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Abstract: A seismic velocity model that better approximates the effects of the gradually increasing velocities 

with depth due to compaction in clastic sediments is invested in the clastic sediment in Agbada Field in the 

Niger Delta in Nigeria. The velocity data were computed from seismic refraction survey. The time-distance data 

obtained were observed to yield to the theory of linear increase of velocity with depth; hence the curves 

generated were hyperbolic in shape.  This formed the basis of computation of the model parameters: Vo (top-

interface velocity) and k (vertical velocity gradient) by solving the hyperbolic sine equation [Sinh(kt/2) = 

(kx/2Vo) analytically. Graphical profiles were plotted using Microsoft Xcel software. The velocity function is 

represented as: V = 1712.70 + 1.083z. Constructions of raypaths originating from the shot point and emerging 

at each geophone position were observed to be arcs of circles as obtainable in a case of linear increase of 

velocity with depth. Similarly constructed wavefronts at the various values of arrival time, T with the equivalent 

values of k and Vo were observed to be curves which crossed the raypaths at right angles.  These results are 

consistent with theory and go further to show that the developed model obeys all the laws of refraction. The 

interpreted field data give average values of Vo and k to be 1712.70ms
-1

 and 1.083s
-1

 respectively. This method 

provides a basis for predicting the lateral and vertical velocity structure of the subsurface clastic sedimentary 

Niger Delta basin using a relatively small layer thickness with the assumptions that lithologies are sharply 

discontinuous and discrete are not considered and this will bring into play the recognition of change in facies, 

fractures, faults, unconformities and so on and this true in actual field situations. The modelled Vo and k values 

could also be used as estimates in any part in the study area prior to detailed exploration in the region. 

Key words: Velocity, clastic sediments, hyperbolic time-depth curves, wave fronts, wave paths, Central 

Depobelt, Niger Delta, Nigeria. 
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I. Introduction  
Velocity gradually increases with depth because of the effect of compaction.  Several velocity models 

have been suggested to describe the velocity profile in clastic sediments.  The simplest one is the piecewise-

constant model with a number of horizontal layers of different constant velocities [1, 2].  More complex models 

assume that velocity varies in a systematic continuous manner.  Of considerable importance is the linear 

increase of velocity with depth that is generally accepted and often confirmed by measurements of thin clastic 

rocks [3].    

The conventional method of computing seismic velocity data has been to fit time-distance plots as 

discrete linear segments, assuming that velocity is constant within each medium, ray paths are straight, layering 

is in discrete steps in a sedimentary region with clastic materials and that true increase in velocity continues 

downward indefinitely. These assumptions may mean no faults, no unconformities, no facies change and no 

fractures within the subsurface.  Conversely, velocity computations by analytic functions especially, the linear 

distribution of velocity with depth fits time-distance plots as hyperbolic sine curves, assuming that velocity 

varies in a systematic continuous manner and ray paths are arcs of circles.  This later model is a refinement over 

the use of the former. In actual practice, this type of model is sufficiently good so that it serves as a very 

excellent approximation of the actual velocity function that is more realistic in many sedimentary basins [4].  

One of such sedimentary basins in which this type of model has been applied is the United States coast of Gulf 

of Mexico which shows much similarity to the Niger Delta. Uko et al. [5] obtained a velocity gradient of 8.5s
-1

 

for east central Niger Delta in Nigeria. 

Modelling the subsurface velocity structure of the Niger Delta Basin applying the linear distribution of 

velocity with depth function is the major concern of this present work and is aimed at avoiding some of the 

limitations introduced by the assumptions due to the piecewise-constant velocity model mentioned above. Its 

objectives are to derive a robust computational model that closely predicts lateral and vertical velocity structure 
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of the Niger Delta, to derive a velocity gradient that can be used to determine the velocity at the depth of the 

weathered layer in the absence of any other information prior to exploration in the region, and to provide a 

characteristics reference model for the several areas of research that depend on the subsurface velocity structure 

of the Niger Delta in their analyses. Moreover, a velocity model of the subsurface-clastic sediments of the Niger 

Delta can be useful in detection of structures at varying depths, migration and lithologic investigations, 

stratigraphic detailing at different intervals of depth, conversion of time to depth section, and in detection of 

overpressured zones. 

 

II. Geology of the Study Area 
The Niger Delta occurs at the Southern end of Nigeria bordering the Atlantic Ocean and located 

between Longitude 4º - 9º E and Latitudes 4º - 6º N with the sub-aerial portion covering about 75,000km² 

extending more than 300km from apex to mouth (Fig. 1).  The regressive wedge of clastic sediments which it 

comprises is thought to reach a maximum thickness of about 12km [6]. 

As in many deltaic areas, it is extremely difficult to define a satisfactory stratigraphic nomenclature [6].  

The interdigitation of a small number of lithofacies makes it impossible to define units and boundaries of 

sufficient integrity to constitute separate formations in a formal sense.  However, three formation names are in 

wide-spread use [7, 8], corresponding to the portions of the tripartite sequence (Fig. 2) ranging in age from 

Eocene to Holocene. The primary source rock is the upper Akata Formation, the marine-shale facies of the delta, 

with possible contribution from interbedded marine shale of the lowermost Agbada Formation. Oil is produced 

from sandstone facies within the Agbada Formation, however, turbidite sand in the upper Akata Formation (Fig. 

