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Abstract: The morphology and topology of nickel films in absence and presence of additives LiF,ethylene
diamine(en) and acetyl acetonoate (acac)) from ethylene glycol / choline chloride (ethaline), based ionic liquid
on copper substrate, have been examined by AFM technique. The surface analysis was carried out by software
nanoscope using surface roughness, section, power spectral densities(PSD), depth and width. The results
showed that the average roughness (R,), Root mean square roughness (Ry), the kurtosis(Ry,) and skew
(Re)parameters showed that the distribution of spikes are perfectly random for Ni coating in absence of
additives, bumpy in the presence of LiF, spiky in the presence of en and bumpy in the presence of acac. The
power spectral densities raw data also show different lateral (x,y) values of spatial frequency, roughness
skewness (Rg) values for Ni deposits in absence and presence of ethylene diamine and acetyl acetonoate,
moreover it has been found that the addition of LiF can act as brightener and shows significant influence on the
formation of Ni deposits.

Key words: ethaline, Ni deposits, ionic liquids, LiF, surface roughness, RMS and morphology

Date of Submission: 17-01-2020 Date of Acceptance: 04-02-2020

I.  Introduction

Physical chemists and physicists necessitate precise-scale details of surfaces and frequently details of
molecular roughness.[1-2]Surface roughness is generally characterized by the standard deviation of surface
heights. These features and information are usually suppliedutilizing methods such as low-energy electron
diffraction, molecular-beam methods, field-emission,field-ion microscopy, scanning tunneling microscopy, and
atomic force microscopy which is used in this study.Surface roughness is most frequently associated with the
dissimilarities in the height of the surface relative to a reference plane. It is determined by either along a single
line profile or along a set of parallel line profiles(surface maps). These are R,, the average roughness) and R, or
root mean square.Height designators are skewness (Rsy) and kurtosis (Rk).The other parameters that can be
utilized are R, (maximum peak height, maximum peak-to-mean height or simply P-M distance), R, (maximum
valley depth or mean-to-lowest valley height), R, (average peak-to-valley height), and Ryn (average peak-to-
mean height)which depicted in Figure 1.
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Figurelshows that the measurements of R, ,Rq and the standard deviationeis the square root of the arithmetic
mean of the square of the vertical deviation (z(x)) from the mean line [3-4].
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It can expressed mathematically

R, =712 —mldx (1)
1 L
== [ zdx
LJo
Where L is the profile length
M,=c? = % Jy (z - m)?dx (2)
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where ¢’ and ¢ are the standard deviations of the first and second derivatives of the functions. For
asurface/profile height, these are the surface/profile slope and curvature, respectively.

62=R2 — m?2
q
The zeroth moment (n = 0) is equal to 1. The first moment is equal to m, mean value of the function z(x),
whereas the first central moment is equal to zero [5].

According to [6],a random and isotropic surface with a Gaussian height distribution can be adequately
characterized by the three-zeroth (Mg), second (M,) and fourth moments (M,) of the power spectral density
function[7].

For completeness, we note that

1 (L
m = [, zdx =0

then Rq=0
for Gaussian surfaces,

o= \/gRa ~ 1.25R, (5)

It is possible, for surfaces of widely differing profiles with different frequencies or wavelength and different
shapes, to give the same R, orc (Rg) values as shown in the figure2.
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Figure2 shows schematic two surfaces have equal surface roughness (vertical) R, and R, but different spatial
frequency (lateral(x,y)).

To distinguish between surfaces have same values ofR, orc (Ry) you can count on power spectral
densities or other statistical parameters. Authors reported thatthe variances of surfaceheight and its derivatives
and other roughness parameters depend strongly on the resolution of theroughness measuring instrument or any
other form of filter; hence they are not unique for a surface[8-10]
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Power Spectral Density (PSD)

The Power Spectral Density (PSD) inNanoScope Software 6.13User Guideis one of thesurface texture
descriptorswhich is a good tool for analyzing lateral surface roughness (x,y). This function comes with a
representation of the amplitude of a surface’s roughness as a function of the spatial frequency of the roughness.
Spatial frequency is the inverse of the wavelength of the roughness features. The PSD function reveals periodic
surface features that might otherwise appear random and provides a graphic representation of how such features
are distributed. On turned surfaces, this is helpful in determining speed and feed data, sources of noise, etc. On
ground surfaces, this may unveil some intrinsic features of the material itself such as grain or fibrousness. At
higher magnifications, PSD is also useful for determining atomic periodicity or lattice[1].

