to discriminate 

whether different aflatoxins were produced under the same conditions.The images acquired under different light 

sources were discriminated to derive qualitative discrimination between (AF38, AF283) under halogen light 

sources and (AF13, AF38) under UV light sources.The classification results under halogen light source were 

compared with those under UV light source, and the classification accuracy under UV light was higher.It is 

noteworthy that the pixel-level classification accuracy for (AF38, AF283) and (AF13, AF38) under UV light 

source was above 95% on average. This result can prove that Aspergillus flavus can be differentiated between 

categories in HSI technique, obtaining better diffuse reflectance of Aspergillus flavus as well as aflatoxin under 

violet light source.Kandpal et al[56]. reported a study applying the HSI technique short-wave NIR (1100-1700 

nm) for the detection of maize seeds of three varieties whose surfaces were contaminated by four concentrations 

of AFB1 (10, 100, 500, and 1000 mg\kg) in dilution.A classification model was developed using PLS-DA to 

identify maize kernels with different levels of contamination.The final results for the three maize varieties, white, 

purple and yellow, were 92.3%, 96.9%, and 90.7%, respectively.The beta coefficients of the PLS-DA model 

were applied to each pixel point of the hyperspectral image to finally generate an AFB1 distribution map for 

each contaminated maize kernel, achieving the visualization of AFB1-infested maize kernels that could not be 

achieved by traditional techniques, and providing accurate spatial location information for maize infected with 

aflatoxin. 

Daniel Kimuli et al [57]explored the feasibility of using a 400-1000 nm HSI system to detect AFB1 on 

the surface of maize. There were four different yellow maize varieties, and four different concentrations (10, 20, 

100 and 500 ppb) of AFB1 dilutions were applied manually on the surface of the maize kernels of each variety, 

using a methanol solution as a reference object for the application. For data analysis, the PCA method was 
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applied to reduce the dimensionality of the HSI data, and then the PC variables generated by PCA were analyzed 

using FDA. Finally, an identification accuracy of 98% was achieved for all samples pooled from four maize 

varieties, while discriminant analysis was performed on maize seeds coated with different concentrations. This 

result fully demonstrates the feasibility of using the VNI- HSI system to detect the presence of AFB1 on the 

surface of maize seeds. In a subsequent study, the 1000-2500 nm HSI system was used to detect AFB1 on the 

surface of maize seeds[57]. Treatment and last treatment method in addition to the PLS-DA method was used. 

Combining standard normal variables and first-order derivative pretreatment, the results of the classification 

tests performed on different varieties were erratic, with high classification accuracy for individual varieties. The 

calibration and validation accuracies of the PLS-DA classification model for Illinois varieties were 100% and 

96%. The poorer aflatoxin classification results of the PLS-DA and FDA models for mixed samples were due to 

the limited variation in the chemical composition of the mixed samples as the PLS-DA and FDA models may 

have received less information about the use of AFB1 to separate the mixed samples. The large difference in 

AFB1 detection accuracy between the two studies may be due to the different spectral absorption of maize 

components in V-NIR and S-WIR. In general, moisture and fat are more sensitive to spectra in the S-WIR range. 

Therefore, the SWIR band absorbs moisture and fat more strongly than the VNIR band. This is the fundamental 

reason for this difference 

With the newer development of data processing methods, Feifei Tao et al used hyperspectral 

techniques to identify aflatoxin infection in maize seeds using new data processing methods[58].NIR HSI in the 

900-2,500 nm spectral range was investigated to identify kernels inoculated with Aspergillus flavus (AF13) and 

kernels inoculated with non-Aspergillus flavus (AF36). The classification rate of non-aflatoxigenic and 

aflatoxigenic kernels was 97.8% using partial least squares discriminant analysis (PLS-DA) method based on 

full average spectra of 3 levels of control extracted from the same kernel side. Using different kernel-side 

full-average spectra, the highest average overall prediction accuracies of 91.5% and 95.1% were obtained for 

class 3 and class 2 models. Using the most important 30, 55, and 100 variables identified by the random frog 

(RF) algorithm, the simplified I-RF-PLSDA model had average overall prediction accuracies of 87.7%, 93.8%, 

and 95.2% for both types of discriminations using different kernel-side information. The average overall 

prediction accuracy of the II-RF-PLSDA model using these 25 variables and 75 variables over 100 random runs 

was 82.3% and 94.9%. It can be seen that the more variables there are, the correspondingly higher the accuracy 

of the model, which is advantageous when applied to detect large amounts of maize. 

