A Complete Ultrasonic Velocity Study of Decane-1-Ol with Various Acrylates at 303.15 And 313.15 K Temperatures

*Sujata S. Patil¹, Sunil R. Mirgane²

¹(Dept. of Applied Science, MSS's College of Engineering and Technology, Jalna – 431 203 (M. S.), India) ²⁽P. G. Dept. of Chemistry, J. E. S. College, Jalna - 431 203 (M. S.), India.)

Abstract: Ultrasonic velocities of binary liquid mixtures of methyl acrylate, ethyl acrylate, butyl acrylate and methyl methacrylate with decane-1-ol have been measured at 303.15 and 313.15 K and at atmospheric pressure. Experimentally measured ultrasonic velocities were correlated using Jouyban-Acree model. Deviations in isentropic compressibility were calculated using ultrasonic velocity and have been fitted to Redlich-Kister polynomial equation. Ultrasonic velocities were also calculated theoretically using Nomoto, Van Dael (VAN), free length theory (FLT) and collision factor theory (CFT).Different derived thermodynamic parameters like excess specific acoustic impendence, excess available volume, excess intrinsic pressure andmolar sound velocity were also calculated. Graphical representations of these excess derived thermodynamic parameters used to explain typeand extent of intermolecular interactions in these binary systems. Ultrasonic velocity measurement of liquid mixtures of non electrolytes provides an excellent tool to investigate inter and intramolecular interactions between like and unlike molecules. This study is a powerful means of characterizing various aspects of physicochemical behaviors of liquid mixtures and molecular interactions.

Keywords: Decane-1-ol, Free Length Theory, JouybanAcree Model, Ultrasonic Velocity, Van Dael.

I. Introduction

Measurements of some of bulk properties like ultrasonic velocity of liquids provide an insight into investigation of intermolecular arrangement of liquids and help to understand thermodynamic and acoustic properties of liquid mixtures. The study of thermodynamic properties involves challenges of interpreting excess quantities as a means of understanding nature of intermolecular interactions among the mixed components.

Most of techniques to know molecular interactions are based on spectroscopic investigation. But majority difficulties found in such techniques due to, intrinsic insensitivity of spectroscopic investigation and weak molecular interactions. Hence, instead of such techniques one can have a better idea about molecular interactions by investigating and monitoring thermodynamic properties which includes different volumetric, transport and ultrasonic properties. Properties of liquid-liquid binary mixtures are very important qualitatively and quantitatively as a part of studies of thermodynamic, acoustic and transport aspects. Compositional dependence of thermodynamic properties has proved to be a very useful tool in understanding nature and extent of pattern of molecular aggregation resulting from interactions.

Ultrasonic properties have practical importance in understanding interactions and physicochemical behavior. The mixing of different compounds gives rise to solutions that generally don't behave ideally. Deviation from ideality may be expressed by many thermodynamic variables, particularly by excess properties. Excess properties of mixtures correspond to difference between actual and properties if system behaves ideally and thus are useful in study of molecular interactions and arrangements. In particular, they reflect interactions that take place between solute-solute, solute-solvent and solvent-solvent species.

To best of our knowledge, no literature data is available for ultrasonic velocity study of binary liquid mixtures of decane-1-ol with methyl acrylate, ethyl acrylate, butyl acrylate and methyl methacrylate at 303.15 and 313.15 K. In view of these considerations, it is planned to study liquid-liquid binary systems containing polar and hydrogen bonded or nonpolar liquids in association with industrially as well as biologically important solvent at 303.15 K.

II. Materials And Methods

Chemicals used in present study were of analytical grade and supplied by S. D. Fine Chemicals Pvt., Mumbai (India) with quoted mass fraction purities: methyl acrylate, MA, (> 0.997), ethyl acrylate, EA, (> 0.998), butyl acrylate, BA, (> 0.995), methyl methacrylate, MMA, (>0.997) and decane-1-ol (> 0.998). Prior to use, all liquids were stored over 0.4 nm molecular sieves to reduce water content and were degassed. All four acrylic esters were distilled before use. The binary mixtures of varying composition were prepared by mass in special air-tight bottles. The solutions of each composition were prepared fresh and all properties were measured same day. The masses were recorded on a Mettlar one pan balance, which can read up to fifth place of decimal,

with an accuracy of ± 0.01 mg. Care was taken to avoid evaporation and contamination during mixing. The estimated uncertainty in mole fraction was < 1×10^{-4} .

2.1 Experimental

Ultrasonic velocities were measured [1] at frequency of 2 MHz by single crystal ultrasonic interferometer (Model F-81, Mittal Enterprises, New Delhi, India). Accuracy in velocity measurements is ± 0.1 %. The ultrasonic velocities of pure components at 303.15 and 313.15 K are listed in Table 1.

III. Theory And Calculations

Ultrasonic velocity measurements were performed with repetitions for each binary liquid system namely methyl acrylate (1) + decane-1-ol (2), ethyl acrylate (1) + decane-1-ol (2), butyl acrylate (1) + decane-1-ol (2) and methyl methacrylate (1) + decane-1-ol (2) over entire mole fraction range (0 < x < 1), at temperature 303.15 and 313.15 K and at atmospheric pressure.