Figure3a waveform spectrum (2D spectrum).

A 2-dimensional power spectral density plot of this surface would involve of two dominant spikes (one
for each superior wavelength), plus some number of extra wavelengths intrinsic within the image. (These extra
wavelengths may reveal due to fine surface features and/or side bands of the dominant wave forms). Because of
the sine wave nature of the composite wave form, a relatively small set of spectral frequencies suits to delineate
the entire surface. By contrast, an image comprised of angular (saw-toothed or square) waveform contains more
spatial frequency components.

PSD and Flatness

Surface roughness is generally characterized by the standard deviation of surfaceheights[5].Compare
two surfaces with sinusoidal waveforms with the same peak height, but different wavelengths. Researchers [6-
11] have shown that they will have the same Ra and o, but with different spatial display of surface altitude.
Power Spectral Density (PSD) is one of the tools that offer a means of introducing the featureof all wavelengths.
Gaussian surfaces might be thought as containing a certain number of asperities (hills) and anequal number of
valleys. These properties may be examined and shown by their appropriate distributioncurves, which can be
described by the same type of features as were utilized previously for the surface peak heights and valleys often
follow the Gaussian curve [12-14].The distribution curves can also be obtained for the absolute values of slope
and for the curvature of thepeaks (or summits) and valleys. Distributions of peak (or summit) curvature follow a
log normaldistribution. The mean of the peak curvatureincreases with the peak height for a given surface [15-
17].PSD is used increasingly as a metrology tool for evaluating extremely flat surfaces, such as polished or
epitaxial silicon. Generally, the desired surface is expected to adhere to certain PSD thresholds,signifying it
meets a specified flatness criterion.The main advantage gained over traditional R specifications is that PSD
flatness is qualified through the full spectral range of interest. For example, one may specify spectral thresholds
at frequencies measured on the atomic scale, thus confirming surfaces contain largely uniform lattices. Setting
the precise thresholds for various materials remains a matter of discussion.
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Figure3b shows power spectral densities (PSD) chart terraced surface.

This narrow PSD plot is characteristic of flat, isotropic surfaces. Longer wavelengths are present up to
the scan width, and are accompanied by evenly decreasing powers of shorter wavelengths down to 2 pixels. On
the plot shown above a spike stands out, corresponding to the wavelength spacing of the terraced features.
Depending upon the qualitative standards of the person evaluating such a plot, this spike may exceed a threshold
standard of flatness.

lonic liquids

The electrodeposition of numerous metals and alloys hasbeen demonstrated using a variety of ionic
liquids withboth discrete and complex anions. Numerous reviewshave been published on metal deposition using
ionicliquids[18—-22]and a recent book[23]provides an authoritativesummary of the area. The advantages of these
novelsolvents include: electroplating electronegative metals ,e.g. Al, Ta, Nb, Mo and W; direct electroplating of
Metalson water sensitive substrate materials such as Al and Mgcan be achieved, removal of hydrogen
embrittlementfrom the substrate; alloy deposition is easier to achieve;the possibility exists to develop novel
immersion platingbaths; potential energy savings compared with aqueoussolutions; replacement of many
hazardous and toxicmaterials currently used in water, e.g. Cr(VI), cyanide;and access to novel deposit
morphologies.While the majority of important metals have beenstudied in these solvents, one obvious omission
is thedeposition of nickel. Gou and Sun[24] have recently studiedthe electrodeposition of nickel and nickel-zinc
alloysfrom the zinc chloride-1-ethyl-3-methylimidazoliumchloride. They found that although NiCl, dissolved
inthe pure chloride rich 1-ethyl-3-methylimidazoliumchloride ionic melt, metallic nickel could not be
obtainedby electrochemical reduction of this solution. Theaddition of zinc chloride to this solution enabled
theelectrodeposition of dense, compact and adherent nickelcoatings.It has recently been shown that ionic liquids
can beformed from eutectic mixtures of a quaternary ammoniumsalt such as choline chloride (ChCI) with
ahydrogen bond donor species such as a glycol, amide[25]or carboxylic acid[26]. These liquids have been used
for thedeposition of a range of metal coatings including Zn, Cr andSn[27], Cu and Ag[28-29] and for metal
dissolutionprocesses such as electropolishing[30-31].Here, the electrolytic deposition and morphologies
ofmetallic Ni coatings from ionic liquids (IL) based on aChCl ethylene glycol (EG)(1 :2) respectively (Ethaline)
eutectic mix were investigated. Changes inmorphology and topology have been investigated bythe addition of
brighteners and used inthe deposition process.It has been reported that the addition of alkali metal fluorides such
as LiF has a significant effect upon the electrodeposition of metals in high temperature molten salts [32-35].
Furthermore the addition of LiF has been found to improve the mechanical properties of deposited films.
Endres[36] and co-workers noticed that the morphology changed with the addition of LiF.

