
IOSR Journal of VLSI and Signal Processing (IOSR-JVSP)  

Volume 7, Issue 3, Ver. I (May. - Jun. 2017), PP 19-26 

e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197  

www.iosrjournals.org  

DOI: 10.9790/4200-0703011926                           www.iosrjournals.org                                           19 | Page 

 

Design of Majority Logic Decoder for Error Detection and 

Correction in Memories 
 

B.Swapna
1
, K.Jamal

2 

1
(ECE, GRIET/ JNTUH, INDIA) 

2
(ECE, GRIET/ JNTUH, INDIA) 

 

Abstract: Due to augmenting integration densities, technology scaling and variation in parameters, the 

performance failures would possibly occur for every application. The memory applications are vulnerable to 

single event upsets and transient errors which may cause malfunctions. This paper deals with the idea of a 

totally distinctive fault detection and correction technique using EG-LDPC codes with the applying mainly 

targeted on reminiscences. The majority logic secret writing is used here, since it will correct associate degree 

outsize type of errors. Albeit the majority secret writing consumes longer, it will be overcome by the projected 

technique that detects the errors in less cycle time. It will clearly reduce operation time once the information 

scan technique is error free. the employment of associate degree additional logic finishes up during a little 

house  overhead in projected methodology once place next to the current technique, that's overcome by a 

revised implementation of majority gate. 
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I. Introduction 

Memories are the most general component today. They are prone to errors like soft and transient errors. 

Some type of embedded memory, such as ROM, DRAM, SRAM, flash memory etc. is seen in almost all system 

chips. Now a days, the memory failure rates are increasing due to the influence of technology scaling-smaller 

dimensions, lower operating voltages, highintegration densities etc.[4],[5]. As the dimensions and operating 

voltages of computer electronics are minimized to satisfy the consumer’s unquenchable demand for higher 

density, functionality, and lower power, their sensitivity to radiation increases noticeably. There are a number of 

radiation effects in semiconductor devices that vary in magnitude from data interruption to permanent damage 

ranging from parametric shifts to complete device failure. 

Some frequently used error detection techniques are Error Correction Codes (ECCs) and Triple 

Modular Redundancy (TMR). The TMR triplex all the memory parts of the system and to choose the correct 

data using a voter. This method have disadvantage of complexity overhead of three times and large area. A soft 

error occurs when a radiation event causes enough of a charge disturbance to flip or reverse the data state of a 

memory cell, register, latch, or flip-flop. The error is “soft” because the device/circuit itself is not permanently 

damaged by the radiation if new data are written to the bits; the device will store it correctly. The soft error is 

also often referred to as a single event upset (SEU). 

 The TMR threefold all the memory parts of the system and to choose the correct data using a voter. 

This method have disadvantage of large area and complexity overhead of three times [4]. A soft error occurs 

when a radiation event causes enough of a charge disturbance to reverse or flip the data state of a memory cell, 

register, latch, or flip-flop. The error is “soft” because the device/circuit itself is not permanently damaged by 

the radiation. If new data are written to the bit, the device wills storeit correctly. The soft error is also often 

referred to as a single event upset (SEU) [4]. 

 The most frequently used ECC codes are Single Error Correction (SEC) codes that can correct one bit 

error in a memory word. Due to consequence of higher integration densities, there is an increase in soft errors 

which points the need for more error correction capabilities [1],[3]. Therefore, it has become conventional to 

safeguard memories with the application of error correcting codes (ECC) like single-error-correcting (SEC) 

Hamming code, single-error-correcting double-error-detecting (SEC-DED) extended-Hamming, or SEC-DED 

Hsiao codes With multi-bit upsets (MBU) becoming a major contributor to soft errors. Conventional SEC or 

SEC-DED codes may not be sufficient to meet reliability goals. To mitigate these effects, the use of more 

powerful ECC and/or memory scrubbing with regular ECC are being suggested. 