2) is a potential target in deep water offshore and possibly beneath currently producing intervals onshore. The 

Akata Formation with an average thickness of at least 4500 m, consisting of marine clays with silty and sandy 

interbeds [9].  

A variety of structural trapping elements exists, including those associated with simple rollover 

structures; clay filled channels, structures with multiple growth faults, structures with antithetic faults, and 

collapsed crest structures. The primary seal rock in the Niger Delta is the interbedded shale within the Agbada 

Formation. The shale provides three types of seals-clay smears along faults, interbedded sealing units against 

which reservoir sands are juxtaposed due to faulting, and vertical seals. The Agbada Formation, which is 

characterized by Paralic to marine-coastal and fluvial-marine deposits mainly composed of sandstones and shale 

organized into coarsening upward offlap cycles.  The Benin Formation consists of continental and fluvial sands, 

gravel, and backswamp deposits (2500 m thick). 

 

  
Fig. 1:  Map of the Niger Delta showing the Agbada 3-D Program Map with Receiver and Source Lines. 
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Fig. 2:  The Different Lithofacie in the Niger Delta [9]. 

 

III. Theoretical Background  
 

3.1 Seismic Velocity Variation 

Seismic velocity, the speed of seismic waves in different geologic strata, is a key parameter in seismic 

processing and interpretation.  The knowledge of seismic velocity variation trend at any particular depth and 

lateral extent is very important in the recognition of reflectors and refractors with dip or horizontal beds.  

Variations in the thickness and velocity of layers are most pronounced near the surface because of the process of 

weathering which produces a layer of inhomogeneous and unconsolidated material at the earth’s surface called 

the weathering (low velocity) layer.  With older beds at depth, sediment velocities usually show only small 

variations except where the type of sediments change quickly, such as with reefs, salt domes, and faults.   

The assumption of constant velocity is not valid in general, the velocity usually changes as we go from one 

point to another in the subsurface. The changes in seismic velocity in the horizontal direction in more-or-less 

flat-lying bedding are for the most part small, being the result of slow changes on density and elastic properties 

of the beds.  These horizontal variations are generally much less rapid than the variations in the vertical 

direction where we are going from bed to bed with consequent lithological changes and increasing pressure with 

increasing depth.  

 

3.2 Velocity Functions 

The variation of seismic velocity with depth and time is a fundamental aspect of seismic work.  Several 

velocity models have been suggested to describe the velocity profile in sedimentary layers.  The simplest one is 

the piecewise-constant model with a number of horizontal layers of different, constant velocities given by Dix 

[1] and Hubral [2].  A comprehensive description of linear model can be found in the work by Slotnick [3].  

Higher order velocity functions, such as the classical exponential trend, parabolic, or Faust law, have been 

developed to describe the velocity distribution within thicker layers. The classical instantaneous linear velocity 

model is: 

   kzVzV ao )(        (1) 

and the classical exponential model (Slotnick, 1936) is: 

)exp()(
a

a
Ao

V

zk
VzV        (2) 

The classical exponential models are limited because they tend towards infinite velocity with 

increasing layer thickness.  Parameter Va is the top-interface instantaneous velocity, k is a constant vertical 

gradient in the linear model and ka is the gradient at the top interface in the exponential model.  Moreover, in 

Slotnick’s exponential model the gradient increases with depth which is in contradiction to the expected 

behaviour.  For large thicknesses, these models do not represent the actual, physical-compaction effect that 

occurs in sediment layers. 

A more realistic representation was suggested by Faust [10, 11] with: 

6,)(  nzAzV n
o

      (3a) 

where the gradient of velocity decreases with depth.  However, this model yields a vanishing velocity 

at the surface and is still not bounded at large depth.  Vanishing velocity at the surface can be avoided by 

introducing a reference depth: 
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n
fo zzAzV Re)(        (3b) 

Equivalently written as: 

n
aaao VznkVzV /1)(       (3c) 

where the parameters are the top-interface velocity Va, the top-interface gradient ka and the root index n. 

 

The parabolic model [12, 13]: 

zkVVzV aaao 2)( 2        (4) 

Also represents the decrease of velocity gradient with depth.  Like the Faust law, it is unbounded at large depth 

and therefore limited.  Actually, the parabolic model corresponds to the modified Faust with n = 2. Another 

alternative is the linear decrease of slowness S [14] with depth: 

AzSzS a )(       (5) 

Equivalently it can be written in terms of instantaneous velocity: 

)/()( 2 zkVVzV aaao        (6) 

 However, this model suffers because it requires a maximum-allowed depth z < zmax < Va/ka.  In addition, the 

velocity gradient increases with depth, which does not meet the expected geological trend. The quadratic law 

provides an additional degree of freedom but leads to a decrease in velocity with depth at a definite depth level z 

= ka/h, where the velocity reaches maximum value: 

2/)( 2hzzkVzV aao        (7) 

The varieties of instantaneous-velocity functions presented by Kauffman [15] include:  

(I)   nkzVV
1

0 1       (8) 

This function is of sufficient generality to cover a number of cases of practical importance; thus n = 1 and n = 2 

yield immediately the linear and parabolic functions respectively. With a slight rearrangement of constants the 

function above can be written in the form:  

 nAzV
1

        (8a) 

(II)   kzVV o  1       (9) 

The velocity is a linear function of depth.  This is a special case of (I) with n = 1 and is the one most commonly 

treated in literature. 