Materialsand experimental

Choline chloride [HOC,H;N(CHy)3ClI] (ChCI) (Aldrich 99%) was recrystallised from absolute ethanol,
filtered and dried under the vacuum. Ethylene glycol (Aldrich+99%), nickel chloride dihydrate, ethylenediamine
(en) and acetylacetonate (acac) (all Aldrich) were all used as received. Ethaline is prepared by mixing one mole
equivalent of Choline chloride with two mole equivalents ethylene glycol and stirring the mixtures together at
100°C until a homogeneous, colourless liquid is is formed .

Atomic Force Microscopy (AFM) Surface Nano-characterization

The surface analysis in this invistigation was carriedout using a Digital Instrument Nanoscope 1V
Dimension 300 (Veeco) atomic force microscope with a 100um scaning head and run using both contact
tapping (resonant) modes. Images were acquired in air.AFM is a very-high-resolution type of scanning probe
microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times
better than the optical diffraction limit. Studying the topology and morphology of variety of surfaces by AFM.
AFM can provide very valuable and important information about mechanical mass production and [32],
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tribological properties [37, 38], where tribology field of active research that deals with for example friction and
wear and thin film surfaces[39-40]. This tool can show the detail of surface texture better than other microscopic
methods. Using appropriate software it is possible to assess features such as roughness, porosity, average size,
and particle size distribution, which have great effect on the optical, mechanical, surface, magnetic and electrical
properties of thin films. The goal of this work to examine the surface topology and morphology of the nickel
deposits on copper substrate from deep eutectic solvent reline and compared with deposits with added leveling
agents ethylene diamine and acetylacetonate (acac). The properties of deposits films and their nature have been
investigated by parameters such as the average roughness, maximum peak to valley height, root mean square
roughness, ten-point mean height roughness, power spectral density (PSD), surface skewness and surface
kurtosis. However thesurface analysis was carried out using a nanoscope IV Dimension 300 (Veeco) atomic
force microscope with a 100 um scanning head and using both contact and tapping ( resonant) modes. Images
were acquired in air.

Il.  Result And Discussion

The magnitude variables of a sample are reported by variables which provide information about
statistical average values, appearance of the histogram heights and other acute properties. The average
roughness (Ra) is the mean height calculated over the entire measured length/area. Ra is typically used to
feature the roughness of machined surfaces. It is applicable for diagnose general variations in overall profile
height characteristics and for tracing a regular manufacturing process. Maximum peak to valley height
roughness (R) is the vertical distance between the highest and lowest points in the evaluated length/area and
describes the overall roughness of the surface. Root mean square (RMS) roughness (Ry) is the square root of the
distribution of surface height and is considered to be more sensitive than the average roughness for large
irregularity, from the mean line/plane and is also utilized in calculating the skew and kurtosis variables. RMS
roughness (Rg) describes the finish of optical surfaces. It represents the standard deviation of the profile heights
and is employed in calculations of skew and kurtosis. Ten-points mean height roughness (R,) is the difference
in height between the average of five highest peaks and five lowest valleys in the evaluation profile/surface and
is more sensitive to occasional high peaks or deep valleys than R,. Roughness skewness (Rg) is used to measure
the uniformity of the dissimilarity of a profile/surface about the mean line/plane and is more sensitive to
occasional deep valleys or high peaks. Ry determines load carrying capacity, porosity, and characteristics of
atypical machining processes. Usually, Rg is used to differentiate between two profiles of the same Ra or Rq
values but of different shapes. Kurtosis is a measure of the distribution of spikes above and below the mean line.
It is often specified for the control of stress fracture. Roughness kurtosis (Ry,) is used to measure the distribution
of the spikes above and below the mean line/plane. For (spiky surfaces, Ry,> 3); (for bumpy surfaces, Ry,< 3);
(perfectly random surfaces have kurtosis is equal to3)[41].With reference to Normal distribution, is presumed
that, the correlationRy=1.25R,.Ward [42] observed that peak (asperity) height distribution of most engineering
surfaces (tribology) may be estimated by a normal distribution with Rg=1.31R,.