The general multi error correction codes, such as Reed–Solomon (RS) or Bose Chaudhuri–

Hocquenghem (BCH) are not suitable for this task in view of complex decoding algorithm. Cyclic block codes 

have the property of being majority logic (ML) decodable. Therefore cyclic block codes have been described as 

more suitable among the ECC codes that meet the requirements of greater error correction capability and low 
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decoding complexity. Euclidean geometry low-density parity check (EG-LDPC) codes, a subcategory of the 

low-density parity check (LDPC) codes, which belongs to the family of the ML decodable codes, is focused 

here. The benefits of ML decoding are that it is very simple to construct and easy to implement thus it is very 

practical and has low complexity.  

The objective of the method is to use the first three iterations of majority logic decoding to detect if the 

word being decoded contains errors. If there are no errors, without completing the remaining iterations, 

immediately decoding can bestopped therefore greatly reducing the decoding time. For a code with block length 

n, majority logic decoding using serial implementation requires equal number of iterations, means decoding 

time is directly proportional to code size, so as the code size grows, so does the decoding time.  

In the proposed method we are using initial three iterations to detect errors thereby achieving a large 

speed increase for codeword if it is error free. For DS-LDPC codes, all error combinations of up to five errors 

can be detected only in the first three iterations. Additionally, errors affecting more than five bits were detected 

with a probability close to one. The probability of undetected errors was also found to decrease as the code word 

length increased. For a million error patterns only a few errors or sometimes none were undetected. This may be 

acceptable for most of the applications. Another advantage of this method is that it requires a little additional 

circuitry as the decoding circuitry is also used for error detection. 

 

II. Majority Logic Decoding (Mld) Solutions 
Majority logic decoder is mainly based on number of parity check equations which are orthogonal to 

each other so that for each iteration, each codeword bit participates in only one parity check equation, except the 

very first bit which contributes to all equations. With this reason, the majority result of these parity check 

equations decide the correctness of the current bit under decoding [6]. MLD was first mentioned in for the 

Reed–Müller codes. Then, it was extended and derived for all types of systematic linear block codes that can be 

totally orthogonalized on each codeword bit. 

 A generic schematic of a memory for the usage of an ML decoder is shown below. Initially, the data 

words are encoded and then stored in the memory [2]. When the memory is read, the codeword is then passed 

through the ML decoder before sent to the output for further processing. In this decoding process, the codeword 

is corrected from all bit-flips that it might have suffered while being stored in the memory. There are two ways 

for implementing this type of decoder. The first one is known as Type-I ML decoder, which determines, upon 

XOR combinations of the syndrome, [9] which bits need to be corrected. The second one is the Type-II ML 

decoder that calculates directly out of the codeword bits [6]. These two types are quite similar, when 

implementation is considered the second type uses less area, since it does not have a syndrome calculation as an 

intermediate step. For this reason the paper focused on this Type-II implementation. 

 

2.1 Existent Plain ML Decoder 

The existent plain majority logic decoder have the method of working in which from the received 

codeword  itself the correct values of each bit under decoding can directly found out.  

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14c0

c3 c11 c12 c14 c1 c5 c13c14 c0 c2 c6 c14 c7c8 c10 c14

O1
O2 O3  O4

Majority logic circuit

                                    Input (p0,p1,………pn-2,pn-1)

Output

   Q0

   Q1

   Q2

  Qn-1

 
Fig 1. Serial one-step majority logic corrector for (15, 7, 5) EG-LDPC code 
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This method mainly consists of two steps. 

1) Generating a specific set of linear sums of the received vector bits using the XOR matrix. 

2) Finding the majority value of the computed linear sums.  

 It is the majority logic output which determines the correctness of the bit under decoding. If the 

majority output is ‘1’, then the bit is inverted, otherwise would be kept unchanged. As described before, the ML 

decoder is simple and powerful decoder, which has the capability of correcting multiple random bit-flips 

depending on the number of parity check equations. It consists of four parts: 

 1) Cyclic shift register;  

2) XOR matrix;  

3) Majority gate; and  

4) XOR for correcting the codeword bit under decoding. 

The circuit implementing a serial one-step majority logic decoder [6],[12] for (15, 7, 5) EG-LDPC code is 

shown in Fig. 1.  

 The cyclic shift register is primarily stored with the input signal p, and shifted through all the taps or 

bits. The results {Oj} of the check sum equations through the XOR matrix is calculated from the intermediate 

values in each tap. In the N
th 

 iteration, the result would reach the final tap, producing the output signal, which is 

the decoded version of input [2]. This is the situation of error free case. The input p might correspond to wrong 

data corrupted by a soft error. The decoder is designed to handle this situation as follows. 

