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Abstract 
The objective of this paper is to perform star/galaxy/QSO classification using machine learning techniques and 

the spectroscopic data from the Sloan Digital Sky Survey (SDSS). In particular, the dataset contains many labelled 

spectral classes of stars (G, K, M, F, A), which will be utilised for stellar classification. Photometric features in 

multiple bands, including u, g, r, i, z, J, and H, serve as input features for the models. For star/galaxy/QSO 

classification, machine learning algorithms such as k-nearest neighbour (KNN), random forest (RF), and support 

vector machine (SVM) exhibit strong performance. For stellar classification, RF and SVM provided an advantage 

over KNN, and RF dominated all other models. Individually, RF provided a maximum accuracy of 97.17%, SVM 

provided an accuracy of 93.70%, and KNN was 63.66%. The area under the receiver operating characteristic 

(ROC) curve for all four models approaches 1, showing high classification reliability. Additionally, evaluation 

metrics such as accuracy, precision, recall, F-score, and Matthews correlation coefficient consistently exceed 0.5. 

This broad range of metrics led to an accurate and reliable assessment of model performance. The confusion 

matrices also indicated that the highest percentage of erroneous classifications occurred between galaxies and 

QSOs. Overall, these models effectively predict the nature of sources and accurately classify stellar types in the 

SDSS spectroscopic dataset. 

 

I. Introduction 

Astronomy has evolved from simple pictures of the night sky to large, massive digital movies of space 

in motion. Modern telescopes today are now collecting huge volumes of data every day, with some astronomical 

instruments expected to produce 750 terabytes of data each second once the Australian Square Kilometre Array 

Pathfinder is fully operational by 2025.  However, with the volume of astronomical data available today, there are 

many opportunities to apply sophisticated computational techniques and algorithms to analyse that data to better 

understand our universe. 

 

Stars, galaxies and quasars are celestial objects that can be categorised based on their many varying 

properties. A star is any massive self-luminous celestial body of gas that shines by radiation derived from its 

internal energy sources [9]. Galaxies are vast assemblages of stars, gas, dust and dark matter, held together by 

gravity and appearing in various shapes like spirals, ellipses or irregular clusters [5]. Quasars, or quasi-stellar 

objects, are extremely bright active galactic nuclei (AGNs) that are powered by a supermassive black hole. 

 

The Sloan Digital Sky Survey (SDSS) has played an important role in advancing our current 

understanding of celestial objects. It combines high-resolution imaging with spectroscopic data, and its detailed 

database contains numerous pieces of data that can be useful in classification, including redshifts, compositions, 

declinations, and motions. 

 

By categorising photometric and spectral data about these astronomical objects into different classes, we 

can gain valuable insights into their underlying physical processes and properties and how they can be valuable 

for predicting future astronomical phenomena. 

 

Before major advancements in technology, this task was performed using labour-intensive manual 

analysis of spectral data, a process that, while effective, isn’t able to match the rate at which the available datasets 

grow. Machine learning allows us to process large amounts of data, making this process immensely easier [3,4]. 

Multiple studies have shown the extreme potential of machine-learning algorithms such as Support Vector 

Machines (SVM) and Random Forests in classifying stars and galaxies [5]. 

 

However, classification using these machine learning algorithms is subject to some problems as well. 

Some of these algorithms have difficulty distinguishing between different features of astronomical bodies due to 

their extreme similarity, and this process also requires vast amounts of computational power to analyse and 

compare the data. Therefore, it is imperative to determine which algorithms have the highest success rate in 

classifying these celestial bodies. 
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II. Literature Review 
 

The classification of celestial bodies has been an important research area for many years. Scientists have 

employed various methods and machine learning (ML) models to improve how accurately we can classify stars, 

galaxies, and quasars. Earlier studies focused on traditional statistical models, whereas newer approaches use 

advanced Machine Learning (ML) techniques to achieve better results. 

 

B. Arsioli and P. Dedin[2] studied Support Vector Machines (SVMs) and other ML algorithms to classify 

blazars based on their synchrotron peak frequencies and multifrequency features. They found that SVMs had a 

balanced accuracy of 93%, with spectral slopes and infrared colours being key factors in classification. 