Han Zhong zhi[59] dropped different concentrations of aflatoxin solutions (10ug/L, 20ug/L, 50ug/L, 

100ug/L, 10mg /L) on peanut kernels by HSI system in the range of 400-1000nm.Hyperspectral images in 33 

bands (400 -720 nm) were then acquired for each sample using the HSI system under 365 nm ultraviolet (UV) 

light.Four fluorescence indices are proposed, namely, radiation index (RI), difference radiation index (DRI), 

ratio radiation index (RRI) and normalized difference radiation index (NDRI).Finally, narrow-band spectra were 

obtained by optimization of Fisher's method, and aflatoxin was identified using RBF-SVM model and 

regression analysis was performed on the degree of aflatoxin contamination.The experimental results show that 

the accuracy of the 5-fold cross-validation of the support vector machine is 95.5%, and the mean square error 

(MSE) and correlation coefficient are 0.0223 and 0.9785, respectively.The above findings have positive 

implications for the online detection and classification of aflatoxins in agricultural products.Gao[60] in the same 

lab used a one-dimensional convolutional neural network model to investigate the presence of aflatoxin in a 

pixel on a hyperspectral image.Simultaneous detection of corn and peanut, in training on both grain data, 

yielded the highest result of 92.11% for corn detection accuracy and 96.35% for peanut detection accuracy. 

Mixing the two types of data together for training produced the highest accuracy result of 94.64%. In terms of 

feature selection, the highest detection accuracies for peanut, corn, and mixed data were 85.48%, 79.70%, and 

83.96%. The above two studies provide the basis for future real-time testing of agricultural products at scale. 

Quan Zhou et al [61] obtained hyperspectral images at 430-1000 nm and long-wave NIR 1,000-2,400 

nm. Three concentrations (10, 20 and 30 ppb) of AFB1 were applied to the study maize seeds and a set of 

controls, and the raw data were preprocessed using Savitzky-Golay (SG) smoothing, multiplicative scattering 

correction (MSC) and first-order derivative (FD) methods. The between-class variance rate (BWVR) and 

weighted between-class variance rate (WBWVR) were used for the selection of feature wavelengths, and three 

models of support vector machine (SVM), K-nearest neighbor (KNN), and decision tree (DT) were developed 

for comparison. The accuracy of the SVM model built under 10 feature wavelengths selected by the WBWVR 

method was as high as 96.18%, verifying the effectiveness of BWVR and WBWVR in the selection of feature 

wavelengths. This study provides a new approach for the selection of characteristic wavelengths.Gayatri 

Mishrastudied single grain almonds infected with AFB1 by hyperspectral techniques in the 900-1,700 nm range 

[62], using PLSR modeling combined with appropriate spectral preprocessing techniques, withR
2 
of 0.958 and 

RMSEP of 0.089 µg/g for the curvilinear regression model by competitive adaptive reweighted sampling CARS 

method for feature wavelength selection by multiple linear regression (MLR) modeling showed R
2
 of 0.948 and 

RMSEP of 0.090 µg/g for the characteristic wavelengths.  
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In the above application of HSI technology for aflatoxin detection of Aspergillus and its different 

categories of aflatoxin found that for aflatoxin has a fluorescent effect under the violet light, which is conducive 

to improving the discrimination accuracy, in the future HSI system design can increase the design of light source 

types to enhance the ability of HSI technology in nondestructive test. 

 

4.1.3 Analysis of anthrax detection 

Anthracnose is particularly harmful to crops. Infection by a fungus causes leaf and fruit rot of crops, 

which seriously threatens the quality and yield of cash crops. The application of HSI technology in anthrax 

detection is described below. 

Chu Xuanstudied the growth characteristics of two anthrax bacteria (colletotrichumtruncatum, 

colletotrichumgloeosporioides) using visible near-infrared (380-900 nm) HSI technology [63]. The SVM model 

developed using these wavelengths was able to identify the growth days of anthrax with an accuracy of 97.50%. 