Using the parity check sum equations hardwired in the XOR matrix the decoding starts at the very next 

moment after the codeword p are loaded into the cyclic shift register. The linear sum outputs {Oj} is then 

forwarded to the majority logic circuit which determines the correctness of the bit under decoding. If the 

majority of the Oj bits are “1” that is greater than the majority number of zeros then the current bit is erroneous 

and should be corrected, otherwise it is kept unchanged. 

 
Load the input code 

words to cyclic shift 

register j=0

Calculate the results of 

checksum equations from 

XOR matrix

Majority logic 

circuit

No. of ‘1’>No. of 

‘0’s

Correct the bit 

under decoding

Shift cyclically

j++

     no           yes

j=n End
      yes              no

 
Fig 2.  Flow diagram of the ML algorithm 

  

The process is repeated and values of shift registers are rotated up to the whole N bits of the codeword 

are processed. When the entire parity check sum outputs are zero the codeword is correctly decoded. Further 

details on how this algorithm works can be found in [6], [12].  

 Flow diagram of the ML algorithm is shown in Fig 2. The Algorithm needs as many cycles as the 

number of bits in the input signal, which is number of taps, N, in the decoder and also needs same decoding time 

for both error and error free code words. 
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III. Ml Detector/Decoder 
 One step MLD can be implemented serially using the scheme in which corresponds to the decoder for 

the EG-LDPC code with N=15. First the data block is loaded into the registers. Then the check equations are 

resolved and if a majority of them has a value of one, the last bit is inverted. Then all bits are cyclically shifted. 

This set ofoperations constitutes one clock cycle or iteration. After N iterations, the bits are in the same position 

in which they were loaded. In the process, each bit may be corrected in one clock cycle. 

 

encoder

Parallel 

to serial 

convertor

Random 

access 

memory

0- 6 Bits

        

          0-14

          Bits Majority 

logic 

decoder

    

     Data in
Data

 out

      Clk

Write

     Read

0 - 14 Bits

 
 

Fig 3. Schematic of a memory system with MLDD 

 

As can be seen, the decoding circuitry is simple, but it requires a long decoding time if N is large. Figure 3 

Shows The Memory System Schematic Of Proposed MLDD. 

 

3.1 Design Structure of encoder 

The systematic generator matrix to generate (15, 7, 5) EGLDPC code is shown in Fig 4[6].  

 
Fig 4.Generator matrix for the (15, 7, 5) EG-LDPC code. 

 

  The encoded vector consists of mainly two parts, the first part consist of information bits and second 

part is the parity bits, where each parity bit is simply an inner product of information vector and a column of X 

, from G=[I:X]. 

c0 c1c2c3c4c5c6

i0  i1  i3         i1  i2  i4         i2  i3  i5         i3  i4  i6               i0   i1  i2   i5  i6           i0  i2  i6                

c7 c8 c9 c10 c11 c12
c14c13

i0i1i2 i3i4i5i6 i0   i1   i3  i4  i5  

                                           

i1  i2   i4  i5  i6

 
Fig 5. Structure of an encoder circuit for the (15, 7, 5) EG-LDPC code 

   

The encoder circuit [6] to derive the parity bits of the (15, 7, 5) EG-LDPC code is shown in Figure 5. 

In this figure, the information vectors are (i0,….i6) and will be copied to (c0,..,c6) bits of the encoded vector, c. 

The rest of encoded vector bits (c7…c14), that is the parity bits are the linear sums (XOR) of the information 

bits. 
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IV. Proposed MLDD Structure 
  The advantage is that, proposed method stops intermediately in the third clock cycle when there is no 

error in data read [2] as illustrated in Figure.7, instead of decoding it for the whole codeword size of N. The 

XOR matrix is evaluated for the first three cycles of the decoding process, and when all the outputs {Oj} are 

“0,”the codeword is determined to be error-free and forwarded directly to the output. On the other hand, the 

proposed method would continue the whole decoding process to eliminate the errors [2] if the {Oj} contain at 

least a “1” in any of the three cycles. 