 

Sunitha P. et al. [8] applied Multi-Class SVM (MSVM) to classify astronomical objects using image 

data. Their method involved preprocessing images with Otsu’s thresholding and extracting spatial and texture 

features. MSVM proved to be highly efficient in distinguishing stars, galaxies, and extended objects, making it 

useful for image-based classification. 

 

D. Fraix-Burnet et al. [6] explored unsupervised classification using the Fisher-EM algorithm on over 

700,000 galaxy spectra from the SDSS. This method grouped galaxies into 86 spectral classes with a 15% error 

rate. Unlike traditional clustering methods, Fisher-EM handled high-dimensional data better by focusing on the 

most important features, making it particularly useful for large-scale galaxy classification. 

 

Yulun Wu [5] emphasised the need for large sample sizes to improve classification accuracy. The study 

compared Logistic Regression and Decision Trees for classifying stars, galaxies, and quasars using SDSS data. 

The Decision Tree model achieved 99% accuracy, performing much better than Logistic Regression’s 87%. 

Decision Trees' ability to handle imbalanced datasets made them a strong choice for classification. 

 

Yu Bai et al. [1] tested random forests to categorise stars, galaxies, and quasars. Their study showed that 

random forests could achieve over 99% accuracy for stars and galaxies and 94% accuracy for quasars using data 

from the SDSS and the Large Sky Area Multi-Object Fibre Spectroscopic Telescope. Random forests handled 

overlapping features and imbalanced datasets better than traditional methods while keeping low processing costs. 

 

Zhichen Lin [4] used K-Nearest Neighbours (KNN) combined with Principal Component Analysis 

(PCA) to classify stars, galaxies, and quasars. PCA reduced unnecessary features, making the model more 

efficient. The KNN model achieved an accuracy of 96%-98%, proving that selecting the right features can improve 

model performance. Lin also noted that feature scaling and dimensionality reduction techniques, such as the 

Standard Scaler and PCA, can reduce problems caused by dominant features and improve classification accuracy. 

 

Tracy X. Chen et al. [3] applied ML to a real-world problem by integrating it into the NASA/IPAC 

Extragalactic Database (NED) for classifying astrophysical journal articles. Their model had over 90% accuracy 

in replicating human classifications, showing how ML can efficiently handle large amounts of data in astronomy. 

 

Although ML models have many advantages, they also face some challenges. Performance can be 

affected by class imbalances and feature relationships. Wu [5] noted that datasets with fewer quasars could lead 

to biased predictions. Decision Trees address class imbalance by using impurity-based splitting criteria. Lin [4] 

emphasised that even similar stellar objects can have variations in their features, making large and high-quality 

training datasets essential. 

 

Many studies highlight the importance of selecting the appropriate algorithm for specific datasets. Arsioli 

and Dedin[2] found that SVMs worked best for multifrequency spectral data, while Wu [5] showed that Decision 

Trees performed well for photometric datasets. Lin [4] demonstrated that combining KNN with PCA improved 

efficiency, proving that different datasets require different approaches. 

 

Overall, advances in ML have significantly improved celestial classification, with newer methods 

continuously refining earlier models. As datasets grow larger and more complex, further research into hybrid 

models and automated feature selection will be essential to improving classification techniques. 
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III. Methodology 

This paper implements data from the Sloan Digital Sky Survey (SDSS), a comprehensive astronomical 

survey that provides detailed imaging and mapping of the universe [5]. The SDSS collected extensive amounts of 

multi-wavelength data using a 2.5-meter telescope that have made significant contributions to cosmology, galaxy 

formation, and stellar evolution [10]. Our paper particularly uses the most recent data set, Data Release 18, part 

of the SDSS-V project. Our study incorporates several variables from the SDSS dataset to differentiate between 

stars, galaxies and QSOs, as outlined in Table 1. 

 

Table 1: Variable Descriptions 

U The brightness of the object in the ultraviolet (U) band corresponds to a wavelength of around 3551 Å. 