(III)   2

1

1 kzVV o        (10) 

The velocity is a parabolic function of depth.  This is a special case of (I) with n = 2, and has enjoyed a certain 

degree of popularity in literature.  This function has been used by Rice [16] as a basis for comparing several 

standard computing techniques and by Stulken [17] in an analysis of the errors in straight-ray computing 

methods. 

(IV)   3

1

1 kzVV o        (11) 

This is a special case of (I) with n = 3. 

(V)  n
o AzVV

1

        (12) 

 This function bears a superficial resemblance to the binomial expression of case (I).  Rutherford (1947) has 

computed the depth to a high-speed layer for the case where the overburden velocity is of this form with the 

exponent  

n = 2. 

(VI)  nAzV

1

        (13) 

 This special case of (V) with 0oV  represents an important group of functions having zero initial velocity.  

Some of the properties have been discussed by Goguel [18].  The functions are finding increasing use in 

applications to weathering problems. 

(VII)  
kz

oeVV         (14) 

The velocity increases exponentially with depth (for k > 0).  An analysis of this function has been given by 

Slotnick [3], and an application to the fitting of empirical data discussed by Mott-Smith [19]. 
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(VIII)     BAzVV  tanh1       (15) 

The velocity increases from  BVVo tanh1 following the form of the hyperbolic tangent function to a 

limiting value of 1V . 

(IX)  
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The function represents a rectangular hyperbola with centre at 1VV  , az  . The velocity increases from 
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 hyperbolically to a limiting value of 1V . 
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Here the velocity approaches infinity at the finite depth ozz   

(XI)    2/1221 zAVV o        (18) 

This function bears a superficial resemblance to the parabolic function considered in case (III). 

(XII)  

2/1

)(












hzz

z
AV       (19) 

The velocity increases from zero to a limiting value of A. 

Of all these functions, the type with considerable importance is the oldest, simplest, and most widely used linear 

model [3, 20]).  Together with its simplicity, experience shows that the Vo-K technique tends to work well in 

clastic sections, hence the choice of the linear instantaneous velocity depth-profile as a basis for this study. 

 

3.3 Velocity Modelling 

Velocity modelling is a physical or mathematical concept from which seismic velocity variations and 

effects can be deduced for better understanding of geophysical observations and subsurface geology.  Different 

kinds of velocity models are known to exist and are required for different purposes (For example, stacking, 

migration, or depth conversion). 

 

3.3.1 Piecewise-Constant Velocity Model 

This conventional method of interpretation of seismic data involves fitting Time-Distance curves as 

linear segments (Fig. 3).  This type of model assumes that velocity is constant within each medium, ray paths 

are straight, and layering is in discrete steps in a sedimentary region and that true increase in velocity continues 

downward indefinitely.  Based on these assumptions, the velocities and depths to different horizons in a media 

are calculated from intercept time and cross-over distances for various layers.  The velocity of each layer here is 

obtained from the inverse of the slope of the line segments corresponding to that layer in the time-distance 

graph.  The velocity calculated from the inverse slope of each line segment indicates the mean for the discrete 

velocities of each thin layer in range.  This could not be said to be very accurate because of the inability of 

refraction in this case to resolve small changes in density or acoustic impedance contrast in response to gradual 

changes in lithology with depth.  When there is no abrupt change of lithology and no large scale variation in the 

thickness of the main rock units as is the case in the Niger Delta, intercept time and cross-over distances become 

complex or break down completely because the time-distance line graph would be a smooth curve instead of 

distinct line segments.  This is the case with many sedimentary basins of the world.  
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Fig. 3:  Time-Distance graph for the discrete layers case models 

 

3.3.2 Linear Increase of Velocity with Depth Models 

In many sedimentary basins of the world such as the Niger Delta, the lithology actually tends to change 

gradually with depth of burial rather than in discrete steps at boundaries as widely assumed before now.  

Velocity in such basins increases continuously with depth because of differential compaction effects. By reason 

of its simplicity and close correspondence to the actual Velocity-Depth relationship in most clastic sedimentary 

materials, the function is given by: 

  kzVzV o )(        (20)  

 

where  )(zV  = velocity at depth, z below the surface, 0V  = top-interface instantaneous velocity, 

k = constant (velocity gradient). This has extensively been employed to represent the velocity variation in 

sedimentary basins [4]. The dimensions of  )(zV  and oV  are metres per second and that of z  is metres.  This 

implies that the dimension of k  is per second or better stated metres per second per metre.  The value of k  is 

the increase in velocity per unit depth or the acceleration factor.  This value is generally between 0.3 and 1.3 per 

second [21]. 

Refracted waves through a section with this kind of lithology can be visualized by assuming a series of 

thin layers, each of higher velocity than the one above and pass to the limit of an infinite number of 

infinitesimally thin members (Fig. 4).  Such limits correspond to a section having a continuous increase of 

velocity with depth.  The ray path would then have the form of a smooth curve which is convex downward, and 

then the time-distance curve, also smooth would be convex upward [4]. 