It has been found that a number of derived parameters from ultrasonic sound velocity such as isentropic compressibility (κ_s), specific acoustic impendence (Z), available volume (V_a), intrinsic pressure (π_{int}) and molar sound velocity (R) have also been calculated along with their excess parameters which provide better insight in understanding of molecular interactions in pure liquids and binary liquids which are given by following relations,

$$\begin{split} \kappa_{s} &= (1/\,u^{2}\rho) \end{tabular} \end{tabular} & (1) \\ Z &= u \ \rho \end{tabular} \\ V_{a} &= V_{m} \left[1 - (u_{expt} \ / u_{\infty}) \right] \end{tabular} \end{tabular} & (3) \\ Where \ u_{\infty} &= 1600 \ m/s. \end{split}$$

For binary liquid mixtures above equation can be written as,

$\pi_{i} = bRT (K\eta_{12}/u_{12})^{1/2} (\rho_{12}^{2/3}/M_{12}^{7/6})$	(4)
Where M_{12} is given by following equation,	
$M_{12} = x_1 M_1 + x_2 M_2$	(5)
Where b is packing factor, K is a constant temperature independent having value of 4.28×10^9 , R is	s agas
constant η_{12} , u_{12} , ρ_{12} are mixture's viscosity, ultrasonic velocity and density, respectively.	
$R = (M/\rho) u^{1/3}$	(6)

The excess functions are important to understand molecular interactions between components of liquid mixtures. Excess function Y^E represents excess of a given quantity Y of a real mixture over its value for an ideal mixture Y^{id} at same conditions of temperature, pressure and composition. It is expressed by following relation, $Y^E = Y - Y^{id}(7)$

Where Y denotes Z, Va, \Box_{int} and Y^E represents corresponding excess thermodynamic properties such as excessspecific acoustic impedance (Z^E), excess available volume (V_a^E) and excessintrinsic pressure (\Box_{int}^{E}). Experimental ultrasonic velocities (u), deviation in isentropic compressibility (\Box_{s}) and excess specific acoustic impendence (Z^E) for binary liquid mixtures of decane-1-ol with methyl acrylate (MA), ethyl acrylate (EA), butyl acrylate (BA) and methyl methacrylate (MMA) at both temperatures listed in Table 2.

Excess available volume (V_a^E) , excess intrinsic pressure (\Box_{int}^E) and molar sound velocity (R) for the present binary liquid mixtures at both temperatures listed in Table 3.

Nomoto [2] investigated additivity of molar volumes in those mixtures for which deviation from linearity of molecular sound velocity is small and it was revealed that a great part of these mixtures had also a good additivityrelationship of molar volumes. The sound velocity based on assumption of linearity of molecular sound velocity,

$$R = x_1 R_1 + x_2 R_2(8)$$

Where R_1 and R_2 are molar sound velocities, x_1 and x_2 are mole fractions respectively. The molar sound velocity (R)also known as Rao's constant which can be calculated using the above relation (8),

Hence, speed of sound is given by, $u = (R/V)^3 = [(x_1R_1+x_2R_2)/(x_1V_1+x_2V_2)]^3(9)$

According to Van Dael and Vangeel [3] assumption adiabatic compressibility (\Box s) of mixture given by, $\Box_{s(im)} = \Box_1 v_1 \Box s (1) / v_m + \Box_2 v_2 \Box_s(2) / v_{im}(10)$

Where $\Box \Box$ and v represent volume fraction and specific heat ratio respectively. Schaffs [4, 5] on basis of collision factor theory gave relation for sound velocity in liquids, $u = u_{\Box} \Box Srf = u_{\Box}SB/V$ (11) Where $u_{\Box} \Box = 1600$ m/s, S is collision factor and r_{f} ($r_{f} = B/V$) is space filling factor, B is actual volume of moleculeper mole and V is molar volume. The sound velocity in mixtures evaluated from Jacobson's [6, 7] free length theory is, $u_{mix} = K/(L_{f(mix)}\rho_{(mix)}^{1/2})$ (12)

Where K is a temperature dependent constant.

Ultrasonic velocities from these theories with percentage error are given in Table 4.

The deviation in isentropic compressibility were fitted to RedlichKister [8]equation of type,

$$Y = x_1 x_2 \sum_{i}^{n} a_i (x_1 - x_2)^i (13)$$

where Y is $\Delta \kappa_s$ and n is degree of polynomial. Coefficient a_i was obtained by fitting equation (13) to experimental results using a least-squares regression method. In each case, optimum number of coefficients is ascertained from an examination of variation in standard deviation (σ). σ was calculated using relation.

$$\sigma(\mathbf{Y}) = \left[\frac{\sum (Y_{expt} - Y_{calc})^2}{N - n}\right]^{1/2} (14)$$

where N is number of data points and n is number of coefficients. The calculated values of coefficients $a_i a \log with standard deviations (\sigma)$ are also given at temperatures 303.15 and 313.15 K in Table 5. JouybanAcree [9, 10] recently proposed model for correlating density and viscosity of liquid mixtures at various temperatures. The proposed equation is,

 $\ln y_{mT} = f_1 \ln y_{1T} + f_2 \ln y_{2T} + f_1 f_2 \sum [A_i (f_1 - f_2)^{j} / T]$

(15)

where y_{mT} , y_{1T} and y_{2T} is density or viscosity of the mixture and solvents 1 and 2 at temperature T, respectively, f_1 and f_2 are volume fractions of solvents in case of density, mole fraction in case of viscosity and Aj are the model constants. The correlating ability of the JouybanAcree model was tested by calculating the average percentage deviation (APD) between the experimental and calculated density and viscosity as, $APD = (100/N) \sum [(|y_{expt} - y_{cal}|)/y_{expt})]$ (16)

Where N is the number of data points in each set.

The optimum numbers of constants Aj, in each case, are determined from the examination of the average percentage deviation value. The JouybanAcree model was not previously applied to ultrasonic velocity measurements, we extend Jouyban–Acree model to ultrasonic velocity (15) of liquid mixtures with f as the mole fraction and again apply (16) for correlating ability of the model. The proposed model provides reasonably accurate calculations for the density, viscosity and ultrasonic velocity of binary liquid mixtures and could be used in data modeling.

The constants Aj calculated from least square analysis along with average percentage deviation (APD) are presented in Table 6.

IV. Results And Discussion

Fig. 1 represents graphical variation of deviation in isentropic compressibility ($\Box \Box_s$) for acrylates with decane-1-ol at 303.15 K. In the present study, values of $\Delta \kappa_s$ are found to be positive for all mixtures. As the temperature increase values of $\Delta \kappa_s$ decrease.Similar results were reported earlier by Ali [11, 12]. Kiyohara and Benson [13] have suggested that,positive deviation in isentropic compressibility ($\Box \Box_s$) is resultant of several opposing effects.