 

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14c0

c3 c11 c12 c14 c1 c5 c13c14 c0 c2 c6 c14 c7c8 c10 c14

O1
O2 O3  O4

Majority logic circuit

                                    Input (p0,p1,………pn-2,pn-1)

Output

   Q0

   Q1

   Q2

  Qn-1

Control 

logic

Output 

tristate 

buffer

finish

 
Fig 6. Schematic of the proposed MLDD for 15 bit code word. 

  

A detailed schematic of the proposed design for 15 bit code word is shown in Fig 6. The figure shows 

the basic ML decoder with a 15-tap shift register, an XOR array to calculate the parity check sums and a ML 

circuit which will decide whether the current bit under decoding is erroneous and the need for its inversion. A 

detailed flow diagram of MLDD algorithm is shown in fig 7. 
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Fig 7.Flow diagram of the MLDD algorithm. 
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The plain ML decoder [2] shown in Figure 1 is also having the same schematic structure up to this 

stage. The additional hardware [2] planned for fault detection illustrated in Figure 8 those are:  

a) The control logic unit and 

b) The output tristate buffers.  

 

Finite state 

machine

counter

Finish

OR1

 OR2

Count
Reset counter

Reset detection register

O1 O2 …. Oj

 
Fig.8 Schematic of the control unit. 

 

The control unit generates a finish flag when there is no errors are detected in data read. The output 

tristate buffers are remains in high impedance state until the control unit sends the finish signal so that the 

current values are transferred to the output y from the shift register. The control unit shown in fig.8 [2] manages 

the detection process. 

The detection process is controlled by the control unit. For distinguishing the first three iterations of the 

ML decoding, a counter is used here which counts up to three cycles. The control unit evaluates the output from 

XOR matrix Oj by giving it as input to the OR 1 gate. This output value is fed to two shift registers which has 

the results of the previous stages stored in it. The values are shifted accordingly. The third coming input is 

directly transfered to theOR 2 gate and finally all are evaluated in the third cycle in the OR 2 gate. If the result is 

“0,” a finish signal is send by the finite state machine which indicates that the processed word is error-free. The 

ML decoding process continues until the end, if the result is “1”. 

 The majority logic gate is implemented by using the conventional majority logic decoding mechanism 

that is two level logic [6].In case during the memory read access an error is detected, the XOR gate will correct 

it, by inverting the current bit under decoding. 

 

4.1. Modified MLDD 

 This clearly provides a performance improvement respect to the existing MLD. The proposed method 

mostly would only take three cycles for decoding(five, if we consider the other two for input/output)since most 

of the words would be error free and would need to perform the whole decoding process only for those words 

with errors (which should be a minority). 

 

OR 

GATE

AND 

GATE

n1

n2

max (n1, n2)         

min (n1, n2)

(a)    (b)

 
Fig 9. (a)Sorting network-four input 

(b) Schematic of one comparator 

 

Results 

In this section the simulations results of the proposed Majority Logic Decoder/Detector (MLDD) shown. 

RTL Schematic 
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Fig 10. RTL schematic of proposed MLDD 

 

The figure shows the Rtl schematic of proposed method. 

Simulation Results 
The proposed MLDD technique is simulated for error free condition during memory access, and the results are 

shown below in figure 11. 

 

 
Fig 11.proposed technique MLDD without fault in memory 

 

V. Conclusion 

 It has found that for error detection and correction (for codeword of 15), when comparing to the 

existing technique, a speed up of about 1100 ns is obtained when there is no errors in data read access. It’s 

because the fault detection needs only three cycles and after the detection of an error free condition, the 

codeword is passed to the output without further corrections. This is a great saving of time since most of the 

situations the memory read access does not make errors. 

  Therefore there is a considerable reduction in the memory access time. The proposed MLDD have 

about 4% low power consumption than the existing MLD technique, since the proposed design detects the faults 

in just three cycles. Therefore a large no. of clock cycles (here 12 clock cycles) are saved and hence 

considerable reduction in power is achieved. MLDD error detector is designed as it is independent of the code 

word size and inference about area is that for large values of code word size, the area overhead of the MLDD 

actually decreases with respect to the plain MLD technique. i.e., for large values of code word size both areas 

are practically the same. Therefore the proposed MLDD will be an efficient design for fault detection and 

correction. 
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