The results showed that NIR HSI was effective in evaluating the growth characteristics of 

colletotrichumtruncatum and colletotrichumgloeosporioides, which is the first study to cause plant anthracnose. 

Yuan used the HSI technique in the visible range for tea tree anthracnose detection [64]. Disease sensitivity 

bands at 542, 686 and 754 nm were identified by spectral sensitivity analysis, and two new disease indices were 

established using these bands: the Tea Anthacnose Ratio Index (TARI) and the Tea Anthacnose Normalization 

Index (TANI). A crust detection method combining unsupervised classification and adaptive two-dimensional 

thresholding is proposed, which is independent of leaf background differences compared with traditional 

pixel-based classification methods and provides an effective means for disease identification and disease 

analysis. The validation results showed that the overall disease identification accuracy was 98% and 94% at the 

leaf level and pixel level, respectively. The above study showed that it is feasible to achieve automatic and 

accurate detection of tea anthracnose using HSI technology. 

Fazari used a visible HSI system to discriminate olives that had been inoculated with anthrax using a 

deep convolutional neural network to evaluate his model in terms of accuracy, sensitivity and specificity, with 

sensitivity being the fraction of infected olives detected and specificity being the fraction of healthy olives 

correctly identified [65].The results show an accuracy of only 80% (due to 80% of infected samples), a 

specificity of 0 (healthy olives will never be identified) and a sensitivity of 100% (all infected olives will be 

detected), and with the extension of the inoculation time after the fifth day the identification of anthrax infection 

in olives can reach 100% accuracy. Further optimization of the model is needed relative to the specificity data, 

and this is a further study for future deep convolutional neural network models for Bacillus anthracis 

detection.Yu-Hui Yeh studied strawberry leaves infected with anthrax by acquiring images of strawberry leaves 

inoculated with the anthrax fungus at three infection stages (healthy, latent and symptom onset) in an HSI 

system in the wavelength range of 400-960 nm[66]. Spectral angle mapping (SAM), stepwise discriminant 

analysis (SDA) and self-learning correlation measure (CM) methods were used blindly to study the three 

different infection stages. The accuracy of the classification results for the three infection stages was about 80%. 

For two infection stages (healthy and symptomatic), the average accuracy was as high as 80%. The 

classification accuracy for the three infection stages was approximately 80%. For two infection stages (healthy 

and symptomatic), the average accuracy was as high as 80%. In fact, the average accuracy of the two-stage SDA 

classification was 93%. Therefore, the use of HSI technique to detect foliar anthrax infected areas is more 

practical and effective than the traditional destruction methods. 

For the prevention of anthrax is not only detection, we have to carry out prevention, and the detection 

using HSI technology becomes more important during the incubation period of anthrax infection in agricultural 

products. In the above study, the identification of different anthrax species reached an accuracy rate, as well as 

the identification of agricultural products infected with different levels of anthrax. Therefore, accurate and rapid 

identification can be achieved in future plant protection and fruit screening using HSI technology. 

 

4.1.4 Other Fungal Mycorrhizal Detection Analysis 

Yao Lu studied five common cereal fungi Aspergillus parasiticus (Aspergillus parasiticus), Aspergillus 

flavus (Aspergillus flavus), Aspergillus glaucus (Asper gillusglaucus), Aspergillus niger (Asper gillusniger) and 

Penicilliumsp by HSI technique [67].The SVM classification model is built after selecting the best wavelength 

by the successive projection algorithm (SPA).The results showed that the accuracy rate of Asper gillusniger and 

Penicilliumsp was above 95.87%. The average accuracy and Kappa coefficient of SPA-SVM method were 98.89% 

and 0.97 for HSI images of 5 fungi growing for one day. These results indicated that HSI technology could be 

used to evaluate the growth characteristics of cereal fungi, further indicating that HSI technology could be used 

to distinguish different fungi, and the classification accuracy could reach the industrial level. 

