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Abstract: In this paper, analytical numerical simulation of the 2-D heat equation with derivative boundary 

conditions has been presented. The algorithm for the numerical simulation for this equation is based on 

modified decomposition method. The numerical method has been applied to solve a practical examples and it's 

results have been compared with exact solution. 
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I. Introduction 
There are many new analytical approximate methods to solve initial value problems in the literature. 

Among these, Adomian´s decomposition method [1,2] have been received much attention in recent years in 

applied mathematics in general, and easily handle a wide a class of linear or nonlinear problems. The Adomian 

technique is based on a decomposition of a solution of a nonlinear functional equation in a series of functions. 

Each term of the series is obtained from a polynomial generated by a power series expansion of an analytic 

function.   

The main advantage of the ADM is that it can be applied directly for all types of functional equations, 

linear or nonlinear. Another important advantage is capable of greatly reducing the size of computation work 

while still maintaining high accuracy of the numerical solution.   

In [3] the author compared the Adomian Decomposition Method (ADM) and the Taylor series method 

by using some particular examples, and showed that the Adomian´s technique produced reliable results with a 

fewer iterations, whereas the Taylor series method suffered from computational difficulties. But in this paper, 

we will show that both Adomian decomposition method and Taylor series method are equivalents and therefore  

their convergence is the same in both.   

Different modifications of this method and their applications are given in [4-9] 

 

II. Applying the Modified Adomian’s Decomposition Method of Solution 2-D the Heat 

Equation 
In  this  section  we  want  to  describe  how  to  use  modified decomposition method  for  solving 2-D 

the heat equation  with derivative boundary conditions: 

        ),,(),,(),,(),,( tyxtyxDtyxDtyxD yyxxt         (1) 

                                                                                                                                                                                                      

10,10),,()0,,(  xxyxfyx                                                           

        Tttygtyx  0),,(),,0( 1                                                                                                                                         
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        Tttxgtxy  0),,(),1,( 4  

Where 4321 ,,,, ggggf  and   are known functions, T is given constant.  

Now, we use Adomian decomposition method  
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 Then equation (1) can be rewritten as 
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Then equation (3) become 
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Therefore, we can write,  
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By Wazwaz [4], the modified decomposition method is based on the assumption that the function )(x  can be 

divided into two parts, namely )(1 x  and )(2 x . Under this assumption we set   

                                )()()( 21 xxx    

We suggest the following modification            
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III. Numerical Examples 
Example 1: Consider the problem (1) with the following derivative boundary and initial conditions: 
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We apply the above modified decomposition method; we obtain 
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Then the series form is given by: 
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),,(),,(),,(),,(),( 3210 tyxtyxtyxtyxtx   

            tyxe 
 

This is the exact solution  
tyxetyx  ),,( .  

 

Figure 1 and Figure 2 show the plot of the exact solution surface and the numerical solution surface for 2-D heat 

equation respectively. 

 

 
Figure 1: Exact solution   Figure 2: Numerical solution 

 

Example 2:  Consider 2-D heat equation with derivative boundary conditions for the equation (1): 
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Now we apply the above modified decomposition method, we obtain:  
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Then the series form is given by: 
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Which gives the exact solution  ),,( tyx xytxye t 3

3
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.  

Figure 3 and Figure 4   show the plot of the exact and the numerical solution surface for 2-D heat equation 

respectively. 
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Figure 3: Exact solution Figure 4: Numerical solution 

 

Example 3: Consider the following: 

                    ),,(),,(),,( 22 tyxDtyxDtyxD yxt    
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Now after modified decomposition method, we obtain:  

0),,(

0),,(

0),,(

)sin(),,(

3

2

1

32

0







 

tyx

tyx

tyx

xetyx ty

 

Then the series form is given by: 

),,(),,(),,(),,(),,( 3210 tyxtyxtyxtyxtyx   

            )sin(32 xe ty
 

This is the exact solution  )sin(32 xe ty
.  

The plot of the exact solution surface is shown in Figure 5 and the numerical solution surface is shown in Figure 

6 for heat equation 

 

 
                      Figure 5: Exact solution               Figure 6: Numerical solution 

 

IV. Conclusion 
In this paper, the results obtained with applied the modified decomposition method of the 2-D heat 

equation with derivative boundary conditions is accurate. This algorithm is simple and easy to implement.  On 

the other hand, the calculations are easy and take less time than in traditional techniques. 
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