 

 
Fig. 4: Ray path on the side toward the shot for series of thin layers with small increments of velocity 

between them. 

 

Any medium as that described in Figure 4 in which the velocity increases linearly with depth, the wave 

paths are arcs of circles whose centres lie at a distance Vo/k above the horizontal line on the surface and a radius 

such that the rays will reach the refractor at a point having X  coordinate mid-way between that of the source 
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and of the receiver (Fig. 5). The refraction time-distance curve for formations of linear increase of velocity with 

depth is well approximated by a simple hyperbolic function given by Slotnick [20]: 

   

oV

kx

k
T

2
sinh

2 1     (21) 

where T = Time of arrival in seconds, k = Velocity gradient in per seconds, x = Distance between shot point 

and receiver, oV  = Velocity at depth zero (along the first layer). 

 
 

Fig. 5: Ray path and Time-Distance curve for linear increase of velocity with depth. 

 

3.3.2.1   Wave Path Theory 

Slotnick [20] had shown that in a medium in which the velocity increases with depth the function 

kzVV o   holds.  The wave paths are arcs of circles whose centre lie at a distance Vo/k above the surface.  

In particular, in a vertical section through a shot point through a line (of geophones) on the surface, the wave 

paths are circular arcs through the shot point whose centres lie on the line parallel to and at a distance Vo/k 

above the line on the surface as shown in Fig. 6. Each circle has its centre at the point with the coordinates 

  kVkpVpC oo /,/1:
2/122   where kp/1  is the radius of the circle passing through the shot point at 

origin, O; p (ray parameter) is the slope of the Time-Distance curve )/( dXdT  at any point of emergence of a 

particular ray on the earth’s surface. 

 

3.3.2.2    Wave Front Theory 

Consider a hypothetical subsurface consisting of two media, each with uniform clastic sedimentary 

properties, the upper separated from the lower by a horizontal interface at depth, z (Fig. 7).  The velocity of 

seismic wave in the upper layer is 0V  and that in the lower, 1V  with 1V > oV .  A seismic wave generated at a 

point O on the surface has energy travelling out from it in hemispherical wave fronts.  When the spherical wave 

fronts from O strikes the interface, where the velocity changes, the energy will be refracted into the lower 

medium according to Snell’s law. 

The process is demonstrated in Fig. 7 for the time corresponding to six wave fronts.  At point A on 

wave front 4, the tangent to the sphere in the lower medium becomes perpendicular to the boundary.  The ray 

passing through the point now begins to travel along the boundary with the velocity of the lower medium.  Thus, 

by definition, the ray OA strikes the interface at a critical angle (  1

1 /VVSin o


).  For the case of linear 

increase of velocity with depth, consider Fig. 8. Here, the mid-point Q of the line OP has the coordinates 

( 2/,2/ hx ).  The slope OP is hx / .  Accordingly, the slope QC, the perpendicular bisector of line OP 

is hx / .  The equation of QC is therefore: 

  02/)( 22  hxhHxX      (22) 
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Fig. 6: Circular wave path pertaining to the particular value of the parameter, p. 

 

Hence, the travel time from the shot point O to the point P:  hx,  in this medium is given by the relation: 

         khVVhxkCoshkt oo   2/1/1 2221
    (23) 

The equations of the wave are now immediately apparent.  They are defined as been the loci of the point for 

which the travel time is the same.  Accordingly, in Equation (24), the travel time is assigned a specific value T ; 

this locus is obtained by setting Tt  .  By rearranging the terms, we have: 

     2221)(2 hxaaTCoshkhVV oo       (24) 

This implies that: 

           )(/1/ 2222 xkTSinhkVkTCoshkVhX oo   (25) 

Interpreting Equation (6) geometrically, the wave fronts are circles whose centres are along the h - axis at the 

points    1)(/,0 kTCoshkVo  and whose radii are   )(/ kTSinhkVo , where T = the travel time 

corresponding to each wave front. 

 

 
Fig. 7: A hypothetical subsurface consisting of two media each with uniform elastic properties 

 

 
Fig. 8: Typical wavefront for the case of a linear increase of velocity with depth 

=V0/k 
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IV. Materials, Methods and Discussion 
4.1 Generation of Model Curves 

The linear increase of instantaneous velocity with depth model is illustrated with seismic refraction 

first breaks data acquired from a 3D reflection survey in the central Niger Delta. The various first breaks and the 

determined geophone offsets are shown in Table 1.  Fig. 9 shows a typical refraction time-distance curve fitted 

for the model employing a linear increase of instantaneous velocity with depth.  It can be noticed that there is an 

increase in arrival time with distance from the shot to the receiver.  This results from the fact that the length of 

the travel path of the refracted waves becomes greater at larger offset distances from the shot point.  To obtain 

smooth curve, it was constrained that the plot must start from the origin, that is (T, X) = (0, 0) and that all values 

less than the previous entry in the Table should be ignored. 

A visual examination of the sequence of the plotted points in Fig. 9 shows that a “smooth” curve of the anti-

hyperbolic sine type fits the data. 