G The brightness of the object in the green (G) band was measured at a wavelength near 4686 Å. 

R The brightness of the object in the red (R) band represents light with a wavelength close to 6166 Å. 

I The brightness of the object in the near-infrared (I) band, with a wavelength of approximately 7480 Å. 

Z The brightness of the object in the far-infrared (Z) band is measured at a wavelength around 8932 Å. 

Redshift A measure of how far and fast the object is moving away from Earth. 

Declination(dec) The angular position of the object relative to the celestial equator. 

Class The type of celestial object, such as a star, galaxy, or quasar. 

 

 
Figure 3.1: Correlation Matrix Heat Map 

 

The correlation matrix, shown in Fig. 3.1, elucidates the link between various factors, such as redshift, 

delta, run_id, rerun_id, and Target. For instance, a factor like redshift may correlate with an object’s apparent 

brightness/luminosity or type, as shown when looking at quasars, which often produce higher redshifts and distinct 

brightness characteristics due to them being located at greater distances. 

Our study mainly focuses on redshift and declination as the primary features for the classification of 

stars, galaxies and quasars. This is due to the fact that redshift, which indicates an object’s distance and velocity, 

is majorly different for each celestial object, as portrayed in Fig. 3.2: stars typically are subject to low redshift, 

galaxies generate moderate redshift, and quasars display high redshift, demonstrating their immense distance from 

our planet. Moreover, declination aids us in discerning between spatial distribution patterns of stars, galaxies and 

quasars due to it being a key indicator of the precise location of astronomical bodies in space. 
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Figure 3.2 

 

 
Figure 3.3 

 

Figure 3.3 displays the process followed in this paper. It begins with the input of structured SDSS data into 

software. Then, the data is processed using various resampling methods to address inconsistencies, such as class 

imbalances and to normalise feature values, ensuring that each celestial object is represented equally. We made 

use of some machine learning methods like K-Nearest Neighbours (KNN), Random Forest (RF), and Support 

Vector Machines (SVMs) to analyse and sort info about space objects and their trajectories.  

 

KNN determines the category of a given data point by evaluating the categories of its nearest neighbours based 

on a distance metric, such as Euclidean distance. The number of neighbours (K) plays a crucial role in the model's 

performance, where a smaller K value can lead to noise sensitivity, and a larger K value can cause over-smoothing.  

 

Given a dataset with 𝑆 number of samples, each observation  belongs to a class , and the classification of a new 

observation 𝑋′ is determined using equation 1: 

 

where the 𝐾 nearest neighbours are chosen based on the following distance formula: 

 

 

where  and  are feature values for samples 𝑖 and 𝑗, respectively. 

KNN is highly dependent on feature scaling, as features with larger magnitudes dominate the distance calculation. 

Therefore, normalisation using a Standard scalar is crucial for improving KNN's performance. It works well for 

grouping stars or sorting galaxies, but it can slow down when there's a lot of data to compare.  
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Random Forest is an ensemble learning method that constructs multiple decision trees and aggregates their 

predictions for improved accuracy and robustness. It is widely used for classification and regression due to its 

ability to handle large datasets and reduce overfitting. The algorithm operates by creating a collection of decision 

trees where each tree is trained on a bootstrap sample of the dataset, and a random subset of features is considered 

for splitting at each node. 

 

Given a dataset with S number of samples, each observation  belongs to a class , and the final prediction of 

Random Forest for a new observation 𝑋′ is obtained using equation 6: 

 

 

where  represent individual decision trees in the ensemble.  

 

Each tree makes an independent prediction, and the final classification is determined by majority voting in 

classification tasks or averaging in regression tasks. The randomness introduced by bootstrapping and feature 

selection helps Random Forest mitigate overfitting and improve generalization. Additionally, Random Forest can 

efficiently handle datasets with missing values and categorical features. 

 

SVMs are good at drawing clear lines between data categories, which helps sort objects like stars and planets. 

They work well with small or unclear datasets, which is particularly handy in space missions with limited or 

imperfect data. 