- 1. Deviation in isentropic compressibility can be interpreted as:-
- 2. Increase in free volume in mixture compared to pure components due to rupture of alkanols aggregates with addition of second component, i. e. acrylates.

Interstitial accommodation of acrylate molecules in aggregates of alkanols.

In binary liquid mixtures, an expansion in free volume makes mixture more compressible than ideal mixtures. Negative values means mixture is less compressible than ideal one.

Alcohols exist in the form of aggregates. When they are mixed with other non-electrolyte molecules, the aggregates of alcohol dissociate and form intermolecular complexes with unlike molecules. Variations in ultrasonic velocity and compressibilities in alkanols are mainly due to H-bonds, dispersion and interaction of hydrocarbon radicals of alkanols. A strong molecular interaction through charge transfer, dipole-induced dipole, dipole-dipole [14] interactions, interstitial accommodation and orientational ordering lead to a more compact

structure, making $\Delta \kappa_s$ negative and breakup of alkanols structures tend to make $\Delta \kappa_s$ positive. Sign of $\Delta \kappa_s$ and V^E decides compactness due to molecular rearrangement. The magnitude of various contributions depends mainly on relative molecular size of the components. Positive values of $\Delta \kappa_s$ observed when H-bonded aggregates of alkanols break up progressively with addition of second component. The positive values of $\Delta \kappa_s$ for mixtures of methyl acrylate with both types of alkanols signify decreasing dipole-dipole interactions due to decreasing proton donating abilities with increasing chain length of 1-alkanols. De-clustering of 1-alkanols in the presence of acrylates may also lead to positive $\Delta \kappa_s$ values.

There is high tendency of alkanols to undergo self-association via intermolecular hydrogen bonding. It is well known that 1-alkanols form a variety of species with different degrees of association in the pure state; however, polymeric linear associates are expected to be predominant in the pure state. Thus, the addition of an acrylic ester to 1-alkanol may results in the following effects:

- i. Rupturing or disruption of associate structures in alkanols.
- ii. Formation of new species because of weak interactions between ester and alkanols.
- iii. Free volume changes upon mixing of components of different sizes.

The first effect contributes positively to excess volumes and excess isentropic compressibilities and negatively to excess viscosities. However, contributions due to effects (ii) and (iii) are in the opposite directions.

Fig.2 represents graphical variation of Z^E for acrylates with decane-1-ol at 303.15 K. In this case, all values are negative at both temperatures, but as mole fraction of acrylate increases values are becoming negative. The curves exhibit negative deviation throughout mole fraction and deviations become more negative as the chain length acrylates increases. A negative deviation in Z^E values shows weak interactions between the component molecules. Z^E are more negative for mixtures containing branched alkanols due to more steric hindrance of branched alkanols towards hetero- molecular interactions [15].

For mixture containing alkanols, negative values of Z^E suggests that, dispersive forces are dominant over the specific interaction. The positive values indicate presence of strong specific interactions and negative values corresponds mainly to the existence of dispersive forces. Thus from above discussion reinforces our views that, in present binary liquid systems dispersion forces are dominant and geometrical fitting is also observed.

The variations of excess available volume (V_a^E) for acrylates with decane-1-ol at 303.15 K are represented in Fig. 3. The positive values of V_a^E indicate presence of strong specific interaction. The V_a^E for binary mixtures of methyl acrylate with both types of alkanols are positive at all temperatures. This nature may be attributed to strong interactions between acrylates and decane-1-ol. On other hand, negative values of it means weak interactions due to, possible accommodation, large difference in molar volume, dipole-dipole interactions, dipole-induced dipole interactions and van der Waal's forces of attraction.

The variations of excess intrinsic pressure (π_{int}^{E}) for acrylates with decane-1-ol at 303.15 K are represented in Fig.4. Excess intrinsic pressure π_{int}^{E} may be used to study the intermolecular interactions in binary liquid mixtures. The values of π_{int}^{E} are found to be negative throughout the mole fraction in all binary mixtures of decane-1-ol with acrylate suggesting weak interactions.

The molar sound velocity (R), also known as Rao's constant, gives information on the formation of a complex and on association of components. The values of molar sound velocity are sensitive to structure of molecules. The increase in molar sound velocity with mole fraction indicates specific interactions while decrease in these values suggests presence of dispersive forces between components of binary liquid mixtures. These values are not greatly influenced by temperature. This is in accordance with theoretical expectation that R is independent of temperature [16, 17]. The values of Rao's constant are found to decreases to very less extent with mole fraction of acrylates.

Ultrasonic velocities for all binary mixtures have also been calculated theoretically over entire mole fraction range using Nomoto, Van Dael, Jacobson's free length theory (FLT) and collision factor theory (CFT) to predict the ultrasonic velocities of all binary mixtures at both temperatures. The calculated ultrasonic velocities along with average percentage error are summarized in Table 4. A close scrutiny of result indicates that CFT does succeed in computing the ultrasonic velocity value for all the mixtures studied in the present investigation to a greater degree of accuracy as compared with Nomoto, Van Dael and FLT. The Nomoto formula is based on the assumption of linearity of molar sound velocity versus mole fraction and additivity of molar volumes in liquid mixtures. Nomoto theory shows somewhat high and van deal theory shows lower value of the ultrasonic velocities. Free length theory is naturally not applicable to systems having self-associated components. The error range in the case of Van Daelis much larger for binary mixtures containing methyl acrylate (1) + decane-1-ol (2), ethyl acrylate (1) + decane-1-ol (2) and methyl methacrylate (1) + decane-1-ol (2). On the other hand, error range in the case FLT is the larger in case of the binary mixture containing butyl acrylate (1) + decane-1-ol (2). This result may be due to increase in the carbon atoms in case of the acrylates.