T. Senthilkumar used hyperspectral techniques in the 1000 ~ 1600 nm range to detect the 

discrimination of rapeseed grains [68], barley [69] and wheat [70] infected with both fungi (Aspergillus glaucus 

and Penicillium spp), all using linear discriminant analysis (LDA), quadratic discriminant analysis (QDA) and 
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martinet classification modeling was performed. The three classifiers first classified healthy and infected rape 

seeds with an accuracy of more than 95%, and more than 90% at the beginning of infection with Aspergillus 

glaucus and Penicillium spp. The classification accuracy improved to 100% as the time of infection with the 

fungus increased. The detection and classification of different grains by the three models was achieved, which 

can save a lot of algorithm application for future application to practical production. 

Jessica Farrugia examined mold in cheese using the HSI technique in the 400-1000 nm range [71], 

using the PCA method to locate early mold in cheese after scoring the hyperspectral images in the visible 

portion, for agar and cheese, the first three principal components can contain more than 99% of the total 

variance, using the second principal component projection to highlight mold on cheese that is true for the 

presence of contaminants on the test samples. Although the mold on the cheese could be detected by map fusion, 

no distinction was made to distinguish the mold category and content. Sholeem Griffin from the same 

laboratory developed a sterile cheese model to study the potential of HSI technology for fungal detection [72]. 

The model cheese was challenged with S. aureus to create an untrained PCA model that could be used to 

compare the cheese model after colony formation to determine a generalized cheese model for fungal 

contaminant assessment by HSI technology. The above two methods allow the application of the HSI technique 

to the detection of early colonization of solids and semi-solids of dairy products in industry, and can be extended 

to industrial-scale testing of other agricultural products.  

Sun Yedemonstrated the fungal growth characteristics of gray mold, rhizobia and conidia using HSI 

technique in the range of 400-1000 nm [73]. Qualitative analysis was performed in the time range, and it was 

concluded that the three fungi were most easily distinguished at 36 h with an accuracy of 97.5%, and the R
2
 of 

the growth simulation models for the three fungi in the training and validation sets were 0.9292, 0.9927, 0.7832 

and 0.8594, respectively. The study had a single variable for inoculation on the medium, and the environment 

for complex samples in actual production further research is needed. 

Hongzhe Jiang team investigated the detection of oleaginous fruit mold in natural environment using 

HSI technique in the visible light (400-1000 nm) range [74]. The best modeling method was PLS-DA with an 

accuracy of 90.8%, and the three modeling methods were PLS-DA, KNN and CART. The model was simplified 

by selecting the feature wavelengths through competitive adaptive reweighted sampling algorithm (CARS), and 

the correct classification rate of 83.3% was obtained for the prediction set of CARS-PLS-DA model. Minor, 

moderate and severe mold can be effectively distinguished by principal component analysis combined with 

visualization studies. 

Yan-Ru Zhao et al. used NIR-hyperspectral techniques to obtain images of rape petals (874-1,734 nm) 

to detect infection with Sclerotinia sclerotiorum[75]. The characteristic wavelengths were selected using two 

methods, PCA and RF, and the optimal model was established based on the full and optimal wavelengths using 

the LS-SVM method, and finally the model was evaluated using the area under the subject's working 

characteristic curve (AUC).The model classification is correct at 100% under the full band and the highest 

model accuracy of 97.48% is established by the XSL-LS-SVM method under the optimal band. The model 

evaluation is 1 under the full band and 0.929 under the optimal band. How to improve the classification 

accuracy by modeling in the optimal waveband is the key to the future application of hyperspectral technology 

for large-scale detection. 

 

4.2 Application of HSI Technology in Bacterial Detection 

Bacterial diseases cause agricultural decay, endanger food safety and have an impact on future 

agricultural development, while bacteria are more harmful directly to humans.There are still relatively few 

applications of hyperspectral techniques for the detection of bacteria, and the following is a description of the 

rapid nondestructive detection of bacteria by HSI techniques. 

