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Abstract: Supersymmetric quantum mechanics has been developed as an elegant analytical approach to one 

dimensional problems. It generalizes the ladder operator approach used in the study of the harmonic oscillator. 

In this treatment, the factorization of a one dimensional Hamiltonian obtained using “ charge operators”. For 

1D harmonic oscillator, lowering and raising charge operators can be used. It not only allow the factorization 

of 1D Hamiltonian but also form Lie algebraic structure which generates isospectral SUSY partner 

Hamiltonians. In addition several different approaches have been employed to study generalized and 

approximate coherent states of systems other than harmonic oscillator. In this paper, algebraic treatments being 

applied to the extension of coherent states for shape-invariant systems.   
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I. Introduction: 
 The eigenstates of the various partner Hamiltonians are connected by applications of the charge 

operators. As an analytical approach, SUSY- QM approach has been utilized to study a number of quantum 

mechanical problems including the Morse oscillator [6] and the radial hydrogen atom equation. It can be used in 

discovery of new exactly solvable potentials. The harmonic oscillator is fundamental to a wide range of physics 

including the electromagnetic field, spectroscopy, solid state physics, coherent state theory and SUSYQM. The 

broad application of the harmonic oscillator stems from lowering and raising ladder operators which can be used 

to factor the Hamiltonian of the system. For example, cannonical coherent states are defined as the eigenstates 

of the lowering operator of the harmonic oscillator and they are also minimum uncertainty states which 

minimize the Heisenberg uncertainty product for position and momentum. The lowering operator of the 

harmonic oscillator annihilates the ground states and it minimizes the HUP (Heisenberg Uncertainty Product).  

 Conventional harmonic oscillator coherent states correspond to those states which minimizes the 

position – momentum uncertainty relation. However, these harmonic oscillator coherent states are also 

constructed by applying shift operators labelled with points of the discrete phase space to the ground state of the 

harmonic oscillator, known as “ fiducial state ”[7]. But, Klauder and Skagerstam choose to define coherent 

states in broadest sense. Similarly, the charge operator in SUSY-QM annihilates the ground state of the 

corresponding system. Let us construct system-specific coherent states for any bound quantum system by 

similarity between treatment of harmonic oscillator and supersymmetric quantum mechanics. 

 

II. System-Specific Coherent States 
 On the basis of harmonic oscillator coherent state, the analysis of a bound quantum system in terms of 

the SUSY Heisenberg uncertainty principle suggests that construction of system-specific coherent states based 

on the SUSY-QM ground state. Similarly, the procedure for creating an over- complete set of such coherent 

states is to apply the shift operator to the ground state as a fiducial function [7, 8], as 

𝜓∝ 𝑥 =  𝑥 | ∝ =  𝑥|𝐷 (∝)|   𝜓0 = 𝑁𝑒𝑖𝑘0 𝑥−𝑥0 𝑒−𝑥0 
𝑑
𝑑𝑥

 𝜓0(𝑥) 

                                                        = 𝑁𝑒𝑖𝑘0 𝑥−𝑥𝑜  𝜓0 𝑥 − 𝑥𝑜 ,   …(1) 

 Where N is the normalization constant.  

The raising and lowering operators for the shift operator are given by 𝑎 + =  𝑥 − 𝑖𝑝 𝑥 / 2  and 𝑎 =

 𝑥 + 𝑖𝑝 𝑥 / 2 respectively. The quantity ∝= (𝑥𝑜 + 𝑖𝑘0)/ 2 is a point in the phase space which completely 

describes the coherent state. Thus, the functions 𝜓∝  form an overcomplete set of the coherent states in the 
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standard phase space which are specifically associated with the quantum-mechanical system described by the 

SUSY- displacement 𝑊(𝑥). 

 Let us consider a coordinate transformation given by 𝑥 ′ = (𝑥 − 𝑥𝑜) for the system-specific coherent 

states in equation (1). The system-specific coherent state becomes 

                                                                      𝜓∝ 𝑥
′ = 𝑒𝑖𝑘0𝑥

′
𝜓0 𝑥

′ ,   ….(2) 

 Where 𝜓∝ 𝑥
′  is the normalized real-valued ground state wave function, and thus 𝜓∝ 𝑥

′  is also 

normalized. The momentum operator is invariant under the coordinate transformation (i.e., 𝑝 𝑥 ′ = 𝑝 𝑥). It is clear 

that  

                                                              {𝑊  𝑥 ′ + 𝑖𝑝 𝑥 ′ }|  𝜓∝ = 𝑖𝑘0|  𝜓∝    ..(3) 

 The averaged SUSY-displacement for the system-specific coherent state is given by  

   𝑊0,∝ =  𝜓∝ 𝑊  𝜓∝ =  𝜓∝
∗ 𝑥 ′ 𝑊 𝑥 ′ 𝜓∝ 𝑥

′ 𝑑𝑥 ′∞

−∞
  

     = − 𝜓0 𝑥
′  

𝑑𝜓0(𝑥 ′ )

𝑑𝑥 ′
 𝑑𝑥 ′ .

∞

−∞
                        …(4) 

 Again, it follows from integration by parts that 𝑊0,∝ = 0  for all system- specific coherent states. 

