A Navel approach Image compression based on Luminance and Chrominance using Binary Wavelet Transform (BWT) and Raster Line Technique

¹G. Thippanna, ²Dr. T. Bhaskar Reddy

^{1,2}Research Scholar Dept of Computer Science and Technology, S.K. University, Anantapur.

Abstract:- In rapid development multimedia the Images are awesome use full, image coding is the key and most prevalent in mass communication and storage system. This paper represents image compression based on Luminance and Chrominance using Binary Wavelet Transform¹ and Raster Line technique is proposed. This method shows the results better on standard JPEG and RAW images and reconstructs the images. **Key Words: -** Image compression, BWT, JPEG compression, Lossy and Lossless, Raster Line Techniques.

I. Introduction:-

In rapid development multimedia the Images are awesome use full, image coding is the key and most prevalent in mass communication and storage system. Here using Raster Line Technique⁶⁻⁹ along with Luminance and Chrominance of Lossy and Lossless²⁻⁵ techniques. In a distributed environment large image files remain a major bottleneck within systems. Compression is an important component of the solutions available for creating file sizes of manageable and transmittable dimensions. Increasing the bandwidth is another method, but the cost sometimes makes this a less attractive solution. Platform portability and performance are important in the selection of the compression/decompression technique to be employed. Compression solutions today are more portable due to the change from proprietary high end solutions to accepted and implemented international standards. In most of the applications the exact restoration of stored image is not mandatory. This fact can help to make the storage more effective, and in this way we get the lossy compression methods. JPEG is evolving as the industry standard technique for the color integrity is important like correcting chromatic aberration is not suitable for JPEG data. In this paper a lossy image compression is proposed by considering the chrominance aberration correction.

II. Binary Wavelet Transform:-

The wavelet-transform compression technique offers a better compression performance than the DCTbased JPEG compression standard. In addition, many features such as quality and resolution scalability can be achieved with a single bit stream. This would not be possible for the current JPEG. However, DCT-based JPEG has the clear advantage of a very low implementation complexity⁴ over the wavelet-based technique. Wavelets representation is suggested in many of the image applications like edge detection, image coding, filtering and time frequency analysis due to its fastness and convenient tree structures. Most of the existing wavelet filters designed in the real field for gray level images have wide range of wavelet coefficients and bring out an expansion in the alphabet size of the symbols, leads to extra passes and bits for representing sign information of the wavelet coefficients. This expansion dramatically increases the model cost of the entropy coder for gray level images which are represented as eight alphabets. The most important feature of the BWT is the conservation of alphabet size of wavelet coefficients, which indicates that the transformed images have the same number of greyscale levels as the original images. In particular, for a K-bit greyscale image, the range of BWT coefficients is still maintained within [0, 2K-1]. Therefore, it is reasonable to expect that the compression efficiency of the BWT coefficients can be improved in that extra bits originally used to code sign information of the transform coefficients which are saved to code more significant coefficients. The compression complexity might be reduced as the BWT contains simple exclusive-or (XOR) operations only and a maximum number of eight coding passes are involved during the encoding procedure¹.

Proposed Method:-

The proposed method is shown in **figure 1**

Figure-1: Block diagram for encoding of the proposed method

The given color image (RGB) is translated into YCbCr color space. All these components are decomposed using binary wavelet transform as stated in¹. Chroma sub sampling of 4:2:0 is done for decomposed Cb, Cr components which are followed by lossy mode compression. Decomposed Y components are subjected to lossless technique without sub-sampling. The resultant data tables are merged together to form the entire data table and the binary plane forming encoded image. The decoding procedure is shown in the **figure 2**

Figure 2: Block Diagram for decoding of the proposed method

Procedure Main:-BEGIN

callConvertToYCbCr () // dividing the image into Y, Cb,Cr formats Call Raster_Line_Compress () // generate bit plane and data tables Call Raster_Line_Merge () // merge the bit plane and data table Call lossless compression () END CONVERT_TO_YCbCr()BEGIN //converting source image to X Cr CbO