The potential of multivariate data analysis as a rapid non-destructive tool for bacterial detection and 

differentiation was investigated by Williams et al. using NIR HSI in the range of 920-2,514 nm for Bacillus, 

Escherichia coli, Salmonella enterica, Staphylococcus aureus and Staphylococcus epidermidis[76]. Mean central 

data were analyzed using PCA. Standard normal variables (SNV) correction and Savitzky-Golay technique 

(second order derivative, third order polynomial; 25-point smoothing) were used. The correct rate of 

distinguishing different bacteria in both PCA scoring plots in the PC1 and PC2 directions was less than 50%, 

and the rate of distinguishing B. cereus from Escherichia coli and Streptococcus enteritidis in the PC1 direction 

was 59%, and in the PC2 direction was 6.85%. The separation of Staphylococcus epidermidis from Bacillus 

cereus and Staphylococcus aureus along the PC1 (37.5%) direction was not very effective from an overall view, 

and the reason here is mainly that this is related to the difference in amino acid and carbohydrate content. A 

partial least squares discriminant analysis (PLS-DA) model was used to validate the PCA data. The best 

predictions were made for Bacillus cereus and Staphylococcus spp. and the correct percentage of predicted 

pixels ranged from 82.0 ~ 99.96%. But there is also the specificity reported if for a colony more than 50% of the 

pixels were identified as a particular bacterium using the pixelation method. To solve the above trouble, it is also 
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necessary to combine pixel and spectral information to improve the prediction accuracy. 

Lin Huang studied the total viable count (TVC) in pork by acquiring hyperspectral images at 450-900 

nm, selecting 100 feature variables using the PLS method and image variables by the PCA method, and 

modeling them using the back propagation artificial neural network (BP-ANN) method [77]. The model based 

on data fusion outperformed other models with prediction set RMSEP = 0.243 lg CFU/g, 𝑅𝑃
2  = 0.8308. Feng 

also used hyperspectral techniques for the detection of TVC in chicken breast, and both studies used different 

modeling approaches but combined graphical fusion to improve the prediction set model while visualizing the 

exact location of TVC [78]. The combination of map fusion techniques is an important direction for the future 

use of hyperspectral techniques for microbial detection in agricultural products. 

Danrui Liexplored the potential of the HSI technique to measure surface contamination of freshly cut 

potato slices in the visible-near infrared (Vis-NIR, 400-1000 nm) region [79]. Four preprocessing methods 

(first-order derivative (F-D), second-order derivative (S-D), multiplicative scattering correction (MSC), standard 

normalized variables (SNV)) and their combinations were investigated, and linear and nonlinear regression 

models were developed using genetic algorithms for the processing of spectral data and the selection of 

characteristic wavelengths. The prediction accuracy of the full-spectrum-based backward-passage neural 

network (BP-NN) model was 97.6%, and the residual prediction deviation (RPD) was 6.7. In this study, a 

non-thermal environment-friendly method was successfully explored for the optimal inactivation time (20 min) 

of Escherichia coli on the surface of fresh-cut potato slices, and the overall results showed that HSI can provide 

rapid and nondestructive detection of foodborne pathogens on the surface of fresh-cut products. The overall 

results showed that HSI can provide a method for rapid and non-destructive detection of foodborne pathogens 

on the surface of fresh-cut products. The model built based on the full spectrum is computationally intensive and 

has potential stability problems. 

Feifei Tao studied pork tenderness and E. coli contamination by HIS technique in the visible-near 

infrared (Vis-NIR, 400-1000 nm) range [80].The scattering profile was fitted using the Lorentz distribution 

function to obtain three parameters a (asymptote), b (peak) and c (full width at b/2).The results showed that the 

correlation coefficients of the MLR models using parameters a, b, (b-a) and (b-a)/c to predict pork tenderness 

were 0.831, 0.860, 0.856 and 0.930, respectively.For E. coli-contaminated pork, the RCVs of the MLR models 

based on parameters a and a&b&c were 0.877 and 0.841, respectively.The overall study showed that the 

spatially resolved hyperspectral scattering technique combined with multiple linear regression was able to 

predict pork tenderness and E. coli contamination.Yao-Ze Feng et al used HSI in the visible-near infrared 

(Vis-NIR, 400-1000 nm) range to classify three strains of E. coli (i.e., E. coli O8, O11 and O138), two strains of 

Listeria monocytogenes (i.e., L. monocytogens and L. seeligeri) and golden Staphylococci were subjected to 

rapid classification[81].After three chemometric methods (comparing genetic algorithm, particle swarm 

algorithm, and IWO algorithm) were optimized, the IOW algorithm was finally selected to be more 

effective.After building a simplified model by three methods of feature wavelength selection through 

competitive adaptive reweighted sampling (CARS), genetic algorithm (GA) and successive projection method 

(SPA), the effect is the best correction and prediction of the simplified IWO-SVM model with feature 

wavelengths selected by CARS is 97.2% and 96% respectively.This study realizes that the HSI technique holds 

great promise for the classification of bacteria at the subspecies level. 