                              

Table 1:   Typical First-Breaks Data 

 
Trace No. First Break Times (ms) Geophone Offset 

(m) 

1 129.60 176.63 

2 126.50 176.72 

3 140.80 190.23 

4 133.60 190.46 

5 145.10 215.40 

6 167.90 248.34 

7 192.50 286.12 

8 216.50 327.10 

9 239.00 370.45 

10 271.30 414.99 

11 292.50 460.83 

12 324.50 507.55 

13 354.20 554.63 

14 385.90 602.11 

15 416.00 650.21 

16 430.80 698.48 

17 457.10 747.10 

18 484.60 795.58 

19 527.50 844.52 

20 543.70 893.39 

21 567.50 942.47 

22 600.00 991.40 

23 619.20 1041.10 

24 645.80 1090.24 

25 714.90 1189.24 

26 740.20 1236.59 

27 762.90 1237.91 

28 783.30 1327.96 

29 804.00 1361.62 

30 825.80 1394.95 
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Fig. 9: Refraction Time-Distance Curve for Linear Distribution of Velocity 
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4.2 Computation of model parameters 

The model parameters k and V0 can now be determined since the data yields to the theory of linear 

increase of instantaneous velocity with depth. Considering the data in Table 1, the parameters k and Vo are 

determined analytically using the relationship (Equation 21) of the form: 

   

oV

kx

k
T

2
sinh

2 1        

Or equivalently: 

   

oV

kxkT
Sinh

2
)

2
(      (26) 

Mathematically, k and V0 are two unknowns to be determined.  At least two conditions are therefore required.  

Now, three sets of data are chosen from Table 1 as follows: 

  X = 415 m;  T = 271.3 ms = 0.2713 s   

  X = 845 m;  T = 527.5 ms = 0.5275 s 

  X = 1328 m;  T = 783.3 ms = 0.7833 s 

Substituting into Equation (7) we obtain: 

  

oV

kk
Sinh

2

415

2

2713.0









     (27a) 

  

oV

kk
Sinh

2

845

2

5275.0









     (27b) 

  

oV

kk
Sinh

2

1328

2

7833.0









     (27c) 

Dividing 27(b) by 27(a) we have: 

     kSinkSinh 27133.0036.25275.0     (28a) 

Again dividing 27(c) by 27(b) we have: 

     kSinkSinh 5275.05716.17833.0     (28b) 

Similarly, dividing 27(c) by 27(a), we obtain: 

     kSinkSinh 2713.02.37833.0      (28c) 

The solution is sought in Tables 2 (a), (b) and (c) and Figs. 10 (a), (b), and (c) below:  

In column I of the Tables, the values of k are given in the range (0.1 to 1.3) in which the solution might be 

expected to fall.  Columns II, III, IV and V are obtained by multiplication as indicated by the headings of those 

columns, motivated by Equations 28 (a), (b), and (c).  Column VI is obtained by the multiplication as indicated.  

The place where columns III and VI have equal values for the same value of k is sought.    

A study of Table 2 indicates that this occurs between k = 1.15 and 1.2.  This problem is reduced to a graphic 

solution as shown in Fig. 10 (a) in which columns III and VI are plotted as functions of k and the intersect 

found. 

 

Table 2 (a):  Analytical Solution for Equation 28 (a) 
I II III IV V VI 

K .5275K SINH(.5275K) .2713K SINH(.2713K) 2.036SINH(.2713K) 

0.1 0.05275 0.0528 0.02713 0.02713 0.0552 

0.15 0.07913 0.0792 0.040695 0.04071 0.0829 

0.2 0.10550 0.1057 0.05426 0.05429 0.1105 

0.25 0.13188 0.1323 0.067825 0.06788 0.1382 

0.3 0.15825 0.1589 0.08139 0.08148 0.1659 

0.35 0.18463 0.1857 0.094955 0.09510 0.1936 

0.4 0.21100 0.2126 0.10852 0.10873 0.2214 

0.45 0.23738 0.2396 0.122085 0.12239 0.2492 

0.5 0.26375 0.2668 0.13565 0.13607 0.2770 

0.55 0.29013 0.2942 0.149215 0.14977 0.3049 

0.6 0.31650 0.3218 0.16278 0.16350 0.3329 
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0.65 0.34288 0.3496 0.176345 0.17726 0.3609 

0.7 0.36925 0.3777 0.18991 0.19105 0.3890 

0.75 0.39563 0.4060 0.203475 0.20488 0.4171 

0.8 0.42200 0.4346 0.21704 0.21875 0.4454 

0.85 0.44838 0.4636 0.230605 0.23265 0.4737 

0.9 0.47475 0.4928 0.24417 0.24660 0.5021 

0.95 0.50113 0.5224 0.257735 0.26060 0.5306 

1 0.52750 0.5523 0.2713 0.27464 0.5592 

1.05 0.55388 0.5826 0.284865 0.28873 0.5879 

1.1 0.58025 0.6134 0.29843 0.30288 0.6167 

1.15 0.60663 0.6445 0.311995 0.31708 0.6456 

1.2 0.63300 0.6761 0.32556 0.33134 0.6746 

1.25 0.65938 0.7082 0.339125 0.34566 0.7038 

1.3 0.68575 0.7408 0.35269 0.36005 0.7331 

From Fig. 10(a), we have that k = 1.17 s
-1

. So from Equation (27a): 

    
oV

k
kSinh

5.207
10865.0      (29) 

    
oV

Sinh
78.242

1271.0      (30) 

   

oV

78.242
12744.0   

      
11905

12744.0

78.242  msVo  

 

 
Fig. 10 (a):  Graphical solution of Equation 28 (a) 

 

A study of Table 2 (b) indicates that the place where the solution occurs is between k = 1.00 and 1.05.  