//converting sourc image to Y,Cr,CbO pen source image File;

Open Y image file Open Cb image file Open Cr image file y //holds the y image pixel cb //holds the cb image pixel cr //holds the cr image pixel a //holds image current pixel b //holds image next pixel c // holds image next next pixel While((a=read(sours_image)!=eof) BEGIN b=read(sours_image) A Navel Approach Image Compression Based On Luminance And Chrominance Using Binary

c=read(sours_image) y=caluclateY using a,b,c cb=calculate cb using a,b,c cr=calculate cr using a,b,c write y to Y_image_file write cb to Cb_image_file write cr to Cr_image_file

END

Close source image file Close Y image file Close Cb image file Close Cr image file

END

PROCEDURE

Procedure Raster_Line_BPT_Compress ()

// subroutine generate bit plane and data table
/* Data Item Used */
Prev_pixel // holds previous pixel
Cur_pixel // holds current pixel
Bit_plane /* 8 bit number to hold the
status bit to indicate wether pixel
is retained or not retained*/
BECIN

BEGIN

Open raw image file Open bit plane file Open data table file Cur_pixel=read(image) Write cur_pixel to data table Append bit 1 to bit_plane Prev_pixel=cur_pixel While((cur_pixel=read(image))!=eof)

BEGIN

/* if repeated consecutive pixel value append 0 to bit plane to indicate that pixel duplicate so not retained*/ if(cur_pixel=prev_pixel) then append bit 1 to bit_plane write cur_pixel to data table file prev_pixel=cur_pixel End If bit_plane is full then Write bit_plane to bitplane file If bit_plane is not full then Write bit_plane to bitplane file Close raw image file Close bitplane file Close data table file /* to merge bit plane and data table files & generate intermediate compressed file*/ /* Data item used*/ Cur_byte Begin Open bit plane file Open data table file Open bpds file While((cur_byte=read(bitplane file))!=eof)

Procedure Raster_Line_BPT_Merge ()

BEGIN

Write cur_byte to bpds file End While((cur_byte=read(data table file))!=eof) Begin Write cur_byte to bpds file End

PROCEDURE LOSSLESS_COMPRESSION () BEGIN

/*Design code for selecting image Compress
compress buttons*/
Cur_Byte //current byte
Prv_Byte //Previous byte
No of bytes //caluclating the no. of bytes
BEGIN
Open source image file
Open data_table file
Open bit_plane file
Cur_byte=read from source image file
Prv_byte=cur_byte
Write Cur_byte to data_table
while((cur_byte = read source image)!eof)

BEGIN

bpData=(byte) left shift the bit_plane data compare cur_bytewith prv_byte then write cur_byte to data_table bit_data= 0 prv_Byte=cur_Byte; increment no of Bits with compare if no of Bits=8 then write bit_data to bit_plane file no of Bits=0 bpData=0 increment bpCount END

End

PROCEDURE

Results:-

For this, an experimental analysis is one with the different raw images whose resolution is 128x128.Gruop 1 level based binary wavelet transform decomposition is implemented. The results obtained with the different thresholding values are tabulated.

Figure 3: Sample test images for the experiment

STEP BY STEP ALGORITHM EXECUTION

Figure 4: (a) Original image (b) YCbCr image (c) Y-component (d) Cb-component (e) Cr-component (f) Restored image with threshold 8 of CR=1.8895 and PSNR=32

In this method of encoding sub sampling of 4:2:0 is done for Cb and Cr components followed by lossy coding. Thus, obtained encoded stream is merged together to form a compressed set of the given image. The encoded image is again split up into Y, Cb and Cr components which are by chroma up sampling. The inverse BWT is applied for details to restore them back to Y Cb and Cr components. These are again reconverted back into RGB to get a best view