The Redlich- Kister equation was originally developed to correlate the excess Gibb's energy function and calculate the values of the activity coefficients. It turned out to be such a powerful and versatile correlating

tool that its use has been extended to other properties, particularly excess molar volumes and excess enthalpies of mixing. It suffers from the important drawback that, the values of the adjustable parameters change as the number in the series is increased, so that no physical interpretation can be attached to them [18]. The Redlich-Kisterregressor is very powerful and frequently used to correlate vapor-liquid equilibrium data and excess properties.

Experimentally measured fundamental thermodynamic property such as ultrasonic velocity was correlated using recently proposed Jouyban-Acree model. The constants (Aj) calculated from least square analysis along with average percentage deviation (APD) are represented in Table 6. The proposed model provides reasonably accurate calculations for fundamental thermodynamic parameters of binary liquid mixtures.

Fable 1.Ultrasonic Velocities (u) for Pure Components at 303.15 and 313.13												
	Component	1	u / (m.s ⁻¹)	u / (m.s ⁻¹)								
		Expt	Lit.	Expt	Lit.							
			303.15 K	3	313.15 K							
	Decane-1-ol	1367	1363 [19]	1335	1334 [20]							
	Methyl Acrylate	1163		1118								
	Ethyl Acrylate	1152		1123								
	Butyl Acrylate	1190		1157								
М	ethyl Methacrylate	1168		1139								

V. Tables And Figures le 1.Ultrasonic Velocities (u) for Pure Components at 303.15 and 313.15 K.

Table 2. Ultrasonic Velocities (u), Deviation in Isentropic Compressibility (🗆 🗔) and Excess Specific
Acoustic Impendence (Z^E) for Acrylates (1) + Decane-1-ol (2) at 303.15 and 313.15 K.

	u		Z^{E}	u		Z^E		
X_1	$(m.s^{-1})$	(TPa^{-1})	$(Kg.m^{-2}.s^{-1})$	$(m.s^{-1})$	(TPa ⁻¹)	$(Kg.m^{-2}.s^{-1})$		
		303.15 K		313.15 K				
			MA(1) + D	ecane-1-ol (2)				
0	1367	0	0	1335	0	0		
0.0552	1355	5.88	-4.79	1322	6.66	-4.42		
0.0997	1345	10.72	-8.53	1312	11.37	-7.32		
0.1555	1333	16.14	-12.63	1299	17.61	-11.18		
0.1999	1324	19.71	-15.24	1288	23.15	-14.61		
0.2554	1312	24.69	-18.85	1276	27.85	-17.22		
0.3000	1302	28.85	-21.81	1266	31.77	-19.40		
0.3555	1291	32.09	-23.94	1253	36.95	-22.29		
0.3999	1281	35.71	-26.40	1244	39.05	-23.18		
0.4538	1270	38.35	-28.01	1232	42.40	-24.84		
0.4999	1261	39.63	-28.64	1222	44.38	-25.68		
0.5554	1250	40.73	-29.10	1210	46.07	-26.29		
0.5999	1241	41.20	-29.18	1200	47.23	-26.70		
0.6550	1230	40.75	-28.55	1189	45.87	-25.52		
0.6999	1221	39.58	-27.49	1179	45.24	-24.95		
0.7555	1210	36.77	-25.29	1168	41.19	-22.36		
0.7999	1201	33.71	-23.01	1158	38.47	-20.77		
0.8555	1191	26.65	-18.01	1147	31.06	-16.54		
0.8999	1182	20.81	-13.98	1138	23.76	-12.54		
0.9555	1171	10.95	-7.31	1127	11.70	-6.11		
1	1163	0	0	1118	0	0		
			$FA(1) \pm D$	$e_{cane_1} = 0 (2)$				
0	1367	0	1 D	1335	0	0		
0.0554	1354	4.81	-3.13	1333	5.14	-2.92		
0.0999	1344	8.16	-5.21	1312	8.75	-4.86		
0.1553	1331	12.76	-8.09	1300	12.59	-6.76		
0.1998	1321	15.84	-9.89	1290	15.91	-8.45		
0.2556	1309	18.97	-11.54	1277	20.45	-10.83		
0.2999	1299	21.72	-13.08	1268	22.29	-11.47		
0.3554	1286	25.44	-15.20	1255	26.37	-13.55		
0.4000	1277	26.57	-15.54	1246	27.66	-13.88		
0.4555	1265	28.47	-16.36	1234	29.84	-14.74		
0.4999	1255	30.13	-17.19	1224	31.75	-15.61		
0.5554	1243	31.08	-17.45	1213	31.67	-15.14		
0.5999	1234	30.69	-16.94	1203	32.76	-15.60		
0.6555	1222	30.47	-16.61	1192	31.42	-14.60		
0.6999	1213	28.97	-15.54	1183	30.04	-13.75		
0.7556	1201	27.22	-14.45	1171	28.52	-12.98		
0.7999	1192	24.33	-12.75	1162	25.72	-11.56		