This problem is also reduced to a graphic solution as shown in Fig. 10 (b) in which columns III and VI are 

plotted as functions of k and the intersect found. 

 

Table 2 (b):  Analytical Solution for Equation 28 (b) 
I II III IV V VI 

K .7833K SINH(.7833K) .5275K SINH(.5275K) 1.5716SINH(.5275K) 

0.1 0.07833 0.0784 0.05275 0.05277 0.0829 

0.15 0.117495 0.1178 0.079125 0.07921 0.1245 

0.2 0.15666 0.1573 0.1055 0.10570 0.1661 

0.25 0.195825 0.1971 0.131875 0.13226 0.2079 
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0.3 0.23499 0.2372 0.15825 0.15891 0.2497 

0.35 0.274155 0.2776 0.184625 0.18568 0.2918 

0.4 0.31332 0.3185 0.211 0.21257 0.3341 

0.45 0.352485 0.3598 0.237375 0.23961 0.3766 

0.5 0.39165 0.4017 0.26375 0.26682 0.4193 

0.55 0.430815 0.4443 0.290125 0.29421 0.4624 

0.6 0.46998 0.4875 0.3165 0.32181 0.5058 

0.65 0.509145 0.5314 0.342875 0.34963 0.5495 

0.7 0.54831 0.5762 0.36925 0.37770 0.5936 

0.75 0.587475 0.6219 0.395625 0.40603 0.6381 

0.8 0.62664 0.6685 0.422 0.43464 0.6831 

0.85 0.665805 0.7161 0.448375 0.46355 0.7285 

0.9 0.70497 0.7648 0.47475 0.49279 0.7745 

0.95 0.744135 0.8147 0.501125 0.52236 0.8209 

1 0.7833 0.8659 0.5275 0.55231 0.8680 

1.05 0.822465 0.9184 0.553875 0.58263 0.9157 

1.1 0.86163 0.9723 0.58025 0.61336 0.9640 

1.15 0.900795 1.0277 0.606625 0.64452 1.0129 

1.2 0.93996 1.0846 0.633 0.67613 1.0626 

1.25 0.979125 1.1432 0.659375 0.70820 1.1130 

1.3 1.01829 1.2036 0.68575 0.74077 1.1642 

 

 
Fig. 10 (b):  Graphical solution of Equation 28 (b) 

 

From Fig. 10 (b), we have that k = 1.01 s
-1

. So from Equation (27c): 

    
oV

k
kSinh

664
39165.0        (31) 

    
oV

Sinh
64.670

39557.0        (32) 

   

oV

64.670
40597.0   

      
11652

40597.0

64.670  msVo  

A study of Table 2 (c) indicates that the place where the solution occurs is between k = 1.05 and 1.10.  This 

problem is similarly reduced to a graphic solution as shown in Fig. 10 (c) in which columns III and VI are 

plotted as functions of k and the intersect found. 
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Table 2 (c):  Analytical Solution for Equation 28 (c) 
I II III IV V VI 

K .7833K SINH(.7833K) .2713K SINH(.2713K) 3.2SINH(.2713K) 

0.1 0.07833 0.07841 0.02713 0.02713 0.08683 

0.15 0.117495 0.11777 0.040695 0.04071 0.13026 

0.2 0.15666 0.15730 0.05426 0.05429 0.17372 

0.25 0.195825 0.19708 0.067825 0.06788 0.21721 

0.3 0.23499 0.23716 0.08139 0.08148 0.26074 

0.35 0.274155 0.27760 0.094955 0.09510 0.30431 

0.4 0.31332 0.31847 0.10852 0.10873 0.34795 

0.45 0.352485 0.35983 0.122085 0.12239 0.39164 

0.5 0.39165 0.40174 0.13565 0.13607 0.43541 

0.55 0.430815 0.44427 0.149215 0.14977 0.47926 

0.6 0.46998 0.48747 0.16278 0.16350 0.52320 

0.65 0.509145 0.53143 0.176345 0.17726 0.56723 

0.7 0.54831 0.57620 0.18991 0.19105 0.61137 

0.75 0.587475 0.62186 0.203475 0.20488 0.65562 

0.8 0.62664 0.66846 0.21704 0.21875 0.69999 

0.85 0.665805 0.71610 0.230605 0.23265 0.74449 

0.9 0.70497 0.76483 0.24417 0.24660 0.78913 

0.95 0.744135 0.81474 0.257735 0.26060 0.83391 

1 0.7833 0.86589 0.2713 0.27464 0.87885 

1.05 0.822465 0.91838 0.284865 0.28873 0.92395 

1.1 0.86163 0.97227 0.29843 0.30288 0.96921 

1.15 0.900795 1.02766 0.311995 0.31708 1.01466 

1.2 0.93996 1.08462 0.32556 0.33134 1.06029 

1.25 0.979125 1.14324 0.339125 0.34566 1.10612 

1.3 1.01829 1.20362 0.35269 0.36005 1.15215 

 

From Fig. 10 (c), we have that k = 1.07 s
-1

. So from Equation (27b): 

    
0

5.422
26375.0

V

k
kSinh      (33) 

    
0

075.452
28221.0

V
Sinh      (34) 

   

0

075.452
28597.0

V
  

      
1

0 1581
28597.0

075.452  msV  
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Fig. 10 (c):  Graphical solution of Equation 28 (c) 

 

4.3 Velocity Gradient Function 

The computed model parameters by the graphical method are shown in the Table 3 below. 