Figure4 represents a,b with 1% LiF, cwith en and d with acac showing AFM images for Ni coatings in
presence and absence of additives, 4al,4b1,4c1 and 4d1 depict roughness data for Ni coatings in presence and
absence of additives, 4a2,4b2, 4c2 and 4d2 explain section graphs and data for Ni deposits in presence and
absence of additives, 4a3,4b3, 4¢3 and 4d3represent power spectral density (PSD) information for Ni deposits in
presence and absence of additives, 4a4,5, 4b4,5, 4c4,5and 4d4,5represent the width and depth data for Ni
deposits in presence and absence of additives respectively.The data obtained in Table 1 from AFM images are
significantly valuable and important. It shows that the roughness value of the Ni coating was obtained to be 37.2
nm when the deposition was achieved in a bath without additives; however, the roughness of the Ni deposits
increased to 86.6 nm and 51.7 nm when the coating was achieved from the same liquid medium in the presence
of LiF and acac respectively,surprisingly the surface roughness of nickel deposits decreased to 28 nm in case of
ethylene diamine is added. This was consistent with the results reported byAlesary[43], the addition ofNaBr
changes the surface morphology and roughness.Alesary[43] showedthat the presence of additives creates a
barrier between the nickel atoms and the active site of the substrate; this will lead to the change on the
nucleation and the mechanism of growth.Moreover, the results of surface roughness obtained from Table 1 are
compared to the results of surface roughness provided from Ni coating performed from reline[44] bathand it was
noticedthat the surface roughness of Ni deposits from ethaline and reline with added acac increases while the
surface roughness decreasesin the presence of en in case of ethaline electrolyte and increases in reline
electrolyte. It is interestingto observe that the Ry / Ryratio of Ni deposits with added acac from both electrolytes
ethaline possesses the 1.24 value which is in the calculated range (1.25-1.31)[36-37]. Table 1 summarizes the
values of Roughness kurtosis (Ry,) and roughness skewness (Rg) nickel deposits from Ethaline in the absence
and presence of additives and as it predicted the difference in the surface textures lead to values of Roughness
kurtosis (Ry,) and roughness skewness (Rgy).
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Figure4 Shows AFM images and data for Ni films performed by ethaline bath in absence and presence of
additives.
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Table. 1Roughness parameters of Nickel deposits with absence and presence ofadditives

Ni deposits from Ra Rq R, Rq/Ra Rk Rku Distribution
ethaline nm nm nm nm nm Of spikes

Withoutaddition 37.2 44.4 106 1.19 -0.539 3.00 Perfectly
random

1% 86.6 104 393 1.20 -0.237 2.39 bumpy

LiF
en 28 39.6 59.4 141 0.295 721 Spiky
acac 51.7 63.9 99.3 1.24 -0.202 2.75 bumpy

The distribution of spikes in absence of additives is perfectly randomperfectly random (R, = 3)[36],
and the negative value of Ry tells that the surface has more valleys the peaks this is also the case of nickel
coatings performed in the of LiF and acac but the nickel deposits obtained with added ethylene diamine (en) has
positive value of roughness skewness (Rg) which means the surface roughness has peaks than values, and the
distribution of spikes is spikey (Ry, = 3)[36].

I11.  Conclusion

In this study, it is shown that the presence of additives resultedin changes in the morphology and
topology,which can be clearly seen from the AFM images. However the surface roughness values were foundto
bevaried depending on the type of complexing agents, the power spectral densities raw data also show different
lateral (x,y)values of spatial frequency, roughness skewness (Rsx) values for Ni deposits in absence and presence
of ethylene diamine and acetyl acetonoate,which indicate that the surface textures had more valleys than peaks
while the Ni films obtained performed in the presence of ethylene diamine had more peaks than valleys. The
distribution of spikes are also different depending on the values ofroughness kurtosis (Ry,) where Ni deposit
without additives the distribution of spikes is perfectly random, bumpy surface for both Ni film coatings in the
presence of LiF, acac and spikey peak distribution for Ni deposits with added ethylene diamine.
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