 

IV. Results 
 

The study evaluated how tree depth and the number of trees affect the accuracy of a Random Forest 

model. Deeper trees consistently improved accuracy, but the improvements became negligible beyond a certain 

point. Also, more trees improved performance, but the improvement was less noticeable after 200 trees. The max 

accuracy of 97.17% was obtained with a depth of 8 and 200 trees; however, similar results were seen with other 

large configurations. Overall, accuracy can be improved by adding more trees and increasing the depth of the 

trees. 

  

The K-Nearest NeighFigure 4.2 is a confusion matrix that shows how well the KNN classification model 

distinguishes between galaxies (class 0), QSOs (class 1), and stars (class 2). The model has achieved an accuracy 

rate of 97.18%, indicating that it's doing a great job overall, especially with stars, as it correctly classified all of 

them. 

However, there were some errors with 130 galaxies being classified as QSOs, and 170 QSOs being 

identified as galaxies. This mix-up suggests that galaxies and QSOs have some similar features, which we 

discussed in this paper. Additionally, there was one minor error where a QSO was misclassified as a star. These 

errors indicate that we need to distinguish features between galaxies and QSOs better to improve accuracy 

bours (KNN) algorithm was evaluated for its performance in classifying galaxies, quasars (QSOs), and 

stars. The results indicate that the accuracy of the algorithm improves as the number of neighbours (k)  increases. 

At k=1, the accuracy was 58.81%, reflecting the algorithm’s reliance on a single neighbour, which can lead to 

errors in noisy or overlapping datasets. With increasing values of k, the accuracy improved consistently, with the 

maximum recorded improvement of 63.66% when k=10. 
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Figure 4.1: Accuracy versus Number of Trees in Random Forest 

 

Figure 4.1 displays an Accuracy graph when the number of trees and depth change. As the depth and number of 

trees increase, the accuracy of the Random Forest model also increases. Deeper trees (depth 6-9) achieve the 

highest accuracy (97-98%), while shallower trees (depth ≤3) don't perform well, especially as tree count increases. 

An optimal balance of Depth 6-9 with 100-200 trees ensures high accuracy and efficiency. 

 

 
Figure 4.2 Confusion Matrix for KNN Classification 
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Figure 4.3 KNN Accuracy vs. Number of Neighbours 

 

Figure 4.3 demonstrates the relationship between the KNN algorithm's classification accuracy and the number of 

nearest neighbours(k). Generally, as k increases, the accuracy of the KNN model improves. Initially, lower k 

values result in substandard performance due to sensitivity to noise, while larger k values stabilise accuracy. This 

trend in the values of k also suggests that regulating k is crucial for optimizing KNN, as excessively small or large 

values can impact classification effectiveness. 

 

V. Conclusion 
In conclusion, this study analysed the classification of stars, quasars (QSOs), and galaxies using redshift 

and declination as key features, applying Random Forest (RF), K-nearest neighbours (KNN), and Support Vector 

Machine (SVM) models. Among them, Random Forest demonstrated the highest accuracy of 97.17%, showing 

its exemplary ability to handle complex astronomical data and capture complex decision boundaries. SVM 

followed next with an accuracy of 93.7%, proving its effectiveness in distinguishing celestial objects, particularly 

in high-dimensional feature spaces. Lastly, KNN achieved an accuracy of 63.66%, portraying its limitations due 

to sensitivity to distance metrics and data distribution. 

The findings presented above highlight the advantages of ensemble-based and kernel-driven methods and 

algorithms in astronomical classification. The superior performance of RF and SVM indicates that employing 

additional features or using advanced, modern techniques such as deep learning could further enhance accuracy. 

Future research can also delve into the impact of feature engineering, feature selection and larger datasets to 

further refine model performance. Advancements in machine learning algorithms, which could allow them to 

perform classification directly using images/visual data, will also produce higher accuracy. Ultimately, 

implementing machine learning for celestial categorisation has already had multiple significant benefits for sky 

surveys and large-scale astronomical research. 
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