 

Table 3:  Computed model parameters 
S/No. K (s-1) V0 (m/s) 

1 1.17 1905 

2 1.01 1852 

3 1.07 1581 

Average 1.083 1712.7 

 

These imply that the velocity gradient function by Equation (20) is: 

  zV 083.17.1712       (35) 

   or 

   zV 083.17127.1  ;        

where V0 is now in kms
-1

.    

   

4.4 Construction of Raypaths 

 As stated earlier that in a medium in which the velocity increases linearly with depth, that is, 

kzVV  0 , the wave paths emanating from a shot point O at the surface are arcs of circles passing through O 

whose centres lie at a distance kV /0  above the surface. The coordinate of the centre is given as: 

                                             kVkpVpC /,/1: 0

2/12

0

2   

where p = slope of the time-distance curve at any point of emergence of the wave path (at geophone 

location). Its radius is kp/1  and it passes through the shot-point O.  This principle is used to construct all the 

ray paths for the shots in the survey. For the typical field data shown in Table 1, the centre and radius of each 

raypath is computed in Table 4 and plotted in Fig. 11.  But before this is done, the ray parameter, p and the 

emergence angle, α0 would first of all be determined. 

 Suppose we choose any point P, say 844.52 m from O as a typical point.  The travel time from O to P is 

0.5275 s as shown in Table 1.  The emergence angle, α0 at P is obtained from the equation: 

    PCot
k

V
X o

o
P 








 

2
     (36) 

This implies that: oCot









08.1

67.1712
252.844 267014.0 oCot ,  75o  

We also have that: pVSin oo / ,     (37) 

So we have:     
14106398829.567.1712/96593.0  smp  

This typical value of p is the one that singles out the wave path to P from all wave paths.  It is also the value of 

the slope dt/dx of the time-distance curve at P.  This process is repeated for all the time-distance data in Table 1. 
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Table 5:  Parameters for the Construction of Raypaths 

 

 

 

4.5 Construction of Wavefronts 

As discussed earlier on that at any given time, T, the wavefront has Radius = (Vo/k)SinhkT and Centre: 

{0, (Vo/k)[Cosh(kT-1)]}. The values of k and V0 have been substituted for and the dimensions of the radii and 

centres of the wave fronts computed in Table 5.  The wave fronts for the various values of T, the travel-time 

corresponding to each wave front, in Table 1 are constructed as shown in Fig. 11.  It can be noticed that the 

wave paths and wave fronts in Fig. 11 cut each other at right angles.  This implies that through every point in a 

vertical section in our medium, the wave path circles and the wave front circles cut at 90
o
. 

 

4.5.1 Computation of Maximum of Penetration, zmax 

Here the depth which is indicated by zmax is given as: 

  

 

 
kp

pV
z

kzVpSinSin

o

o






1

190

max

max

   (38) 

Equation (38) is used to compute the maximum depth of penetration for all the rays emerging at the 

various offsets on the surface from the shotpoint.  The results are shown in Table 6. The velocities at these 

various depths for the wave paths are also computed in Table 6 using the velocity gradient Equation given as: 

zV 083.17.1712   

 

X 
(m) 

p=Sinαo/Vo  
X 10-4(s/m) 

p2Vo
2 

X 10-1 
[1- p2Vo

2]1/2/kp 
(m) 

1/kp 
(m) 

176.63 5.8298 9.9689 88.3 1583.9 

176.72 5.8297 9.9686 88.4 1583.9 

190.23 5.8283 9.9639 95.1 1584.3 

190.46 5.8282 9.9638 95.2 1584.3 

215.4 5.8253 9.9538 107.7 1585.1 

248.34 5.8209 9.9387 124.2 1586.3 

286.12 5.8151 9.9188 143.1 1588.0 

327.1 5.8079 9.8944 163.4 1590.0 

370.45 5.7992 9.98647 182.2 1592.2 

414.99 5.7893 9.9831 207.4 1595.0 

460.83 5.7778 9.7921 230.4 1598.1 

507.55 5.7650 9.7488 254.0 1606.7 

554.63 5.7519 9.7044 276.0 1605.3 

602.11 5.7358 9.6502 301.0 1609.8 

650.21 5.7226 9.6059 320.3 1613.5 

698.48 5.7015 9.5352 349.2 1619.5 

747.1 5.6825 9.4716 373.5 1625.0 

795.58 5.6624 9.4049 397.8 1630.7 

844.52 5.6425 9.3388 420.8 1636.4 

893.39 5.6191 9.2614 446.6 1643.3 

942.47 5.5958 9.1848 471.1 1650.1 

991.40 5.5717 9.1057 495.6 1657.3 

1041.10 5.5467 9.0245 520.0 1664.7 

1090.24 5.5201 8.9379 545.2 1672.7 

1189.24 5.4655 8.7621 594.4 1689.4 

1236.59 5.4381 8.6746 618.2 1698.0 

1237.91 5.4374 8.6722 618.8 1698.2 

1327.96 5.3834 8.5008 664.1 1715.2 

1361.62 5.3636 8.4367 680.7 1721.7 

1394.95 5.3423 8.3715 697.5 1728.4 
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Table 5:  Parameters for the Construction of Wavefronts 