DOI: 10.9790/5736-08115969

0.8555	1181	19.31	-9.90	1151	20.79	-9.19					
0.8999	1172	14.60	-7.38	1143	14.63	-6.21					
0.9555	1161	6.85	-3.26	1132	6.89	-2.74					
1	1152	0	0	1123	0	0					
	BA(1) + Decane-1 - ol(2)										
0	1367	0	0	1335	0	0					
0.0555	1357	1.57	-1.15	1324	2.56	-1.75					
0.0998	1348	3.71	-2.76	1316	3.71	-2.42					
0.1556	1338	5.07	-3.68	1306	5.01	-3.16					
0.1998	1330	6.13	-4.38	1297	7.15	-4.57					
0.2554	1319	8.34	-5.97	1287	8.30	-5.19					
0.3000	1311	9.21	-6.50	1279	9.12	-5.61					
0.3556	1301	10.17	-7.08	1269	10.04	-6.08					
0.3998	1293	10.89	-7.50	1261	10.72	-6.41					
0.4555	1283	11.57	-7.86	1251	11.36	-6.70					
0.5000	1275	11.99	-8.06	1243	11.74	-6.85					
0.5555	1266	11.25	-7.41	1233	12.09	-6.99					
0.5999	1258	11.40	-7.44	1225	12.23	-7.01					
0.6555	1248	11.41	-7.39	1215	12.20	-6.94					
0.6999	1241	10.05	-6.39	1208	10.70	-5.95					
0.7554	1231	9.60	-6.08	1198	10.21	-5.66					
0.7999	1223	9.04	-5.71	1191	8.25	-4.46					
0.8545	1214	7.07	-4.42	1181	7.51	-4.10					
0.8999	1207	4.55	-2.79	1174	4.79	-2.54					
0.9550	1197	3.20	-2.10	1164	3.37	-1.92					
1	1190	0	0	1157	0	0					
	11,0		0	1107		Ŭ					
			MMA(1) + I	Decene 1 $ol(2)$							
0	1367	0	$\frac{1}{0}$	1335	0	0					
0.0554	1355	4.78	-3.69	1333	5.17	-3.51					
0.000	1335	7.96	-6.10	1314	8.58	-5.75					
0.0777	1340	12.50	-0.10	1302	13.50	-5.75					
0.1555	1334	15.34	-9.51	1203	16.50	-0.98					
0.1998	1323	10.44	-11.55	1293	10.39	-10.90					
0.2330	1313	21.02	-14.40	1262	19.93	-12.00					
0.2999	1304	21.92	-10.13	1275	22.03	-14.49					
0.3334	1293	24.42	-17.73	1202	23.43	-10.03					
0.4000	1264	20.33	-10.94	1235	27.38	-17.24					
0.4333	12/2	29.24	-20.03	1242	29.00	-10.27					
0.4999	1204	29.37	-20.69	1233	31.10	-19.04					
0.5554	1255	30.15	-21.00	1222	32.15	-19.47					
0.3999	1244	20.16	-21.12	1214	21.27	-10.82					
0.0000	1233	30.10	-20.01	1203	31.27	-18.30					
0.0999	1224	29.50	-20.00	1195	29.45	-17.23					
0.7556	1214	26.29	-17.62	1184	27.65	-16.04					
0.7999	1205	24.25	-16.14	1176	24.36	-13.98					
0.8555	1195	19.07	-12.55	1165	20.58	-11.74					
0.8999	1187	13.94	-9.08	1157	15.45	-8.74					
0.9555	1176	7.50	-4.89	1147	7.61	-4.28					
1	1168	0	0	1139	0	0					

 Table 3. Excess Available Volume (Va^E), Excess Intrinsic Pressure (\Box_{int}^{E}) and Molar Sound Velocity (R) for Acrylates (1) + Decane-1-ol (2) at 303.15 and 313.15 K.

	Va ^E		R	Va ^E	\Box_{int}^{E}	R
\mathbf{X}_1	$(m^3.mol^{-1})$	(atm)		$(m^3.mol^{-1})$	(atm)	
		303.15 K		313.15	К	
			MA(1) + I	Decane-1-ol (2)		
0	0	0	2.135	0	0	2.136
0.0552	0.778	-323.60	2.068	0.854	-267.38	2.069
0.0997	1.381	-383.30	2.015	1.423	-311.31	2.015
0.1555	1.996	-520.37	1.948	2.105	-421.61	1.947
0.1999	2.365	-553.49	1.895	2.652	-441.89	1.894
0.2554	2.832	-652.95	1.829	3.064	-525.82	1.827
0.3000	3.183	-661.24	1.776	3.369	-530.78	1.774
0.3555	3.395	-730.66	1.710	3.723	-589.60	1.708
0.3999	3.624	-715.60	1.657	3.805	-577.55	1.655
0.4538	3.719	-752.43	1.594	3.934	-611.10	1.592
0.4999	3.699	-728.27	1.540	3.951	-592.11	1.537
0.5554	3.622	-738.71	1.475	3.893	-605.95	1.472
0.5999	3.515	-685.64	1.423	3.812	-560.99	1.420