TABLE 1: ANALYSIS OF COMPRESSION RATIO FOR VARIOUS THRESHOLD VALUES

THRESHOLD VERSUS CRR							
	TH4	TH8	TH16	TH32	TH64		
T32	2.5039	3.789	5.97	10.38	16.009		
WIND	1.6946	2.6768	4.3678	4.8998	51.125		
SOAP	6.0339	19.5771	19.897	34.075	34.148		
LENNA	1.4595	1.8895	2.6125	3.6987	5.985		
SANTA	2.711	3.6171	35.6562	58.524	58.5245		
KODIM	2.384	3.251	4.7123	6.9357	9.7632		
COFFEBEEN	1.7054	2.6043	4.7096	34.077	51.0995		
HWA	1.9378	2.5318	3.1032	3.5504	4.2304		

Figure 5: Graphical analysis of threshold Vs compression ratio

TABLE 2: ANALYSIS OF THRESHOLD VALUE AND PSNR FOR DIFFERENT IMAGES

THRESHOLD VERSUS PSNR							
	TH4	TH8	TH16	TH32	TH64		
T32	33.716	33.156	32.74	32.26	32.2455		
WIND	35.2303	43.4356	32.9	32.5887	32.543		
SOAP	35.309	34.768	34.356	34.2565	34.4		

A Navel Approach Image Compression Based On Luminance And Chrominance Using Binary

LENNA	32.5345	32.00678	39.78	29.456	29.452
SANTA	35.8764	33.234	31.7654	31.3345	30.6579
KODIM	33.6578	33.316	31.6789	31.37654	30.7689
COFFEBEEN	32.3545	31.9987	31.8976	31.9234	31.92
HWA	32.2908	32.1789	32.1032	32.0255	30.4624

Figure 6: Graphical analysis of threshold Vs PSNR

Conclusion and Recommendations:-

Compressing the color images efficiently is one of the major problems in multimedia applications. So we have tested the efficiency of color image compression using BWT algorithm. The Lossless algorithm is applied for Y (luminance) and Lossy for Cb, Cr (chrominance) of color image. This work may be extended for better compression by applying Huffman and arithmetic coding. The Lossy produces much higher compression rate than all the three techniques but introduces little loss. The loss is visually insignificant when the threshold value is 4 or 8. When the threshold is 16 or 32 the loss is visually observable. The memory requirements for processing the images in all of these techniques are significantly less compared to JPEG. The JPEG technique requires more memory because the entire image needs to be brought into memory. Proposed method require no complex calculations and processing of the data is performed only in terms of integers, so there is no chance of loss of precision. The JPEG technique requires complex calculations. The processing is done in terms of real numbers where there is possibility of loss of precision.

References:-

- [1]. M.Ashok, Dr.T.Bhaskar Reddy, Dr.B.Eswara Reddy,"Binary wavelet transform for image representation",IJEST,vol3,no.8,Aug 2011,pg.no:6286-6290.
- [2].
- Rafael C.Gonzalez, Richard E.woods "Digital image processing" second edition Pearson education, printiceHall W.S.lee "Edge adaptive predication for loss less image coding "in proc. IEE data CompressionConference, Snowbird Utah march [3]. 199,pp 483-490
- Skodras ,A.C. Christopoulis and T.Ebrahim ,2001 .The JPEG 2000 still image compression standardIEEE signal Proc. Mag 18(5) : [4]. 36-58
- Sadashivappa et al "Color image compression using SPIHT Algorithm" international journal of computer Applications (0975-8887) [5]. Vol 16-No 7 February 2011.
- [6]. Noise to mark ratio minimization by weighted non-nagative matrix factorization, Joonas NiKunen et al ICASSP 2010 organised by IEEE.
- [7]. Image Denoising based on wavelet and Multifractals for singularitydetection Junmie Zhong and Roula Ning IEEE transaction on image processing Vol 14 No:10 oct 2005.
- I. Pitas Digital Image Processing algorithms and Applications Wiely 2000. [8].
- [9]. Digital Image Processing using MAT Lab R.C. Gonzalez and et al 2004 Pearson Education.