Similarly, the averaged momentum for the system-specific coherent state is given by  

                                  𝑝0,∝ =  𝜓∝ 𝑝 𝑥 ′  
 𝜓∝ = 𝑘0 − 𝑖  𝜓0 𝑥

′ 
𝑑𝜓0(𝑥 ′ )

𝑑𝑥 ′

∞

−∞
𝑑𝑥 ′  .   ….(5) 

 Because the integral is equal to zero, we get 𝑝0,∝ = 𝑘0. Then equation (3) can be rewritten as 

                                        {𝑊  𝑥 ′ + 𝑖𝑝 𝑥}|  𝜓∝ =  𝑊0,∝ + 𝑖𝑝0,∝ | 𝜓∝                     ….(6) 

 Analogous to the uncertainty condition for the ground state. This equation implies that the system-

specific coherent state |  𝜓∝  minimizes the SUSY- displacement-momentum uncertainty product ∆𝑊 ∆𝑝 𝑥 ′  for 

the displaced coordinate 𝑥 ′ = 𝑥 − 𝑥0. 
 

III. Discretized System-Specific Coherent States 
 A discretized SUSY-QM coherent state basis can be constructed by discretizing the continuous label 

∝= (𝑞 + 𝑖𝑘)/ 2 and setting up a Von Neumann lattice in phase space with an appropriate density D. The 

discretized system-specific coherent state basis is given by  

                         𝜓∝𝑖
 𝑥 =  𝑥| ∝𝑖 = 𝑁𝑒𝑖𝑘𝑖(𝑥−𝑞𝑖)𝑒𝑥𝑝 − 𝑊 𝑥 ′ 𝑑𝑥 ′𝑥−𝑞𝑖

0
  ….(7) 

 Where i=1, …, M and M is the number of basis functions. The phase space grid points are defined in 

[11] and we can write  

                                   𝑞𝑖 , 𝑘𝑖  =  𝑚∆𝑥 
2𝜋

𝐷
,
𝜋

∆𝑥
 

2𝜋

𝐷
 ,   𝑚,𝑛 ∈ 𝑍                     …..(8) 

 where m and n are an  integers, hence i can be thought of as a joint index consisting of m and n. The 

quantity D is the density of grid points in units of 2𝜋ℏ. As discussed in Klauder and Skagerstam’s book [7], 

generalized coherent states constructed by applying displacement operators to a fiducial state are overcomplete; 

however, completeness of the discretized system-specific coherent states in equation (7)  has not been 

established here.  

 Since the ground state solves the time-independent Schrodinger equation for the corresponding 

Hamiltonian, the system-specific coherent states build in the dynamics of the system under investigation. This 

property leads to the expectation that these dynamically-adopted and system-specific coherent states will prove 

more rapidly convergent in calculations of the excited state energies and wave functions for quantum systems 

using variational methods. 

 By using the Rayleigh-Ritz variational principle, let us construct a trial wave function in terms of a 

linear combination of the system-specific coherent states  

                                                              | 𝜓 =  𝑐𝑖|  ∝𝑖 ,
𝑀
𝑖=1     ……(9) 

 Where 𝑐𝑖  are the coefficients.  

Because of the non-orthogonality of the system-specific coherent states, the energy eigenvalues and wave 

functions are determined by solving the generalized eigenvalue problem [12] such that 

                                                                    𝐻𝐶 = 𝐸𝑆𝐶,    ……(10) 

 where 𝐻𝑖𝑗 =  ∝𝑖 |𝐻| ∝𝑗   is the matrix element of the Hamiltonian, 𝑆𝑖𝑗 =  ∝𝑖 | ∝𝑗   is the overlap 

matrix, and C is a vector of linear combination coefficients for the eigenvector. Therefore, solving equation (10) 

yields the variational approximation to the eigenvalues and eigenvectors of the Hamiltonian operator. 
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IV. Results And Discussion 
The application of SUSY-QM to non relativistic quantum systems generalizes the powerful ladder 

operator approach used in the treatment of the harmonic oscillator. The lowering operator of the harmonic 

oscillator annihilates the ground state, while the charge operator annihilates the ground state of corresponding 

quantum systems. The similarity between the lowering operator of harmonic oscillator and SUSY charge 

operator implies that the superpotential can be regarded as a system-specific generalized displacement variable. 

Analogous to the ground state of the harmonic oscillator which minimizes the HUP, the ground state of any 

bound quantum system was identified as minimizer of SUSY HUP. It was observed that such dynamically 

adopted coherent states yields significantly more accurate excited state energies and wave functions than were 

obtained with the same number of the conventional coherent states and from the standard harmonic oscillator 

basis.  

 

V. Conclusion 
 The ladder operator approach of the harmonic oscillator and SUSY-QM formulation share strong 

similarity. This observation suggests that connection of the SUSY-QM with Heisenberg minimum uncertainty 

(𝜇−) wavelets should be explored. The SUSY-displacement with the SUSY HUP can lead to the construction of 

the SUSY minimum uncertainty wavelets and the SUSY distributed approximating functions. These new 

functions and their potential applications in mathematics and physics are in progress. 
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