0.6550	3.301	-677.18	1.359	3.525	-561.47	1.356
0.6999	3.067	-608.34	1.307	3.308	-504.39	1.304
0.7555	2.693	-577.16	1.242	2.857	-487.76	1.240
0.7999	2.352	-488.97	1.191	2.525	-411.84	1.189
0.8555	1.765	-439.10	1.127	1.924	-378.20	1.126
0.8999	1.306	-332.87	1.076	1.399	-291.25	1.075
0.9555	0.638	-260.31	1.012	0.648	-239.74	1.012
1	0	0	0.962	0	0	0.962
	-	-				
			EA(1) + I	Decane-1-ol (2)		
0	0	0	2.135	0	0	2.136
0.0554	0.719	-278.94	2.079	0.730	-226.08	2.079
0.0999	1.193	-338.20	2.034	1.212	-266.53	2.035
0.1553	1.782	-457.00	1.978	1.698	-361.08	1.979
0.1998	2.149	-489.97	1.933	2.076	-382.09	1.935
0.2556	2.492	-577.79	1.878	2.540	-450.86	1.879
0.2999	2.760	-587.84	1.834	2.710	-456.66	1.835
0.3554	3 079	-642.46	1 778	3 043	-502.40	1 780
0.4000	3 1 3 8	-633.25	1 734	3 112	-493.18	1.736
0.4555	3 228	-661.88	1.680	3 216	-518.81	1.682
0.4999	3.226	-632 58	1.636	3 285	-493.67	1.638
0.5554	3.245	-636 51	1.581	3.164	-502.65	1.584
0 5999	3 109	-591.96	1 538	3 132	-464 75	1.534
0.6555	2 941	-574.22	1 484	2 891	-456.81	1 487
0.6999	2.741	-513 10	1 441	2.670	-408 35	1 444
0.7556	2.700	-475 37	1 387	2.070	_384 74	1 301
0.7990	2.411	_400.20	1 3/15	2.374	_323.63	1 3/10
0.8555	1.580	-400.20	1.343	1 597	-323.03	1.345
0.8555	1.580	-257.54	1.292	1.397	-204.01	1.290
0.0555	0.524	186.78	1.24)	0.506	163.08	1.254
1	0.524	-180.78	1.150	0.500	-103.98	1.202
1	0	0	1.134	0	0	1.100
			$\mathbf{B}\mathbf{A}(1) + \mathbf{I}$	Decame 1 of (2)		
0	0	0	2 135	0	0	2 1 3 6
0.0555	0 312	-198.14	2.101	0.426	-152.98	2.130
0.0998	0.512	-262.09	2.101	0.420	-100.28	2.101
0.0998	0.055	363.02	2.073	0.040	-199.28	2.073
0.1998	1.073	-404 78	2.038	1 172	-275.10	2.037
0.2554	1.075	-471.98	1 977	1 3/19	-354.98	1 977
0.2000	1.370	-492 57	1.977	1.345	-368.44	1.977
0.3556	1.471	-533.78	1.915	1.581	-401.33	1.915
0.3998	1.611	-534.65	1.915	1.501	-300.88	1.915
0.355	1.007	-550.79	1.854	1.052	-414.68	1.854
0.5000	1.744	-534 71	1.827	1.704	-401.03	1.827
0.5555	1.705	-529.43	1.027	1.720	-309.30	1.027
0.5999	1.631	-497.15	1.754	1.680	-373.37	1.755
0.6555	1.651	-470.19	1.733	1.608	-355.90	1.732
0.6999	1 390	-424.18	1.706	1 425	-321 27	1.706
0.7554	1.350	-379 53	1.673	1 291	-289 71	1.672
0.7999	1.134	-320.24	1.646	1.061	-245 67	1.646
0.8545	0.869	-259.85	1.613	0.886	-201.44	1.613
0.8999	0.578	-189 79	1.586	0.589	-149.22	1.586
0.9550	0.340	-113.56	1.553	0.344	-93 50	1.553
1	0	0	1.526	0	0	1.526
-	0	0	1.520	0		1.520
		1	MMA(1) +	Decane-1-ol (2)		1
0	0	0	2 135		0	2 1 3 6
0.0554	0.680	-269 37	2.077	0.693	-218.95	2 078
0.0999	1 104	-322.94	2 032	1 125	-255.18	2 033
0.1553	1.661	-435.84	1.975	1.694	-343.40	1.976
0.1998	1.984	-465.68	1,930	2.025	-362.23	1.930
0.2556	2.410	-548 73	1 873	2.354	-430.40	1 874
0.2999	2.638	-556.73	1.828	2.593	-433.41	1.829
0.3554	2.836	-612.78	1.772	2.804	-480.01	1.773
0.4000	2.963	-601.73	1.727	2.942	-469.63	1.728
0.4555	3 137	-630.65	1.670	3 032	-497 49	1.672
0.4999	3 072	-603.94	1.676	3.074	-472.23	1.672
0 5554	3.072	-610.69	1.520	3 041	-483.00	1 572
0.5999	2 958	-565 78	1.576	2 895	-447 72	1.572
0.6555	2.730	-553.00	1.520	2.373	-442.48	1.520
0.0555	2.707	555.00	1.4/1	2.743	772.70	1.775

0.6999	2.622	-493.01	1.426	2.506	-394.69	1.429
0.7556	2.250	-462.66	1.372	2.235	-375.26	1.374
0.7999	1.985	-389.39	1.328	1.906	-316.49	1.331
0.8555	1.500	-341.70	1.273	1.517	-283.60	1.276
0.8999	1.064	-255.36	1.230	1.097	-213.88	1.233
0.9555	0.532	-164.66	1.175	0.514	-169.08	1.179
1	0	0	1.132	0	0	1.136

Table 4. Comparison of experimental ultrasonic velocity with various theories like NOMOTO, VAN,	CFT
and FLT with % errors for Acrylates (1) + Decane-1-ol (2) at 303.15 K.	