Ernest Bonah used visible near infrared (Vis-NIR, 400-1,000 nm) HSI technique to study (Escherichia 

coli ATCC 25922, Escherichia coli O157: H7 ATCC 35150, ampicillin-resistant Escherichia coli, Listeria 

monocytogenes ATCC 19115, Staphylococcus aureus ATCC 25923, (Methicillin-resistant Staphylococcus 

aureus T34, Salmonella enterica CICC 21482, Salmonella typhimurium CICC 22956) are the best models for 

the classification and discrimination of eight bacteria[82]. After comparing the results the final 

CARS-PSO-SVM model was established with the highest accuracy of 99.47% and 98.44% in training and 

prediction, respectively.In the same year he used visible near infrared (400-1,000 nm) HSI technique and partial 

least squares regression algorithm (PLSR) for rapid monitoring of foodborne pathogenic bacteria (E. coli O157 

and S. aureus) contamination in fresh pork 
[82]

.The full band was then selected for characteristic wavelengths 

using population analysis (MPA), intelligent optimization algorithm and mixed variable optimization algorithm, 

and the VCPA-GA algorithm had the highest RPD for E. coli (Rp
2  = 0.9977; RMSEP = 0.1532; RPD = 13.5910), 

S. aureus (Rp
2  = 0.9960; RMSEP = 0.1225; RPD = 16.8032).This study is quite promise in model, make full use 

of the advantages of hybrid strategy use a smaller optimization variable space advantageous algorithm to 

improve the accuracy of the model, while the location of bacteria can be located, take full advantage of the 

fusion with the map, for the next HSI technology in the food industry for real-time monitor of bacterial control 

and inactivation mechanism. 

 

 

 

4.3 Application of HSI technology in virus detection 
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HSI technology for the detection of viruses is relatively little research, but viruses produce significant harm 

to agricultural products as well as human life and health, the following is my literature from recent years to 

identify the HSI technology to detect viruses related reports. 

Qing Gu et al. used HSI technique in the range of 400-1000 nm for tomato wilt virus detection [83]. 

Three feature wavelength selection methods were used to select 128 feature wavelengths, with continuous 

projection method (SPA), enhanced regression tree (BRT) and genetic algorithm (GA).The 128 bands were 

analyzed by machine learning algorithms (ML) including Augmented Regression Trees (BRT), Support Vector 

Machines (SVM), Random Distribution Forests (RF) and Categorical Regression Trees (CART).The results 

show that the best results can be obtained with an average overall accuracy of 85.2% and an area under the 

receiver operating curve of 0.932 using the characteristic wavelength selected by SPA as the input quantity and 

the BRT algorithm as the model.The results of band selection and variable contribution analysis of BRT 

modeling indicated that the NIR spectral region is informative and significant for the identification of tobacco 

infested and healthy leaves. 

Hoonsoo Lee classified cucumber green spot mosaic virus (CGMMV)-infested watermelon seeds [84]. 

The classification results indicated that the HIS technique could be applied to the watermelon residual seed 

screening technique.Sarah L. MacDonald also tested for grapevine leafroll virus 3 (glav-3) in grape 

farms.Drones combined with HSI technology can provide accurate monitoring and prediction of vineyards in 

natural environments. This research moves from the laboratory to practical application scenarios, providing a 

further development of HSI technology applied to agricultural production. 

 

IV. Conclusion And Future Trends 
This paper reviews the application of HSI technology for microbial detection and concludes that HSI 

technology can have great potential for microbial detection.However, a large number of studies have been 

conducted on assays in a single setting.The natural environment in which agricultural products exist is complex 

and variable, and the types of microorganisms they contain are beyond human control, making it more difficult 

to monitor early infection of agricultural products with microorganisms.The above reported qualitative and 

quantitative testing of fungal contaminated agricultural products can achieve detection accuracy of more than 

90%, and the accuracy of mycotoxin detection is between 80% and 100%.The reason for this difference is that 

the fungus damages the agricultural products and changes the physical and chemical properties of the 

agricultural products during the growth process.However, agricultural products contaminated only with 

metabolites of microorganisms have relatively little change in their own physicochemical properties.In addition, 

the use of HSI technology to detect some metabolites in cereals such as aflatoxin content and other national 

standards are very low, it is difficult to achieve high precision quantitative detection, and the detection threshold 

can reach the upper limit of the law issued by the food safety section. 