 

 

 

4.5.2 The Velocity Model 

A plot of Vmax against zmax data in Table 6 for each of the wave paths shown in Fig. 11 gives us a velocity model 

trend shown in Fig. 12.  The trend shows a linear model which implies that velocity increases linearly with 

depth in this region of the Niger Delta.   

 

 
Fig. 11:  Typical construction of wave paths and wavefronts for the field data example 

 

 

 

T (s) 
 

kT R = (V0/k)SinhkT (V0/k)Cosh(kT -1) 

0.1296 0.1404 222.8 15.6 

0.1265 0.1370 217.3 14.9 

0.1408 0.1525 242.1 18.4 

0.1336 0.1447 229.6 16.6 

0.1451 0.1571 249.5 19.6 

0.1679 0.1818 289.1 26.2 

0.1925 0.2085 332.1 34.5 

0.2165 0.2345 374.3 43.7 

0.2390 0.2588 414.0 53.3 

0.2713 0.2938 471.3 68.8 

0.2925 0.3168 509.4 80.0 

0.3245 0.3514 567.2 98.7 

0.3542 0.3836 621.6 117.8 

0.3859 0.4179 678.7 140.1 

0.4160 0.4505 736.8 163.2 

0.4308 0.4666 765.0 175.3 

0.4571 0.4951 815.3 197.8 

0.4846 0.5248 868.6 222.8 

0.5275 0.5713 953.4 265.2 

0.5437 0.5888 986.0 282.1 

0.5675 0.6146 1034.3 308.2 

0.6000 0.6498 1101.5 345.8 

0.6192 0.6706 1141.8 369.1 

0.6458 0.6994 1198.4 402.8 

0.7149 0.7742 1350.4 498.1 

0.7402 0.8016 1408.0 536.0 

0.7629 0.8262 1460.4 571.2 

0.7833 0.8483 1508.3 604.0 

0.8040 0.8707 1557.6 638.3 

0.8258 0.8943 1610.5 675.7 
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Table 6: Computed Maximum Depth of Penetration, zmax and corresponding Vmax 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X 

(m) 

zmax 

(m) 

Vmax 

(m/s) 

176.63 2.45 1715.32 

176.72 2.49 1715.37 

190.23 2.87 1715.78 

190.46 2.89 1715.80 

215.40 3.69 1716.67 

248.34 4.89 1717.97 

286.12 6.47 1719.68 

327.10 8.45 1721.82 

370.45 10.84 1724.41 

414.99 13.57 1727.37 

460.83 16.75 1730.81 

507.55 20.31 1734.67 

554.63 23.97 1738.63 

602.11 28.49 1743.53 

650.21 32.21 1747.55 

698.48 38.20 1754.04 

747.10 43.63 1759.92 

795.58 49.41 1766.18 

844.52 55.18 1772.43 

893.39 62.00 1779.82 

942.47 68.88 1787.27 

991.40 76.03 1795.01 

1041.10 83.52 1803.12 

1090.24 91.57 1811.84 

1189.24 108.32 1829.98 

1236.59 116.86 1839.23 

1237.91 117.08 1839.47 

1327.96 134.16 1857.97 

1361.62 140.51 1864.84 

1394.95 147.39 1872.29 

Fig. 12: Typical linear velocity model for the subsurface clastic sediments of the 

Agbada Region of the Niger Delta.
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V. Conclusion 

In the Niger Delta sedimentary basin with clastic materials, the time-distance data obtained were 

observed to yield to the theory of linear increase of velocity with depth, hence the curves generated were 

hyperbolic in shape.  This formed the basis of computation of the model parameters: Vo (top-interface velocity) 

and k (vertical velocity gradient) by solving the hyperbolic sine equation [Sinh (kt/2) = (kx/2Vo) analytically. 

Computations from a field data example in the central Niger Delta yielded equivalent values of k and Vo as 

1.083 s
-1

 and 1,712.7 m/s respectively.  The velocity function is represented as: V = 1712.7 + 1.083z. 

Constructions of raypaths originating from the shot point and emerging at each geophone position were 

observed to be arcs of circles as obtainable in a case of linear increase of velocity with depth. Similarly 

constructed wavefronts at the various values of arrival time, T with the equivalent values of k and Vo were 

observed to be curves which crossed the raypaths at right angles.  These results are consistent with theory and 

go further to show that the developed model obeys all the laws of refraction. 

This velocity model can provide a basis for better approximation of the subsurface-clastic sediments 

structure of the Niger Delta using a relatively small layer thickness. In this case, the assumptions that lithologies 

are sharply discontinuous and discrete are not considered and this will bring into play the recognition of change 

in facies, fractures, faults, unconformities and so on and this true in actual field situations. 
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