		Ultra	sonic Veloc	ity	% Errors for Ultrasonic Velocity				
X_1	Expt	NOM	VAN	CFT	FIT	NOM	VAN	CFT	FIT
	Елрі.	NOM	VAIN	MA	$(1) \perp Dec$	$ane_1 ol(2)$	VAIN	CLI	111
0	1367	1367	1367	1367	1368	4 85	27.80	1.44	2.24
0.0552	1355	1361	1320	1358	1300	4.05	27.00	1.44	2.24
0.0997	1345	1356	1303	1351	1343				
0.1555	1343	1350	1274	13/2	1370				
0.1000	1333	1344	1274	1342	1329				
0.1999	1324	1227	1234	1225	1205				
0.2334	1202	1337	1232	1323	1305				
0.3000	1302	1331	1217	1208	1293				
0.3555	1291	1323	1201	1308	1281				
0.3999	1281	1310	1189	1300	12/1				
0.4538	1270	1307	11/8	1290	1258				
0.4999	1261	1299	1169	1282	1248				
0.5554	1250	1288	1161	1271	1235				
0.5999	1241	1279	1156	1262	1224				
0.6550	1230	1267	1152	1250	1212				
0.6999	1221	1257	1149	1241	1201				
0.7555	1210	1243	1148	1228	1188				
0.7999	1201	1231	1148	1218	1177				
0.8555	1191	1214	1150	1204	1164				
0.8999	1182	1200	1153	1192	1153				
0.9555	1171	1180	1158	1176	1139				
1	1163	1163	1163	1163	1128				
				EA	(1) + Deca	une-1-ol (2)			
0	1367	1367	1367	1367	1368	3.17	13.49	0.70	0.48
0.0554	1354	1360	1336	1357	1355				
0.0999	1344	1353	1315	1348	1344				
0.1553	1331	1345	1290	1338	1330				
0.1998	1321	1339	1273	1329	1320				
0.2556	1309	1330	1253	1319	1306				
0.2999	1299	1323	1239	1310	1296				
0.3554	1286	1313	1224	1299	1283				
0.4000	1277	1305	1212	1290	1273				
0.4555	1265	1295	1200	1279	1260				
0.4999	1255	1286	1191	1269	1250				
0.5554	1243	1274	1182	1258	1237				
0 5999	1234	1265	1175	1248	1227				
0.6555	1222	1252	1168	1236	1214				
0.6999	1213	1232	1164	1236	1204				
0.7556	1213	1241	1159	1213	1191				
0.7999	1192	1215	1156	1203	1181			1	
0.8555	1181	1100	1153	1189	1169			1	
0.8900	1172	1185	1152	1178	1158			-	
0.9555	1161	1167	1152	1164	11/6				
1	1152	1152	1152	1152	113/				
1	11.52	1132	11.72	1132	1134			-	
				BA	(1) + Deca	ane-1-ol (2)		•	-
0	1367	1367	1367	1367	1368	0.61	1.54	0.13	35.52
0.0555	1357	1359	1351	1358	1363				
0.0998	1348	1353	1339	1350	1360			1	
0.1556	1338	1345	1324	1341	1355			1	
0.1998	1330	1338	1314	1334	1352				
0.2554	1319	1329	1301	1324	1349				
0.3000	1311	1323	1291	1317	1346				
0.3556	1301	1314	1280	1307	1342				
0.3998	1293	1306	1271	1299	1340				
0.4555	1283	1297	1261	1290	1337				
0.5000	1275	1289	1253	1282	1334				

0.5555	1266	1279	1244	1272	1332				
0.5999	1258	1271	1237	1264	1330				
0.6555	1248	1261	1229	1254	1328				
0.6999	1241	1253	1223	1246	1326				
0.7554	1231	1242	1216	1236	1324				
0.7999	1223	1233	1211	1228	1323				
0.8545	1214	1222	1205	1218	1322				
0.8999	1207	1212	1200	1209	1321				
0.9550	1197	1200	1194	1198	1320				
1	1190	1190	1190	1190	1321				
				MM	A(1) + Dec	cane-1-ol (2)			
0	1367	1367	1367	1367	1368	2.89	12.17	0.66	0.04
0.0554	1355	1360	1339	1358	1357				
0.0999	1346	1355	1318	1350	1347				
0.1553	1334	1348	1295	1341	1335				
0.1998	1325	1341	1279	1333	1326				
0.2556	1313	1334	1261	1323	1314				
0.2999	1304	1327	1247	1315	1305				
0.3554	1293	1318	1233	1305	1294				
0.4000	1284	1311	1222	1297	1285				
0.4555	1272	1301	1211	1286	1275				
0.4999	1264	1293	1203	1278	1266				
0.5554	1253	1283	1194	1267	1255				
0.5999	1244	1274	1188	1258	1247				
0.6555	1233	1262	1181	1247	1236				
0.6999	1224	1252	1177	1238	1228				
0.7556	1214	1239	1173	1226	1217				
0.7999	1205	1227	1170	1216	1209				
0.8555	1195	1212	1168	1203	1199				
0.8999	1187	1200	1167	1193	1190				
0.9555	1176	1183	1167	1179	1180				
1	1168	1168	1168	1168	1172				

A complete ultrasonic velocity study of decane-1-ol with various acrylates at 303.15...

Table 5.Adjustable parameters of Eq13 and 14 for Excess Functions for Acrylates (1) + Decane-1-ol (2)

Property	T(K)	a ₀	a ₁	a_2	a3	a_4	σ					
			MA(1) + Decane-1 - ol(2)									
Att (TDa ⁻¹)	303.15	63.3962	26.7849	-3.2006	14.8995	23.6187	0.38664					
$\Delta \kappa_{s}(1Pa)$	313.15	55.3486	33.5197	20.1683	3.0866	-12.9484	0.41375					
				EA(1) + Dec	cane-1-ol (2)							
$\Delta \kappa_{s}(TPa^{-1})$	303.15	22.4621	20.1502	13.6479	-9.6970	-15.8927	0.32791					
	313.15	18.6945	25.2477	14.9256	-21.4056	-20.5083	0.58774					
				BA(1) + Dec	cane-1-ol (2)							
$\Delta \kappa_{s}(TPa^{-1})$	303.15	6.0176	-3.1281	-7.5615	20.2328	13.6301	0.43004					
	313.15	3.1985	2.7866	-21.4398	4.4989	42.6166	0.52014					
				MMA(1) + D	ecane-1-ol (2)							
$\Delta \kappa_{\rm s}({\rm TPa}^{-1})$	303.15	42.2657	19.5183	-3.9746	2.5428	13.5427	0.43710					
	313.15	38.7273	18.6600	7.2387	1.7730	5.3325	0.32046					

Table 6.Adjustable parameters of Eq15 and 16 for Acrylates (1) + Decane-1-ol (2)

	J.						· · · ·
Property	a_0	a_1	a ₂	a ₃	a_4	σ	APD
	MA(1) + Decane-1 - ol(2)						
u (m.s ⁻¹)	0.0242	0.435	0.1354	-0.7286	-0.2667	1297.4211	0.0204
	EA(1) + Decane-1 - ol(2)						
u (m.s ⁻¹)	0.0598	-0.8037	-0.9323	1.4867	1.6833	1293.6859	0.0186
BA(1) + Decane-1 - ol(2)							
u (m.s ⁻¹)	-0.0331	-0.0191	0.4959	0.1106	-0.8857	1313.3082	0.0212
	MMA(1) + Decane-1 - ol(2)						
u (m.s ⁻¹)	-0.0879	0.1563	1.5038	-0.7867	-2.5679	1302.1461	0.0194

Fig 1. Variation of deviation in isentropic compressibility ($\Delta \kappa_s$) for Acrylates (1) + Decane-1-ol (2) at 303.15 K.