In response to the above limitations of HSI technology, and to future research trends. First, to make 

HSI technology more suitable for automatic industrial inspection, the cost of HSI instruments must be 

reduced.Therefore, the software and hardware of HSI systems should be further improved to develop more 

cost-effective HSI systems, develop convenient handheld, dependent on other equipment for different working 

environments, improve their compatibility, and further make HSI technology for the inspection market.Second, 

there is a large amount of redundant data in hyperspectral images, and it generally takes a long time to obtain 

hyperspectral data and select specific models in the face of detecting different substances.It has become an 

inevitable trend to develop an HSI system that can obtain spectral images of only a few characteristic 

wavelengths.The development of hyperspectral detection technology requires more hyperspectral hand-held 

instruments. From the simplest detection sample simplification to detection sample diversification, as well as 

functional diversification development, application in different places.Of course, it is also necessary to design 

optimal algorithms to enrich the variable selection methods.Finally, the hyperspectral data have severe 

multi-collinearity, resulting in poor stability performance of the proposed model and lack of convincing 

experimental results.In future research needs to be explored around the shortcomings faced, and research into 

efficient, robust and accurate detection models will be another new development trend. At the same time design 

specific HSI technology instruments to detect products, has achieved rapid and accurate detection purposes 
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Table 1 Development of various microorganisms in the detection of hyperspectral techniques. 
Detection object product Spectral 

range 

Wavelengths 

selection 

methods 

The modeling 

method 

Accuracy refer

ence 

F.Subglutinans 
F.Proliferatum 

F.Verticillioides 

NA 1100-220
0nm 

PCA PLS-DA 98.6%;66.6%;16.8% [25] 

Fusarium;DON Wheat 960nm-1
700nm 

All band 1-KNN 
3-KNN 

FDK 85%、 

DON 80% 

[51] 

DON Wheat 900nm-1
700nm 

All band PLS;SVM;LPLS-
S 

 

RMSEC = 
47.37mg/kg;42.39mg/kg;

40.25mg/kg 

RPD = 1.92;2.04;2.24 

[49] 

Fusarium Wheat 400-1000

mm 

All band LDA 92% [52] 

Fusarium 

DON 

Wheat 400 

-1000 nm 

1000-250

0nm 

GA MSC-GA-SAE;S

NV-GA-SAE 

 

100%;96% [53] 

F.verticillioides、 

F.graminearum 

Maize 1000-206

2nm 

PCA PLS-DA 100% [54] 

AF38;F283; 

AF2038 

 400-1000 

nm 

GA SVM 75%;97%;99% [55] 

AFB1 Maize 
(yellow,

white, 

purple) 

1100-170
0mm 

 PLS-DA 90.7%;92.3%; 
96.9% 

[56] 

AFB1 Maize 400-1000 

nm 

PCA FDA >96% [57] 

AFB1 Maize 1000-250
0nm 

PCA FDA、PLS-DA 100%;96% [57] 

AF13、AF36 Maize 900-2500 

nm 

RF PLS-DA 

I-RF-PLSDA; 

II-RF-PLSDA 

96.3%;97.8% [58] 

AFB1 Peanut, 

 

400-1000

nm 

RBF RBF-SVM 95.5% 

RMSE = 0.0223 
R2 = 0.9785 

 

[59] 

AFB1 Maize、 

Peanut 

400-1000
nm 

 1D-CNN 
 

92.11%;96.35%; 
94.64% 

[60] 

AFB maize 
flour. 