Fig. 3. Variation of excess available volume (V_a^E) for Acrylates (1) + Decane-1-ol (2) at 303.15 K

Fig. 4. Variation of excess intrinsic pressure (π_{int}^{E}) for Acrylates (1) + Decane-1-ol (2) at 303.15 K.

Positive values of deviation in isentropic compressibility (\Box_s) suggest a mixture is more compressible than corresponding ideal one. Excess specific acoustic impendence (Z^E) are more negative for mixtures containing alkanols due to more steric hindrance of alkanols towards hetero molecular interactions. Positive values of excess available volume (V_a^E)mean strong interactions. Less magnitude of excess intrinsic pressure (π_{int}^E)suggests that, weak type of intermolecular interactions are present with some dispersion due to dissociation of decane-1-ol aggregates with addition of solute (acrylates) in present binary liquid mixtures. The positive values of molar sound velocity (R)clearly indicate, presence of specific interactions between acrylates and decane-1-ol.

Acknowledgement

Author (SSP) acknowledge Department of Science and Technology, New Delhi, Government of India, for their financial support by awarding Junior Research Fellowship.

References

- A. R. Mahajan, S. R. Mirgane and S. B. Deshmukh, Speed of ultrasound and thermodynamic properties of n-tetradecane in binary liquid mixtures at 298.15 K, International Journal of Research in Physical Chemistry, 4, 2007, 345.
- [2]. Nomoto O., Empirical formula for sound velocity in liquid mixtures, Journal of Physical Society, Japan, 13, 1958, 1528.
- [3]. Van Dael W and E. Vangeel, "Proceedings of the First International Conference OnColorimetry and Thermodynamics", Warsaw, 1969).
- [4]. W. Schaffs, Z Phys, 114, 1975, 110; 115, 1975, 69.
- [5]. W. Schaffs, Molecular Akustic, Chapter XI and XII, Springer, Berlin, (1963).
- [6]. B. Jacobson, Intermolecular free lengths in the liquid state, Acta Chem. Scand, 6, 1952, 1485.
- [7]. B. Jacobson, Ultrasonic velocity in liquids and liquid mixtures, J. Chem. Phys., 20, 1952, 927.
- [8]. O. Redlich and A. T. Kister, Algebraic Representation of Thermodynamic Properties and the Classification of SolutionsInd. Eng.Chem., 40, 1948, 345.
- [9]. A. Jouyban, M. Khoubnasabjafari, Z. Fekari and Jr. W. E. Acree, Calculation of the viscosity of binary liquids at various temperatures using Jouyban Acre Model, Journal of Chemical and Pharmaceutical Bulletin, 53, 2005, 519.
- [10]. A. Jouyban, A. Fathi–Azarbayjani, M. Khoubnasabjafari and Jr. W. E. Acree, Mathematical representation of the density of liquid mixtures at various temperatures using Jouyban Acre Model, Indian Journal of Chemistry, 44, 2005, 1553.
- [11]. A. Ali, F. Nabi and M. Tariq, Volumetric, ultrasonic, viscometric, R. I. properties of liquid mixtures of benzene with industrially important monomers at different temperatures, International Journal of Thermophysics, 30, 2009, 464.
- [12]. A. Ali, K. Tiwari, A. K. Nain and V. Chakravortty, Study of intermolecular interaction in dimethylsulphoxide + 1-alkanols (1butanol, 1-hexanol, 1-octanol) at 303.15 K, Physics and Chemistry Liquids, 38, 2000, 459.
- [13]. O. Kiyohara and G. C. Benson, Ultrasonic speeds and isentropic compressibilities of n-alkanol + n-heptane mixtures at 298.15 K, Journal of Chemical Thermodynamics, 11, 1979, 861.
- [14]. N. V. Sastry and S. R. Patel, Densities, Viscosities, Sound Speeds, excess properties of binary mixtures of methyl methacrylate withalkoxyethnols and 1-alcohols at 298.15 and 308.15 K, International Journal of Thermophysics, 21, 2000, 1153.
- [15]. R. D. Roy, R. K. Shukla, A. K. Shukla and J. D. Pandey, Ultrasonic speeds and isentropic compressibilities of ternary liquid mixtures at (298.15±0.01) K, Journal of Chemical Thermodynamics, 21, 1989, 125.
- [16]. D. W. V. Krevelen and P. J. Hoftyzer, Properties Of Polymer, Elsevier Sci. Publication Co., Amsterdam, 1976.
- [17]. R. D. Peralta, R. Infante, G. Cortez and J. Wisniak, Volumetric properties of the binary systems of dimethyl sulfoxide with
- [18]. methacrylic acid, vinyl acetate, butyl methacrylate, and allyl methacrylate at 298.15 K, Journal of Solution Chemistry, 34 (5), 2005, 515.
- [19]. R. D. Peralta, R. Infante, G. Cortez, O. Rodriguez and J. Wisniak, Volumetric properties of toluene with ethyl acrylate, butyl acrylate, methyl methacrylate, and styrene at 25±C, Journal of Solution Chemistry, 31 (3), 2002, 175.
- [20]. D. M. Swamy and K. L. Narayana, Speed of sound and ratio of heat capacity in 1-nonanol, 1-undecanol, and 1-dodecanol, Journal of Chemical and Engineering Data, 38, 617 (1993).
- [21]. D. F. Shirude, Thermo physical and thermodynamic properties of binary and ternary liquid mixtures of toluene with alkanols (C₆-C₁₀) at 298.15 to 313.15 K, Doctoral Thesis, PuneUniversity, Pune, Feb. 2006.