430-1000
nm; 

1000-240

0nm 

BWVR; 
WBWVR 

SVM;KNN; 
DT 

96.18% [61] 

AFB1 Almond 

kernels 

900-1700

nm 

CARS PLSR R2 = 0.958 

RMSEP=0.089ug/g 

[62] 

Colletatrichmtrsrcanm;Colexotr
ichwmpgloeoxponioidex 

potato 400-1000
nm 

CARS PCA;SVM 90.83%;94.17% [63] 

Gloeosporiumtheae-sinesis 

Miyake 

tea leaf 450-950n

m 

SectralRtioAaly

sis；AN 

Independent 

T-Text 

TARI；TANI. 98%；94% [64] 

Anthracnose olive 450-1050

nm 

 DL-CNN >85% [65] 

Anthracnose Strawbe
rry 

foliar 

450-950 
 

PLS SAM;SDA; 
CM 

80%;82%;94% [66] 

Aspergillus parasiticus, 
Aspergillus flflavus, 

Aspergillus glaucus, 

Aspergillus niger and 
Penicillium sp., 

 400-1000
nm 

SPA SVM 91.26%;87.30%;97.62%;
99.20%;91.27% 

[67] 

Aspergillus 

glaucus ;Penicilliumspp 

Canola 1000-160

0nm 

PCA LDA;QDA >90% [68] 

Aspergillus 

glaucus ;Penicilliumspp; 

Ochratoxin A 

Barley 1000-160

0nm 

PCA linear, quadratic, 

and Mahalanobis 

statistical 

classifiers 

>94%;82% [69] 

Aspergillus 

glaucus ;Penicilliumspp; 
Ochratoxin A 

wheat 1000-160

0nm 

PCA linear, quadratic, 

and Mahalanobis 
statistical 

classifiers 

 

>90%;>98% [70] 
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sporulation cheesele

ts 

400-1000

nm 

 PCA >99% [71] 

Botrytis cinereal; 
Rhizopus stolonifera; 

Colletotrichum acutatum 

Peach 400-1000
nm 

PCA PLSDA R2 = 
0.9292;0.9927;0.7382;0.

8594 

97.5% 

[73] 

Sclerotinia sclerotiorum Brassica 

napus 

874-1734

nm 

PCA;RF LS-SVM 97.48% [75] 

natural mildew Camelli
a 

oleifera 

400-1000
nm 

2DCOS; 
SPA; 

CARS 

PLSDA; 
KNN; 

CART 

90.8%;83.3% [74] 

Bacillus; 
Escherichia coli; 

Staphylococcus aureus; 

Staphylococcus; 
epidermidis 

 920-2514
nm 

PCA PLSDA; 82.0 ~ 99.96% [76] 

TVC prok 450-900 

nm 

PCA;PLS BP-ANN RMSEP = 0.243 lg 

CFU/g; 

= 0.8308 

[77] 

TVC chicken 

breast 

900-1700

nm 

AF;AS; 

K-M 

PLSR R=0.96 

RMSEPs = 0.4 lg CFU/g 

[78] 

Escherichia coli Potato 400-1000 
nm 

GA BP-NN; 
PLS 

R2 = 0.976; 
0.891 

[79] 

Escherichia coli Pork 400-1100

nm 

 MLR Rcv =0.877; 

0.841 

[80] 

Escherichia coli O8, O11,O138; 

Listeria monocytogens; 
Listeria seeligeri; 

Staphyloccocus aureus 

agar 

plate 

400-1050

nm 

CARS; GA; 

SPA 

PLSDA; 

SVM 

97.0%; 

96.0% 

[81] 

Escherichia coli O157 ; 
Staphylococcus aureus 

Pork 400-1000
nm 

 

MPA; Intelligent 
Optimization 

Algorithms; 

HVSM;CARS;
VCPA;MPA 

PLS R2
P = 0.9977,0.9960; 

RMSEP = 

0.1532,0.1225; RPD = 

13.59,16.8032 

[82] 

Wilt virus tobacco 400-1000

nm 

SPA;BRT;GA BRT; SVM; 

RF;CART 

85.2%;77.6% 

81.9%;72.4% 
72.4%; 

[83] 

CGMMV waterme

lon 
seeds 

948-2046

nm 
 

 PLS-DA; 

LS-SVM 

94.7%;94.7% [84] 

 

 
Figure 1. Wheat kernel kernel hypercube prepared by HSI technology 
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Figure 2. A classical HSI system 

 

 
Figure 3.Three acquisition modes of hyperspectral images 
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